
1

Experimental Platform for Innovative ICT Car Architecture
Gerd Kainz, Christian Buckl and Alois Knoll

Abstract—The ever rising complexity of the historically grown archi-
tecture of nowadays cars leads to massive problems concerning reliability,
costs and development time. The observable trend to electric cars
offers the opportunity to redesign the information and communication
technologies (ICT) infrastructure of cars to encounter these problems.
Within this paper, we present an evaluation platform for innovative
ICT car architectures. This platform can be used to evaluate different
concepts, such as the usage of smart sensors or the integration of
several software functions on one controller using virtualization, their
applicability and implications for the overall ICT architecture.

Index Terms—automotive embedded systems, embedded systems, ar-
chitecture standards.

I. MOTIVATION

C urrently great efforts are taken to move from ordinary cars with
combustion engine towards fully electric cars. The standard

approach by the automotive industry is a simple replacement of
the combustion engine and gasoline tank by an electric engine and
batteries. The results are comparably small changes to the architecture
of modern cars. All the mechanical safety mechanisms are working
as before and ensure necessary functionality in situation of system
blackouts. On the other side this type of cars cannot fully utilize the
high potential of the electric engines, which makes it possible to use
separate motors for each axle or even for each wheel. Depending
on the selected variant the motors can be placed either at a central
position, near the wheels or at the wheels. These new options
can help to get rid of a lot of classical mechanical components
like steering rod, differential, axle, etc. and leads to reduction of
weight and space. On the other hand, many mechanisms that were
previously implemented by mechanics, such as synchronization of
the wheels, must now be implemented by software leading to high
safety requirements. To accomplish these new requirements, the car’s
information and communication technologies (ICT) architecture has
to change and adapt to the new needs. Because of the shift from
functions implemented by hardware to functions implemented in
software, the software architecture will change considerably. This
change offers the opportunity to redesign the whole ICT architecture
that has been developed incrementally over the years without a
specific blue print. Reliability and safety are central points for this
new ICT architecture, as well as simplicity and flexibility. Tool
integration and automation are also a major interest.

One major goal will be to reduce the complexity of the ICT archi-
tecture and to reduce the number of electronic control units (ECUs).
Nowadays the on-board network consists of up to 70 - 100 ECUs [7]
strongly connected with each other to fulfill the complex control
tasks. All the ECUs are constructed and programmed by different
suppliers and integrated by the car manufacturer (original equipment
manufacturer - OEM). For the communication of the ECUs, many
different communication networks are used. CAN (Controller Area
Network) is the most widely used technology for control tasks. LIN

G. Kainz and C. Buckl are with the Department of Cyber-Physical Systems,
fortiss - Munich Software and Systems Institute, 80805 Munich, Germany
(e-mail: {kainz, buckl}@fortiss.org)

A. Knoll is with the Department of Robotics and Embedded Systems,
Institut für Informatik, Technische Universität München, 85748 Garching,
Germany
(e-mail: knoll@in.tum.de)

Fig. 1. Design of the Evaluation Platform

(Local Interconnect Network) realizes a cheap way to communicate
with small smart sensors and actuators. In the domain of infotainment
the MOST (Media Oriented Systems Transport) standard is used.
FlexRay is a time triggered bus introduced for highly reliable and
high-bandwidth communication. Based on the used communication
technology the introduction of new network communication can lead
to unexpected changes in the behavior of the functions also using
the same communication resources. The huge heterogeneity and
complexity leads to additional effort to ensure the correct function of
the overall system after new components are introduced. Furthermore
sensors or functionalities are often duplicated not for reasons of
reliability or safety, but due to the complex architecture and the non-
accessibility of sensor data due to black-box ECUs.

Within this paper, we present an evaluation platform for innovative
ICT infrastructures. This platform can be used evaluate different
concepts, such as the usage of smart sensors or the integration of
several software functions on one controller using virtualization, their
applicability and implications for the overall ICT architecture. The
hardware setup of this evaluation platform is described in section II.
Section III focuses on the research objectives concerning the ICT
infrastructure. Afterwards the proposed software architecture and its
corresponding tooling are explained in section IV. The conclusion
consists of an overview about the current development state and an
outlook on future work.

II. DESCRIPTION OF HARDWARE SETUP

To demonstrate the applicability of possible ICT infrastructures, the
most challenging hardware setup has been selected: a car with four
independently controllable driving / steering units interconnected only
by a network. The hardware setup of the evaluation platform called
’eCar’ is based on the eCorner concept from Siemens VDO [4]. It
consists of four eCorner modules, which can be controlled indepen-
dently of each other. Each of the eCorner modules is composed of
a drive and a steering motor and weighs around 50 kg. As the eCar
does not have any mechanical brakes, the braking is realized via the
drive motors. No mechanical axes are used for the synchronization of
the eCorner modules. Instead, the whole control system is based on
a distributed system (X-by-Wire). No mechanical fallback solutions

Copyright 2010 ForTISS GmbH, Germany



2

Fig. 2. Different drive modes of the evaluation platform (two-wheel steering,
four-wheel steering, vector, park, turn on place, parking brake and emergency
brake mode)

were integrated in this car, so that the whole reliability and safety
must be ensured by software. Figure 1 shows the eCar evaluation
platform.

