
1

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

A Software Architecture for Model-Based 
Programming of Robot Systems

Michael Geisinger

Joint work with

 
Simon Barner, Martin Wojtczyk, and Alois Knoll

German Workshop on Robotics (GWR09)

June 9 and 10, 2009, Braunschweig, Germany



2

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

Motivation

Robot systems consist of highly
heterogeneous sub-components

Microcontroller platforms

Processing power

With/without operating system

Need for tool support

Model-driven design at
a high level of abstraction

Equal design process for
components on all levels

Required model semantics

Different levels of “model execution” (code generation, …)

Use single tool to program many components of a concrete robot system

Example: TAMS Service Robot System 
Architecture (Westhoff, Zhang; 2007)



3

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

Outline

1.

 
Model-Driven Development Tool EasyLab

2.

 
Modes of Model Execution

3.

 
Conclusion and Outlook



4

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

EasyLab: Model-Driven Development Tool

Software tool for modeling,

simulation, code generation, debugging

Primary focus: mechatronic systems

(i.e., small units with “local intelligence”)

Supports different microcontroller platforms

Currently used to program

smart sensors and actuators

Model

Simulation

Code 
Generation

Debugging Formal 
Verification

Deployment



5

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

EasyLab: Models

Device model

Specification of (controller) hardware

Resource management

Easily extensible device library

Application model

System behavior

Two visual modeling languages



6

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

EasyLab: Modeling Languages

Structured Data Flow (SDF)

Function blocks as primitives with 
associated code templates

Advantages:

Widely accepted in application 
domain (“black boxes“)

Static scheduling and memory 
allocation

State Flow Chart (SFC)

State sequences with
Boolean transition conditions

Alternative/parallel branches, jumps

State as reference to SDF program

Advantages:

Automaton-like semantics

Explicit representation of parallelism



7

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

EasyLab: Code Generation

Efficient and robust implementation 
on resource-constrained systems

Approach:

Code templates for primitive 
model elements

Templates are based on 
platform-specific runtime
library (abstraction of low-
level hardware features)

Execution platform information
influence code generator

Code
templates

Execution
platformCode generator

Runtime library

Hardware

OS

Middleware

Generated code

Application
model

Analysis

Hardware
model



8

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

Modes of Model Execution

Different ways to actually run the modeled application

Native execution

Local execution

Remote execution



9

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

Native Execution

Code generation

Application executed natively on target hardware

No operating system required

Application scenario: smart sensors and actuators without 
operating system



10

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

Native Execution Example

Intelligent pneumatic cylinder: piston positioning

Scope: Demonstration of simple controller tasks,
“local intelligence”

Hardware: cylinder, 2 valves, position sensor

Controller: Match-X construction kit
(modular micro system) with PIC18F 8-bit CPU



11

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

Local Execution

Application executed by interpreting application model on target

Requires OS and command-line interpreter for target platform

No code generation required, platform independent application 

model may be directly modified

Application scenario: main controllers of robot systems



12

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

Local Execution Example

F5 platform/Leonardo:
image processing, localization, mapping, path planning

Scope: advanced service tasks in industrial
or research environments, education

Hardware:

Laser range scanner, motors

Extensions:
Camera/force-torque based
mobile manipulator

Box transportation system

Controller: Powerful standard PC



13

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

Remote Execution

Application simulated on a remote machine

Control and sensor signals redirected to target

Target has proxy application that relays between simulator/hardware

Application scenarios: “slow” target systems, during development 

(adaptation of model during runtime possible)



14

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

Remote Execution Example

Mobile robot platform Robotino®:
camera-based navigation,
path planning, odometry

Scope: educational area

Hardware: 3 motors, infrared
distance sensors, camera,
bumper, I/O for adding extensions

Controller: PC104
(not suitable for compu-
tation intensive tasks)



15

Technische Universität München, Germany
Department of Informatics, Unit VI: Robotics and Embedded Systems

Conclusion and Outlook

EasyLab is suitable for model-driven development
of components of robot systems at different levels

Native execution (code generation) on
resource-constrained embedded targets

Local execution (interpretation) on targets with
operating system if easy reconfiguration is required

Remote execution (simulation) during
development/debugging and on “slow”
target systems with OS

Future work:
Addition of distribution model

Interfaces for service oriented architecture

Optimized support for multi-core architectures


	A Software Architecture for Model-Based Programming of Robot Systems
	Motivation
	Outline
	EasyLab: Model-Driven Development Tool
	EasyLab: Models
	EasyLab: Modeling Languages
	EasyLab: Code Generation
	Modes of Model Execution
	Native Execution
	Native Execution Example
	Local Execution
	Local Execution Example
	Remote Execution
	Remote Execution Example
	Conclusion and Outlook

