
OOPSMP:
An Object-Oriented Programming
System for Motion Planning

Mark Moll & Lydia E. Kavraki
Physical & Biological Computing Group
Rice University
Houston, TX
USA

Introduction

Motion planning: given two
configurations of a robot, find
a collision-free path that
connects them.

GOAL

xinit
X

Introduction

Motion planning: given two
configurations of a robot, find
a collision-free path that
connects them.

More generally: find paths for
one or more robots that satisfy
all constraints on geometry,
physics, safety, etc.

GOAL

xinit
X

Motion planning problems are hard
PROBLEM COMPLEXITY

Geometric Constraints:

Dynamics Constraints:

Discrete Transitions and Dynamics Constraints:

Sofa Mover (3DOF)

Piano Mover (6DOF)

n Disks in the Plane

n Link Chain in 3D

Generalized Mover

Point with Newtonian Dynamics

Hybrid Systems

Polygon Dubin’s Car (Linear)

Nonlinear

PSPACE-Complete [HSS87]

O(n2+ε) - not implemented [HS96]

Polynomial – no practical algorithm [SS83]

NP-Hard [SS83]

NP-Hard [DXCR93]

Undecidable [Alur et. al 95]

PSPACE-Complete [Canny88]

Decidable [CPK08]

Unknown, probably undecidable

Exact, Approximate, and
Probabilistically Complete Algorithms

Method Advantage Disadvantage

exact
theoretically

insightful
impractical

cell decomposition easy does not scale

control-based online, very robust
requires good

trajectory

potential fields online, easy slow or fail

sampling-based fast and effective
cannot recognize
impossible query

Sampling-based algorithms

xinit

GOAL

X

Sampling-based algorithms

Compute a trajectory from an initial state to a goal region
Trajectory should satisfy all state constraints (e.g., no collisions)

and dynamics constraints

x

xinit

GOAL

X

Sampling-based algorithms

Compute a trajectory from an initial state to a goal region
Trajectory should satisfy all state constraints (e.g., no collisions)

and dynamics constraints

Basic tree-search framework
x

xinit

GOAL

X

Sampling-based algorithms

Compute a trajectory from an initial state to a goal region
Trajectory should satisfy all state constraints (e.g., no collisions)

and dynamics constraints

Basic tree-search framework
repeat until solution x

xinit

GOAL

X

Sampling-based algorithms

Compute a trajectory from an initial state to a goal region
Trajectory should satisfy all state constraints (e.g., no collisions)

and dynamics constraints

Basic tree-search framework
repeat until solution
■ select state x from tree T

x

xinit

GOAL

X

Sampling-based algorithms

Compute a trajectory from an initial state to a goal region
Trajectory should satisfy all state constraints (e.g., no collisions)

and dynamics constraints

Basic tree-search framework
repeat until solution
■ select state x from tree T
■ create a new tree branch from x

x

FLOWu
t

 System Dynamics

control

state

*me step
INVARIANT

xnew
xnew

true

NIL

false

x

xinit

GOAL

X

xnew

u

Sampling-based algorithms

Compute a trajectory from an initial state to a goal region
Trajectory should satisfy all state constraints (e.g., no collisions)

and dynamics constraints

Basic tree-search framework
repeat until solution
■ select state x from tree T
■ create a new tree branch from x

x

FLOWu
t

 System Dynamics

control

state

*me step
INVARIANT

xnew
xnew

true

NIL

false

x

xinit

GOAL

X

xnew

u

Examples

Outline

• Motivation

• Main features of OOPSMP

• Visual walk-through of using OOPSMP

• OOPSMP plug & play

• Concluding remarks

Motivation

The need for motion planning software

• Teaching tool:

- Play with different algorithms

- Quickly create interesting motion planning problems

- Minimal programming overhead

The need for motion planning software

• Research tool:

- Easily compare new algorithms with “standard”
algorithms

- Run algorithms on benchmark problems

- Reuse common data structures

Existing motion planning software

• Motion Strategies Library, LaValle et al.

• Motion Planning Kit, Schwarzer, Saha, Latombe

• KineoWorks, Laumond et al.

• OpenRAVE, Diankov & Kuffner

OOPSMP:
Object-Oriented Programming System

for Motion Planning

OOPSMP:
Object-Oriented Programming System for Motion Planning

• contains several motion planning algorithms

• is easily extensible with new algorithms

• has an easy to use graphical front-end

• runs on a variety of platforms

• already used in several classes and research groups
around the world

Main features

• Stand-alone version

- command line version

- graphical version

• Can be used as a library

• Google SketchUp plugin

- easy to create motion planning problems

• Source code available for download

• Runs on Windows, Linux, and Apple OS X

Motion planner components

Motion planner components

• high-level planning algorithms
PRM,
RRT,
EST,

bi-tree planner,
DDRRT*,
VisPRM*

Motion planner components

• high-level planning algorithms

• sampling strategies uniform,
Gaussian,
obstacle-

based,
bridge test

Motion planner components

• high-level planning algorithms

• sampling strategies

• connection strategies
random

neighbors,
approx. n.n.
exact n.n.

