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Motivation

● Robotics requires lots of software
● Especially on big robots
● Scale through modularity and abstraction
● Leverage work of others
● Promote replication of results: science!



  

Historical

● Stanford and Willow Garage are nearby
● We both run large, complex robots
● We both build complex software systems
● We had experience with various systems

● Various in-house systems at Stanford and others
● Player
● ...

● We combined efforts on ROS
● Meets our needs for large mobile manipulators
● Hope it will help robotics in general



  

Target platforms



  

Design philosophy

● UNIX design:
● Lots of small programs
● Programs debugged in isolation
● Piped or scripted to do complicated things
● Spectacularly successful

● ROS hopes to do this for robotics



  

What is ROS?

● Sits on top of POSIX: “meta operating system”
● UNIX provides filesystem, networking, etc.
● ROS provides transforms, vision, nav, etc.
● Modularity via easy, fast P2P messaging
● Tools for collaborative development
● Hackable at all levels
● BSD license



  

Work cycle

● Coding time:
● Write small programs
● Debug them in isolation

● Run time:
● Launch a bunch of small programs
● ROS helps them find each other
● They form a (local, legal, friendly) botnet



  

ROS overview

● At runtime, ROS botnet is a graph
● Nodes are programs using the ROS libraries
● Edges are P2P communications between nodes

● Nodes communicate in two ways
● Anonymous publish/subscribe: “laser”
● RPC to named services: “classify_image”

● Message code autogenerated from simple IDL
● Master node: directory service, no data



  

ROS overview II

● Console-friendly tools, easily scriptable
● Loosely defined package manager

● Package requirements: an XML file
● Packages: hardware drivers, vision, numerics, 

controllers, nav, planners, messages, datasets, …
● Recursive build system

● Recursive dependency tracker / translator
● Packages wrap other open-source projects

● OpenCV, Player, OGRE, Bullet, ...



  

Minimal ROS graph

● One node blasts data to another node



  

2D navigation in simulation



  

Fetch a stapler



  

ROS coding philosophy

● Thin
● Maximize amount of “standalone” code
● ROS just wraps libraries so they can talk

● Multi-lingual
● C++, Python, LISP, Octave, more coming

● Scaling via modularity (P2P)
● Tools-based

● Push things out of the core library, into small tools

● Open!
● Hosted at Sourceforge



  

System Monitoring

● Distributed systems can be tough to monitor
● Lots of state in various places
● ROS graphs are dynamic
● Insert visualizers or console dumpers
● Script / pipe UNIX text tools on console dumps
● Plugin architecture to write visualizer panels



  

Visualizers



  

Visualizers



  

Visualizers



  

Visualizers



  

Visualization video



  

Computation

● Complex robots need lots of CPU time
● Sensing, planning, etc.

● ROS: trivial to shift computation around
● Several machines onboard robot
● Cluster offboard
● VM's in a cloud somewhere?

● Automated launching of processing nodes
● Monitoring tools for distributed logs



  

Robot descriptions

● Dynamics and kinematics encoded in XML
● Inspired by PR2, not tied to it
● Populates tree-based transform system
● “Put nodding laser data in map frame”

● Nodding laser is on pan unit
● Pan unit is on torso
● Torso can twist and be raised / lowered
● Torso sits on an omnidirectional base
● Base is localized to map using nav system

● Transform system handles this transparently



  



  

Door video



  

Inventory video



  

ROS-ified algorithms

● Large and growing library of packages
● 2.5D navigation stack

● Extensive testing underway (multiple km / day)

● Manipulation stack
● Sampling-based planning
● Grasp planning (various approaches)

● Perception
● Visual odometry
● 3d perception

● Many more (400+ packages currently)



  

Known weaknesses

● Overkill for really small robots
● No Windows port (yet)
● No IDE (yet); need to be comfortable at console
● Can't talk to other large codebases

● Player, OROCOS, Orca, OpenRTM
● Future: automated tools to bridge systems?



  

Summary

● ROS hopes to scale through modularity:
● Peer-to-peer messaging
● Hierarchical sets of packaged functionality: “nav”

● Tools for collaborative development
● Simple package manager
● Many package repositories
● Wrapping other open-source projects
● In use at >10 laboratories, wildly varying platforms

● http://ros.sourceforge.net
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