
CONTENTS

CORA 2016 Manual
Matthias Althoff

Technische Universität München, 85748 Garching, Germany

Abstract

The philosophy, architecture, and capabilities of the COntinuous Reachability Analyzer
(CORA) are presented. CORA is a toolbox that integrates various vector and matrix set rep-
resentations and operations on them as well as reachability algorithms of various dynamic
system classes. The software is designed such that set representations can be exchanged
without having to modify the code for reachability analysis. CORA has a modular design,
making it possible to use the capabilities of the various set representations for other purposes
besides reachability analysis. The toolbox is designed using the object oriented paradigm,
such that users can safely use methods without concerning themselves with detailed infor-
mation hidden inside the object. Since the toolbox is written in MATLAB, the installation
and use is platform independent. CORA is released under the GPLv3.

Contents

1 What’s new compared to CORA 2015? 3

2 Philosophy and Architecture 3

3 Installation 4

4 Architecture 4

5 Set Representations and Operations 6

5.1 Zonotopes . 7
5.1.1 Method mtimes . 8
5.1.2 Method plus . 9
5.1.3 Method reduce . 9
5.1.4 Method split . 9
5.1.5 Zonotope Example . 9

5.2 Zonotope Bundles . 10
5.2.1 Zonotope Bundle Example . 12

5.3 Polynomial Zonotopes . 13
5.3.1 Method reduce . 15
5.3.2 Polynomial Zonotope Example . 15

5.4 Probabilistic Zonotopes . 16
5.4.1 Probabilistic Zonotope Example . 18

5.5 MPT Polytopes . 18
5.5.1 MPT Polytope Example . 20

5.6 Intervals . 21
5.6.1 Interval Example . 23

5.7 Vertices . 24
5.7.1 Vertices Example . 24

5.8 Plotting of Sets . 25

1

http://www.gnu.org/licenses/gpl.txt

CONTENTS

6 Matrix Set Representations and Operations 25

6.1 Matrix Polytopes . 27
6.1.1 Matrix Polytope Example . 27

6.2 Matrix Zonotopes . 29
6.2.1 Matrix Zonotope Example . 30

6.3 Interval Matrices . 32
6.3.1 Interval Matrix Example . 33

7 Continuous Dynamics 34

7.1 Linear Systems . 35
7.1.1 Method initReach . 35

7.2 Linear Systems with Uncertain Fixed Parameters 36
7.2.1 Method initReach . 37

7.3 Linear Systems with Uncertain Varying Parameters 38
7.4 Linear Probabilistic Systems . 38

7.4.1 Method initReach . 39
7.5 Nonlinear Systems . 39

7.5.1 Method initReach . 41
7.6 Nonlinear Systems with Uncertain Fixed Parameters 41
7.7 Nonlinear Differential-Algebraic Systems . 41

8 Hybrid Dynamics 42

8.1 Simulation of Hybrid Automata . 43
8.2 Hybrid Automaton . 45
8.3 Location . 45
8.4 Transition . 46

9 State Space Partitioning 47

10 Options for Reachability Analysis 47

11 Unit Tests 48

12 Examples 48

12.1 Continuous Dynamics . 49
12.1.1 Linear Dynamics . 49
12.1.2 Linear Dynamics with Uncertain Parameters 50
12.1.3 Nonlinear Dynamics . 53
12.1.4 Nonlinear Dynamics with Uncertain Parameters 58
12.1.5 Nonlinear Differential-Algebraic Systems 60

12.2 Hybrid Dynamics . 62
12.2.1 Bouncing Ball Example . 63
12.2.2 Powertrain Example . 64

13 Conclusions 65

A Migrating the intervalhull Class into the interval Class 66

B Licensing 66

C Disclaimer 67

D Contributors 67

2

2 PHILOSOPHY AND ARCHITECTURE

1 What’s new compared to CORA 2015?

Non-exhaustive and unsorted list:

• CORA no longer requires the MATLAB toolbox INTLAB for applying interval arithmetic.
This is mainly motivated by the fact that INTLAB is no longer freely available. Please note
that the CORA implementation of interval arithmetic does not consider errors caused by
finite machine precision. Details of the implementation can be found in [1]. If consideration
of machine precision is important, one should purchase INTLAB.

• Introduction of unit tests to better ensure that functionality is maintained after larger
software changes. The unit tests can also be used as guiding examples to set up own
verification problems. More on the introduced unit tests can be found in Sec. 11.

• It is no longer required to implement all systems as a hybrid automaton in order to use
the method reach for computing the reachable set. The keyword is now also reserved for
reachability analysis of purely continuous systems.

• Auxiliary files, such as the Lagrange remainder now contain the name of the model and
are no longer overwritten when changing the investigated model.

• To shorten the code while not compromising functionality, we have integrated the class
intervalhull into the new class interval and the classes vehicleSys and vehicleSys td

into the existing class nonlinearSys.