The drive power of the eCar is 8 kW (4 x 2 kW). Each of the
wheels has a maximum torque of 160 Nm. The energy comes from
four truck batteries, which are used to generate 48 V for driving,
24 V for steering and 24 V, 12 V and 5 V for the ECUs. The car is
controlled via side stick. The current state of the evaluation platform
is presented on a 10 ” touch screen, which can also be used to change
between different drive modes. The outline of the car is around
2.25 x 1.25 x 1.75 m (LxWxH) and its weight is about 600 kg. The
eCar is constructed to carry one passenger with a maximum speed
limited to 50 km/h.

Due to the fact that all eCorner modules can be controlled inde-
pendently it is possible to realize different drive modes. Additional
to the conventional two-wheel steering a four-wheel steering can
be implemented. But also totally unconventional drive modes like
a vector mode (all four wheels are moving parallel to each other),
parking mode (used to get sideways into a parking lot), turn on place
mode (rotating around the center of the car), parking brake mode
(used to fix the car on place without mechanical brakes) and an
emergency brake mode (like snowplow in skiing). The different drive
modes are illustrated in figure 2.

The modular and open construction of the evaluation platform
makes it possible to easily attach or detach sensors and ECUs
as needed. In addition, different network topologies can be easily
integrated into the car. Hence it is suitable for the evaluation of
different ICT architectures and can be used to compare them with
each other.

III. OBJECTIVES

The goal of this project is to develop an ICT architecture and
related development methodology to mitigate the current problems
arising from the current ICT infrastructure. In the following, the major
concepts used to reach this goal are explained shortly:

• Layered architecture: To minimize the dependencies and in-
terconnections between the different software components, a
layered architecture should be introduced. The robotic domain
offers adequate blue prints for such an architecture consisting
of at least an hardware abstraction layer, a layer to implement
low-level functionality (smart sensors / actuators) and a layer
to implement high-level functionality (e.g. driver assistance
functionality).

• Data-centric approach: To enable the reuse of existing (sensor)
data, for all components the developers should specify the
required and provided data. The specification must be based on
strong data types and consist of information with respect to tim-
ing (e.g. required / provided data rates), accuracy, and quality-
of-service (QoS). Based on this specification, development tools
could automate the configuration of the communication and the
scheduling of the software components.

• Hardware abstraction: In current automotive systems, most
functions are executed on dedicated ECUs (one-to-one map-
ping). In future ICT architectures, the software should be de-
veloped independently of the concrete hardware. The mapping

Real-Time, 

Time-

Triggered, e.g. 

FlexRay, IEEE 

1588

Real-Time, 

Event-/Time-

Triggered, , 

e.g. FlexRay, 

IEEE 1588

Module 1

Module n

...

Concentrator

Module 1'

Module n’

...

Concentrator

Common 

Knowledge Base 

(logical component)

...

Mission Control

High-Level 

Functions

Driver Interface

Module Specific

Control response 

time: 1ms

Control response 

time: 1ms

Control response 

time: 10ms

Control response 

time: 100ms

Control response 

time: 100ms … 1s

Fig. 3. Proposed Software Architecture of Electrical Cars

of software functions to controllers should be based on the
requirements and allow also the mapping of several functions
to one ECU similar to the approaches in the avionic domain -
integrated modular avionics (IMA) architecture.

• Simplified network structure: Instead of using a large number
of different communication standards, the network structure
should be simplified and unified. Adequate communication
protocols supporting both reliable and unreliable, event- and
time-triggered communication, such as FlexRay, should be used.

• Fault Recognition and Redundancy Management: An ade-
quate concept for fault recognition and redundancy management
taking into account the cost constraints of the automotive must
be developed to satisfy constraints from safety standards, such
as ISO 26262 [3]. This concept should be based on a separation
of fault-tolerance mechanisms and application functionality [6]
to simplify the development.

• Tool support: The development methodology should be based
on development tools for an automatic and flexible mapping
from logical architecture to target hardware. The tool support
in combination with the layered architecture and the hardware
abstraction should enable scalability and portability of the ap-
proach across vehicle classes.

