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Introduction

Motion planning: given two 
configurations of a robot, find 
a collision-free path that 
connects them.
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Introduction

Motion planning: given two 
configurations of a robot, find 
a collision-free path that 
connects them.

More generally: find paths for 
one or more robots that satisfy 
all constraints on geometry, 
physics, safety, etc.
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Motion planning problems are hard
PROBLEM COMPLEXITY

Geometric Constraints:

Dynamics Constraints:

Discrete Transitions and Dynamics Constraints:

Sofa Mover (3DOF)

Piano Mover (6DOF)

n Disks in the Plane

n Link Chain in 3D

Generalized Mover

Point with Newtonian Dynamics

Hybrid Systems

Polygon Dubin’s Car (Linear)

Nonlinear

PSPACE-Complete [HSS87]

O(n2+ε) - not implemented [HS96]

Polynomial – no practical algorithm [SS83] 

NP-Hard [SS83] 

NP-Hard [DXCR93]

Undecidable [Alur et. al 95]

PSPACE-Complete [Canny88]

Decidable [CPK08]

Unknown, probably undecidable



Exact, Approximate, and 
Probabilistically Complete Algorithms

Method Advantage Disadvantage

exact
theoretically 

insightful
impractical

cell decomposition easy does not scale

control-based online, very robust
requires good 

trajectory

potential fields online, easy slow or fail

sampling-based fast and effective
cannot recognize 
impossible query



Sampling-based algorithms
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Sampling-based algorithms

Compute a trajectory from an initial state to a goal region
Trajectory should satisfy all state constraints (e.g., no collisions) 

and dynamics constraints
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Sampling-based algorithms

Compute a trajectory from an initial state to a goal region
Trajectory should satisfy all state constraints (e.g., no collisions) 

and dynamics constraints

Basic tree-search framework
repeat until solution
■ select state x from tree T
■ create a new tree branch from x
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Examples



Outline

• Motivation

• Main features of OOPSMP

• Visual walk-through of using OOPSMP

• OOPSMP plug & play

• Concluding remarks



Motivation



The need for motion planning software

• Teaching tool:

- Play with different algorithms

- Quickly create interesting motion planning problems

- Minimal programming overhead



The need for motion planning software

• Research tool:

- Easily compare new algorithms with “standard” 
algorithms

- Run algorithms on benchmark problems

- Reuse common data structures



Existing motion planning software

• Motion Strategies Library, LaValle et al.

• Motion Planning Kit, Schwarzer, Saha, Latombe

• KineoWorks, Laumond et al.

• OpenRAVE, Diankov & Kuffner



OOPSMP:
Object-Oriented Programming System 

for Motion Planning



OOPSMP:
Object-Oriented Programming System for Motion Planning

• contains several motion planning algorithms

• is easily extensible with new algorithms

• has an easy to use graphical front-end

• runs on a variety of platforms

• already used in several classes and research groups 
around the world



Main features

• Stand-alone version

- command line version

- graphical version

• Can be used as a library

• Google SketchUp plugin

- easy to create motion planning problems

• Source code available for download

• Runs on Windows, Linux, and Apple OS X



Motion planner components



Motion planner components

• high-level planning algorithms
PRM, 
RRT, 
EST, 

bi-tree planner,
DDRRT*,
VisPRM*



Motion planner components

• high-level planning algorithms

• sampling strategies uniform, 
Gaussian, 
obstacle-

based,
bridge test



Motion planner components

• high-level planning algorithms

• sampling strategies

• connection strategies
random 

neighbors,
approx. n.n.
exact n.n.



Motion planner components

• high-level planning algorithms

• sampling strategies

• connection strategies

• path generation

geodesics, 
best or 
random 
control,

collisions



Motion planner components

• high-level planning algorithms

• sampling strategies

• connection strategies

• path generation

• state spaces

SE(2), 
SE(3), 

car-like 
vehicles,
multiple 
robots



OOPSMP workflow

• Define motion planning problem:

- Define an environment

- Define a robot

- Specify queries

- Specify global planner (PRM, RRT, etc.)

- Specify local planner

• Run OOPSMP to solve motion planning problem



Google SketchUp:
a graphical front-end to OOPSMP

SketchUp   plugin OOPSMP

XML spec. of 
motion planning problem

solution paths



Google SketchUp:
a graphical front-end to OOPSMP

Pros:  ease of use, access to many 3D models

Cons: does not (yet) support all OOPSMP features,
           not available for Linux

SketchUp   plugin OOPSMP

XML spec. of 
motion planning problem

solution paths



Motion planning with OOPSMP & SketchUp



OOPSMP Plug & Play



OOPSMP input

• XML input

- Pros: self-describing, easy to parse/generate

- Cons: very verbose

• OOPSMP XML files can include other XML files

- Can reuse environment/robot for many motion 
planning problems



XML code for example



XML code for example

create object



XML code for example

create object

call object’s method



XML code maps to C++ objects/methods



XML code maps to C++ objects/methods



OOPSMP Plug & Play

Can add new global planners, local planners, 
collision checkers, etc. without having to recompile 
main OOPSMP code:

• Derive from abstract classes that define API

• Bundle new code in a plugin

• New code automatically accessible from XML



Future directions
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- ...



Future directions

• Add more planners:

- Path-Directed Subdivision of Trees (PDST)

- TemporalHyDICE (planner for hybrid systems + LTL)

- ...

• Add support for physics engines

- Get support for articulated mechanisms “for free”!



Future directions

• Add more planners:

- Path-Directed Subdivision of Trees (PDST)

- TemporalHyDICE (planner for hybrid systems + LTL)

- ...

• Add support for physics engines

- Get support for articulated mechanisms “for free”!

• Add support for COLLADA 1.5

- file format for geometry, kinematics, physics
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With OOPSMP it is relatively easy to:
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Summary

• “play” with various state-of-the-art sampling-based 
motion planning algorithms,

• add new algorithms,

• develop new benchmarks,

• perform parameter sweeps,

• compare algorithm performance,

• embed motion planning system in larger robotic system.

With OOPSMP it is relatively easy to:
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