• Faster plotting of reachable sets thanks to a new routine from Daniel Heß.

• The 2015 version only contained the bouncing ball example. The new version has for each
implemented category of dynamical systems at least one example, which are presented in
Sec. 12.

• Many unused or prototypical files have been removed and the code has been decluttered
for various functions.

2 Philosophy and Architecture

TheCOntinuousReachability Analyzer (CORA)1 is a MATLAB toolbox for prototypical design
of algorithms for reachability analysis. The toolbox is designed for various kinds of systems with
purely continuous dynamics (linear systems, nonlinear systems, differential-algebraic systems,
parameter-varying systems, etc.) and hybrid dynamics combining the aforementioned continuous
dynamics with discrete dynamics. Let us denote the continuous part of the solution of a hybrid
system for a given initial discrete state by χ(t;x0, u(·), p), where t ∈ R is the time, x0 ∈ Rn is
the continuous initial state, u(t) ∈ Rm is the system input at t, u(·) is the input trajectory, and
p ∈ Rp is a parameter vector. The continuous reachable set at time t = r can be defined for a
set of initial states X0, a set of input values U(t), and a set of parameter values P, as

Re(r) =
{

χ(r;x0, u(·), p) ∈ Rn
∣
∣x0 ∈ X0,∀t : u(t) ∈ U(t), p ∈ P

}

.

CORA solely supports over-approximative computation of reachable sets since (a) exact reach-
able sets cannot be computed for most system classes [2] and (b) over-approximative computa-
tions qualify for formal verification. Thus, CORA computes over-approximations for particular
points in time R(t) ⊇ Re(t) and for time intervals: R([t0, tf]) =

⋃

t∈[t0,tf]
R(t).

1https://www6.in.tum.de/Main/SoftwareCORA

3

https://www6.in.tum.de/Main/SoftwareCORA

4 ARCHITECTURE

CORA enables one to construct one’s own reachable set computation in a relatively short amount
of time. This is achieved by the following design choices:

• CORA is built for MATLAB, which is a script-based programming environment. Since the
code does not have to be compiled, one can stop the program at any time and directly see
the current values of variables. This makes it especially easy to understand the workings
of the code and to debug new code.

• CORA is an object-oriented toolbox that uses modularity, operator overloading, inheri-
tance, and information hiding. One can safely use existing classes and just adapt classes
one is interested in without redesigning the whole code. Operator overloading makes it
possible to write formulas that look almost identical to the ones derived in scientific papers
and thus reduce programming errors. Most of the information for each class is hidden and
is not relevant to users of the toolbox. Most classes use identical methods so that set
representations and dynamic systems can be effortlessly replaced.

• CORA interfaces with the established toolbox MPT2, which is also written in MATLAB.
Results of CORA can be easily transferred to this toolbox and vice versa. We are currently
supporting version 2 and 3 of the MPT.

Of course, it is also possible to use CORA as it is to conduct reachability analysis.

Please be aware of the fact that outcomes of reachability analysis heavily depend on the
chosen parameters for the analysis (those parameters are listed in Sec. 10). Improper choice
of parameters can result in an unacceptable over-approximation although reasonable results
could be achieved by using appropriate parameters. Thus, self-tuning of the parameters for
reachability analysis is investigated as part of future work.

Since this manual focuses on the presentation of the capabilities of CORA, no other tools for
reachability analysis of continuous and hybrid systems are reviewed. A list of related tools is
presented in [3].

3 Installation

The software does not require any installation, except that the path for CORA has to be set
in MATLAB. Besides CORA, the MPT toolbox has to be downloaded and included in the
MATLAB path: http://people.ee.ethz.ch/~mpt/3/. If the new installation routine of the
MPT is used, it is no longer required to manually include MPT in the MATLAB path. MPT
is designed for parametric optimization, computational geometry and model predictive control.
CORA only uses the computational geometry capabilities for polytopes.

CORA also requires the symbolic math toolbox in MATLAB.

4 Architecture

The architecture of CORA can essentially be grouped into the following parts based on a sepa-
ration of concerns as presented in Fig. 1 using UML3: Classes for set representations (Sec. 5),
classes for matrix set representations (Sec. 6), classes for the analysis of continuous dynamics

2http://control.ee.ethz.ch/~mpt/2/
3http://www.uml.org/

4

http://people.ee.ethz.ch/~mpt/3/
http://control.ee.ethz.ch/~mpt/2/
http://www.uml.org/