IV. ICT ARCHITECTURE & DEVELOPMENT PROCESS

The proposed ICT architecture for electrical cars, see Figure 3, is
inspired by robotics and builds upon a layered software architecture.
The bottom of the layered architecture consists of sensors and actu-
ators and implements the interaction with the physical environment.
Above the sensors and actuators is a hardware abstraction layer,
which introduces a standardized interface for sensors and actuators /
motors of the same type. By this method, sensors and actuators can
be easily replaced without having to change the software. On top
of the hardware abstraction layer, software components enhance the
functionality of the sensors / actuators to provide a certain level
of intelligence (smart sensors / actuators). This intelligence can for
example abstract control loops to control an eCorner module based on
the control commands coming from upper layers. The communication
between the smart sensors / actuators and the upper layers is realized
using a real-time network.

Instead of creating for the data dependencies between the different
modules a communication relation by hand, the communication
relationship shall be automatically established by the system. This
can be either done statically at development time or dynamically

Copyright 2010 ForTISS GmbH, Germany



3

at runtime. The concept behind this idea is a common knowledge
repository, which is responsible for collecting all the available data
and offering all the components access to available data and take
care of the correct data alignment. It is important to note that this
component is a logical component for most of the communication in
the car, since the majority of the communication will be statically
defined. In this case, the communication is directly performed be-
tween the components, however the specification and configuration
of the required messages are automated by according development
tools. Since for all components, only the required data, but not the
specific sensor is specified, unnecessary redundant sensors can be
avoided. In the context of the automatic network configuration a
correct transmission with respect to timing requirements can also
be verified. Hence, the approach establishes a Single-System Illusion
in the sense that the developer does not have to take care whether
the data is produced locally or on a remote ECU.

To structure the network and to minimize the required bandwidth,
a concentrator architecture is suggested. This architecture forms sub
networks in which high amount of data can be shared in a fast way.
Hence control loops with high requirements regarding response time
can be implemented locally. The data visible beyond sub network
structures is restricted by a so called ’concentrator’, which makes all
necessary information visible to the outside world and hides the rest.
High-level functions can be realized at upper levels. Here, the control
response times might be more relaxed.

In order to keep the complexity of the network as simple as
possible the number of different communication technologies shall
be as small as possible. Buses which are able to handle event- and
time-triggered communication are best suited. Their properties allow
to give tighter bounds on the maximum latency for the communica-
tion and to ensure by construction that a faulty component cannot
disturb the whole communication on a bus. Remaining bandwidth
can additionally be used for event-triggered communication, which
normally constitutes best effort services. When an underlying time-
triggered bus is additionally synchronized with the above running
application, the response time of functions can further be improved.

Naturally the software architecture needs to support fault toler-
ance. The redundancy management shall be done semi automatically
and be based on a separation of fault-tolerance mechanisms and
application functionality. The fault-tolerance mechanism can thus be
implemented within the run-time system and development tools can
select and generate appropriate mechanisms based on a mechanism
specification done by the developer. To keep the number of addi-
tionally needed ECUs low, the integration of different functions on
the same ECU shall be supported by the software architecture. High
reliability and safety can be ensured by executing the functions in a
time and space separated way. Figure 3 illustrates a possible setup
for redundancy.

Through providing a helpful integrated continuous tool chain the
development of car software is speeded up. Thereby it is useful to
use model driven software development (MDSD) tools with code
generation to automotive standards, like AUTOSAR [1].

V. STAGE OF DEVELOPMENT

In this section, we will describe the current development stage of
the project. The current version of the eCar consists of all necessary
components to realize a human controlled driving via sidestick and
touch screen. Therefore all mechanical and electrical components had
to be put together and brought into service. The current architecture
is shown in figure 5. It consists of distributed heterogeneous hardware
components, which have to communicate with each other to realize
the functionality of the car. Basic components are Luminary Micro
LM3S8962 boards [8] with an ARM Cortex M3 operating at a clock

Mission Control

Fail-Silent Behavior 

of Components 

(e.g. by Guards), 

automatic failure 

detection

Mission Control

Group Specific Fault-Tolerance

Module 1

Module n

...

Concentrator

Module 1'

Module n’

...
Concentrator

Common 

Knowledge Base 

(logical component)

...

Mission Control

High-Level 

Functions

Driver Interface

Module Specific

Replication

Fig. 4. Redundancy Management

Fig. 5. Current Architecture of the eCar

rate of 50 Mhz. FreeRTOS [2] is used as real-time operating system
on the Luminary Micro boards. For communication, an own real-
time Ethernet protocol, the Flexible Time-Triggered Ethernet (FTTE)
protocol, based on the standard IEEE 1588 [5] was developed. It sup-
ports similar to FlexRay time- and event-triggered communication,
but can be extended to allow also dynamic slot allocation (similar to
FlexRay v3.0). Furthermore, it operates on a higher speed (currently
100 Mb/s).

