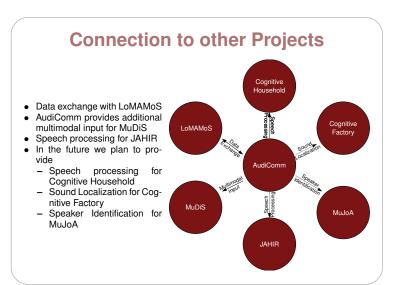

Project #428 – AudiComm

Audio for Communication and Environment Perception


K. Diepold, M. Durkovic¹, A. Knoll, M. Giuliani², F. Wallhoff, J. Geiger³ {kldi,durkovic}@tum.de1, {knoll,giuliani}@in.tum.de2, {wallhoff,geiger}@tum.de2

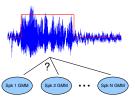
Research Goals

- Sound localization • with head-related transfer functions (HRTF) **HRTF** Database
- Speaker identification with Gaussian mixture models
- online learning of new speakers Sound source classification
- Speech processing
- with combinatory categorial grammar
- Acoustic environment map

Real Time Architecture eneration of Acoustic mantic Interpreta Text Speech Recognition aker Identificatio Acoustic Objects and ttention-based Filtering ХМІ RTD Sound Source Classification t Tracking of Feature Detection and Extraction Acoustic Objects ind Texture Sound Source Localization And Separation

Contribution to Demonstrators

AudiComm software is available to the whole cluster, in the future AudiComm can . provide for


Multi Joint Action

- Improvement of human-robot interaction through better acoustic environment perception
- Advanced dialogue management in collaboration with MuDiS Speaker identification to customize robot behaviour
- Cognitive Factory
 - Sound localization for improved security for human worker in JAHIR
 - Speaker identification for customization of assembly plan for worker
 - Specialized grammar-based speech processing for joint assembly tasks
- **Cognitive Household**
- Software to localize household inhabitants with microphones (for example when it is dark)
- Speech processing to give robot commands Speaker identification to distinguish between inhabitants and guests

Methods and Results

Sound Localization

- Sound source localization using generalized
- cross correlation Development towards binaural robotic hearing
- Efficient HRTF database personalization for improved binaural sound localization
- Recording of custom HRTFs in noisy environments for online HRTF learning

 $\begin{array}{l} \label{eq:constraint} \left(\begin{array}{l} \mbox{look-verb} \land \\ \mbox{(MOOD)} \mbox{inp} \land \\ \mbox{(PATESY12)} \ (p : awindte - being \land \mbox{pron} \land \\ \mbox{(PATESY22)} \ (p : awindte - being \land \mbox{pron} \land \\ \mbox{(PRES)} \ \mbox{is} \land \\ \mbox{(PREP)} \ \mbox{loop} \ \mbox{loop} \ \mbox{is} \land \\ \mbox{(PREP)} \ \mbox{loop} \ \mbox{loop} \ \mbox{is} \land \\ \mbox{(PREP)} \ \mbox{loop} \ \mbox{loop} \ \mbox{is} \land \\ \mbox{(PREP)} \ \mbox{loop} \ \mbox{loop} \ \mbox{is} \ \mbox{is$

Speaker Identification

- Energy-based speech/silence detection
- Features: 12 MFCCs, Energy, Δ , $\Delta\Delta$
- Gaussian mixture models with 4 mixtures Tested with different numbers of states for the models (see picture)
- Recognition results on baseline database (YOHO): \sim 90% with 10 speakers
- Realtime processing Implemented with HTK

Speech Processing

- Grammar for spatial language available
- Language grounding with audible cues
- Multimodal processing
- Inclusion of context information

Demonstration

- Includes sound localization, speaker identification, and speech processing
- Runs on one computer \Rightarrow portable to any computer running linux
- Sound localization customizable \Rightarrow works with any stereo microphone Recognition of 4 different speakers + unknown speaker
- Grammar parses sentences that contain spatial description ("look to me") and grounds them in audio data

Future Plans

- Collection of data for HRTF database
- Acoustic event detection (for example distinguishing human and non-human noises)
- Development of an acoustic environment map
- Theory of language grounding in acoustic events
- Grammar with advanced spatial language description for CoTeSys demonstrators