Motion planner components

• high-level planning algorithms

• sampling strategies

• connection strategies

• path generation

geodesics,
best or
random
control,

collisions

Motion planner components

• high-level planning algorithms

• sampling strategies

• connection strategies

• path generation

• state spaces

SE(2),
SE(3),

car-like
vehicles,
multiple
robots

OOPSMP workflow

• Define motion planning problem:

- Define an environment

- Define a robot

- Specify queries

- Specify global planner (PRM, RRT, etc.)

- Specify local planner

• Run OOPSMP to solve motion planning problem

Google SketchUp:
a graphical front-end to OOPSMP

SketchUp plugin OOPSMP

XML spec. of
motion planning problem

solution paths

Google SketchUp:
a graphical front-end to OOPSMP

Pros: ease of use, access to many 3D models

Cons: does not (yet) support all OOPSMP features,
 not available for Linux

SketchUp plugin OOPSMP

XML spec. of
motion planning problem

solution paths

Motion planning with OOPSMP & SketchUp

OOPSMP Plug & Play

OOPSMP input

• XML input

- Pros: self-describing, easy to parse/generate

- Cons: very verbose

• OOPSMP XML files can include other XML files

- Can reuse environment/robot for many motion
planning problems

XML code for example

XML code for example

create object

XML code for example

create object

call object’s method

XML code maps to C++ objects/methods

XML code maps to C++ objects/methods

OOPSMP Plug & Play

Can add new global planners, local planners,
collision checkers, etc. without having to recompile
main OOPSMP code:

• Derive from abstract classes that define API

• Bundle new code in a plugin

• New code automatically accessible from XML

Future directions

Future directions

• Add more planners:

- Path-Directed Subdivision of Trees (PDST)

- TemporalHyDICE (planner for hybrid systems + LTL)

- ...

Future directions

• Add more planners:

- Path-Directed Subdivision of Trees (PDST)

- TemporalHyDICE (planner for hybrid systems + LTL)

- ...

• Add support for physics engines

- Get support for articulated mechanisms “for free”!

Future directions

• Add more planners:

- Path-Directed Subdivision of Trees (PDST)

- TemporalHyDICE (planner for hybrid systems + LTL)

- ...

• Add support for physics engines

- Get support for articulated mechanisms “for free”!

• Add support for COLLADA 1.5

- file format for geometry, kinematics, physics

Summary

With OOPSMP it is relatively easy to:

Summary

• “play” with various state-of-the-art sampling-based
motion planning algorithms,

With OOPSMP it is relatively easy to:

Summary

• “play” with various state-of-the-art sampling-based
motion planning algorithms,

• add new algorithms,

With OOPSMP it is relatively easy to:

Summary

• “play” with various state-of-the-art sampling-based
motion planning algorithms,

• add new algorithms,

• develop new benchmarks,

With OOPSMP it is relatively easy to:

Summary

• “play” with various state-of-the-art sampling-based
motion planning algorithms,

• add new algorithms,

• develop new benchmarks,

• perform parameter sweeps,

With OOPSMP it is relatively easy to:

Summary

• “play” with various state-of-the-art sampling-based
motion planning algorithms,

• add new algorithms,

• develop new benchmarks,

• perform parameter sweeps,

• compare algorithm performance,

With OOPSMP it is relatively easy to:

Summary

• “play” with various state-of-the-art sampling-based
motion planning algorithms,

• add new algorithms,

• develop new benchmarks,

• perform parameter sweeps,

• compare algorithm performance,

• embed motion planning system in larger robotic system.

With OOPSMP it is relatively easy to:

OOPSMP team

Christopher Alme

Kostas Bekris

Nick Bridle

Drew Bryant

Neal Ehardt

Nicolas Feltman

Nurit Haspel

Allison Heath

Lydia E. Kavraki

Andrew Ladd

Mark Moll

Erion Plaku

Amarda Shehu

Ioan Şucan

Konstantinos Tsianos

You!

lead developer

http://kavrakilab.org/OOPSMP

http://www.cs.rice.edu/~dbryant
http://www.cs.rice.edu/~dbryant
http://www.kavrakilab.org/profiles/aheath
http://www.kavrakilab.org/profiles/aheath
http://www.cs.rice.edu/~kavraki
http://www.cs.rice.edu/~kavraki
http://www.kavrakilab.org/aladd.html
http://www.kavrakilab.org/aladd.html
http://www.cs.rice.edu/~mmoll
http://www.cs.rice.edu/~mmoll
http://www.cs.rice.edu/~plakue
http://www.cs.rice.edu/~plakue
http://cs.gmu.edu/~ashehu
http://cs.gmu.edu/~ashehu
http://ioan.sucan.info/
http://ioan.sucan.info/
http://konstantinos.tsianos.googlepages.com/
http://konstantinos.tsianos.googlepages.com/