Two controllers, one at the rear and one at the front axis, are
used to implement the smart sensor / actuator layer with respect to
the eCorners. Since no power electronics with FlexRay or Ethernet
interface were available, a CAN bus is used to control the individual
controllers. A third controller based on an Intel Atom Dual Core CPU
is used to implement the smart sensor / actuator layer with respect to
the HMI. The control/decision layer is implemented on a Luminary
controller.

Currently the experimental platform is able to respond to the driver
input. Thereby the driver can select between four-wheel steering,
vector, parking, turn on place, hand brake and emergency brake mode.
According to the actual drive mode the user input is handled in
different ways. For example the turn on place mode only reacts to
left and side movements of the sidestick and translates them in the
related clockwise direction.

VI. FUTURE WORK

After successfully bringing the experimental platform eCar into
service, there are a lot of open points for future research. The most

Copyright 2010 ForTISS GmbH, Germany



4

important point is to establish fault tolerance mechanisms to ensure
a reliable and safe operation of the car even when errors occur.
An effective error handling strategy has to include a redundancy
management to cover blackout of various ECUs during operation.
To relax the effort of developing new or alternative modules for
the experimental platform a model driven development tool shall
be developed, which enables the programmer to specify the system
requirements of modules on a high-level of abstraction. The models
can then be used to preconfigure the system according to the needs of
the modules. They can also be used to generate most of the code for
the run-time system. By creating a model driven development tool the
creation of new function can be simplified. Also a useful improvement
is a diagnosis and configuration tool, which helps to flash the new
versions of the system over the network to the corresponding ECU
and is also able to query liveness information during system operation
from the ECU in the distributed system.

Also the hardware setup needs some further improvements. One
important requirement is related to the battery system. Currently lead-
acid batteries are used to store the required energy for the operation
of the car. Due to the limited charging capabilities, the braking force
is currently limited. A switch to lithium-ion batteries will solve this
problem. Additional sensors can be integrated to inspect the battery
system during operation for early recognition of critical battery states.

Furthermore additional sensors are going to be integrated to im-
plement established driver assistance functions and automotive safety
functions. Intended features are for example automatic parking. The
driver interface still constitutes an open research topic. It is currently
not clear if a sidestick is the best choice to control the vehicle in all
situations. On the other side a normal steering wheel cannot be used
for control in all the different implemented driving modes. A mixture
of both concepts (side stick and steering wheel) can be an interesting
solution. Finally, the platform will also be used to investigate on
different concepts for car-to-x communication.

ACKNOWLEDGMENT

The authors would like to thank the group Embedded Systems and
Robotics at Technische Universität München for their support during
the mechanical construction of the platform.

REFERENCES

[1] AUTomotive Open System ARchitecture (AUTOSAR) Release 4.0.
[2] FreeRTOS, www.freertos.org.
[3] ISO 26262: Road vehicles - Functional safety.
[4] Siemens VDO Making a Case for In-Wheel Systems: the eCorner Project.

Green Car Congress, Sep 2006.
[5] IEEE Standard for a Precision Clock Synchronization Protocol for

Networked Measurement and Control Systems. IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pages 1–269, 2008.

[6] C. Buckl. Model-based development of fault-tolerant real-time systems.
PhD thesis, Technische Universität München, 2008.

[7] R. N. Charette. This Car Runs on Code. IEEE Spectrum, Green Tech,
Advanced Cars, Feb 2009.

[8] Luminary Micro. LM3S8962 Microcontroller, Mar 2008.

Gerd Kainz received his master degree (Diplom-
Informatiker (Univ.)) in computer science major and
electrical engineering minor from the Technische
Universität München, Germany, in 2009. Since April
2009 he is a PhD student at fortiss – Munich Soft-
ware and Systems Institute. His research interests
are model-driven tools, middleware, communication
networks and embedded systems.

Dr. Christian Buckl received his master degree
(Diplom-Informatiker (Univ.)) in computer science
major in 2004, and his Ph.D. degree in 2009 both
from the Technische Universität München, Germany.
Since March 2009 he is leading the group Cyber-
Physical Systems in the newly founded research
institute fortiss. His research include fault-tolerant
system design, real-time capable communication
protocols and model-driven development tools for
embedded systems.

Prof. Dr. Alois Knoll is a full professor at
the Computer Science Department of the Technis-
che Universität München (TUM) since 2001. His
group Robotics and Embedded Systems at TUM
investigates on cognitive, medical and sensor-based
robotics, as well as embedded systems. In these
fields he has published over 200 technical papers
and guest-edited international journals. Since 2009,
he is director of the research institute fortiss.

Copyright 2010 ForTISS GmbH, Germany