4 ARCHITECTURE

contDynamics

linearSys (Sec. 7.1)

linParamSys (Sec. 7.2)

linVarSys (Sec. 7.3)

linProbSys (Sec. 7.4)

nonlinearSys (Sec. 7.5)

nonlinParamSys (Sec. 7.6)

nonlinDASys (Sec. 7.7)

transition (Sec. 8.4)

location (Sec. 8.3)

hybridAutomaton (Sec. 8.2)

partition (Sec. 9)

matrixSet

matPolytope (Sec. 6.1)

matZonotope (Sec. 6.2)

intervalMatrix (Sec. 6.3)

zonotope (Sec. 5.1)

zonotopeBundle (Sec. 5.2)

quadZonotope (Sec. 5.3)

probZonotope (Sec. 5.4)

mptPolytope (Sec. 5.5)

interval (Sec. 5.6)

vertices (Sec. 5.7)

contSet

Generalization

Composition

Required interface

Participating interface

1..N

1..N

1..N
1

1

1

1

11 1

1

1

1

1

0..1

Figure 1: Unified Modeling Language (UML) class diagram of CORA.

(Sec. 7), classes for the analysis of hybrid dynamics (Sec. 8), and a class for the partitioning of
the state space (Sec. 9).

The class diagram in Fig. 1 shows that hybrid systems (class hybridAutomaton) consists of sev-
eral instances of the location class. Each location object has a continuous dynamics (classes
inheriting from contDynamics), several transitions (class transition), and a set representation
(classes inheriting from contSet) to describe the invariant of the location. Each transition has
a set representation to describe the guard set enabling a transition to the next discrete state.
More details on the semantics of those components can be found in Sec. 8.

Note that some classes subsume the functionality of other classes. For instance, nonlinear
differential-algebraic systems (class nonlinDASys) are a generalization of nonlinear systems
(class nonlinearSys). The reason why less general systems are not removed is because very
efficient algorithms exist for those systems that are not applicable to more general systems.

5

5 SET REPRESENTATIONS AND OPERATIONS

5 Set Representations and Operations

The basis of any efficient reachability analysis is an appropriate set representation. On the one
hand, the set representation should be general enough to describe the reachable sets accurately,
on the other hand, it is crucial that the set representation makes it possible to run efficient and
scalable operations on them. CORA provides a palette of set representations as depicted in
Fig. 2, which also shows conversions supported between set representations.

zonotope (Sec. 5.1)

(class zonotope)

interval (Sec. 5.6)

(class interval)

MPT Polytope (Sec. 5.5)

(class mptPolytope)

vertices (Sec. 5.7)

(class vertices)

zonotope bundle (Sec. 5.2)

(class zonotopeBundle)

polynomial zonotope (Sec. 5.3)

(class quadZonotope)

probabilistic zonotope (Sec. 5.4)

(class probZonotope)

mSigma

polytope

zonotopeBundle

(constructor of

that class)

zonotope

a

b

c

d

e

f

vertices

polytope

interval

enclosingPolytope

interval

vertices interval

a: zonotope

b: interval

c: mptPolytope

d: interval

e: vertices

f: zonotope

Figure 2: Set conversions supported. Solid arrows represent exact conversions, while dashed
arrows represent over-approximative conversions. The arrows are labeled by the corresponding
method to carry out the conversion.

Important operations for sets are:

• display: Displays the parameters of the set in the MATLAB workspace.

• plot: Plots a two-dimensional projection of a set in the current MATLAB figure.

• mtimes: Overloads the ’*’ operator for the multiplication of various objects with a set.
For instance if M is a matrix of proper dimension and Z is a zonotope, M ∗ Z returns the
linear map {Mx|x ∈ Z}.

• plus: Overloads the ’+’ operator for the addition of various objects with a set. For
instance if Z1 and Z2 are zonotopes of proper dimension, Z1+ Z2 returns the Minkowski
sum {x+ y|x ∈ Z1, y ∈ Z2}.

• interval: Returns an interval that encloses the set (see Sec. 5.6).

6

5 SET REPRESENTATIONS AND OPERATIONS

5.1 Zonotopes

A zonotope is a geometric object in Rn. Zonotopes are parameterized by a center c ∈ Rn and
generators g(i) ∈ Rn and defined as

Z =
{

c+

p
∑

i=1

βig
(i)
∣
∣
∣βi ∈ [−1, 1], c ∈ Rn, g(i) ∈ Rn

}

. (1)

We write in short Z = (c, g(1), . . . , g(p)). A zonotope can be interpreted as the Minkowski
addition of line segments l(i) = [−1, 1]g(i), and is visualized step-by-step in a two-dimensional
vector space in Fig. 3. Zonotopes are a compact way of representing sets in high dimensions.
More importantly, operations required for reachability analysis, such as linear maps M ⊗ Z :=
{Mz|z ∈ Z} (M ∈ Rq×n) and Minkowski addition Z1 ⊕ Z2 := {z1 + z2|z1 ∈ Z1, z2 ∈ Z2} can
be computed efficiently and exactly, and others such as convex hull computation can be tightly
over-approximated [4].

0 1 2

0

1

2

c

l(1)

(a) c⊕ l(1)
−1 0 1 2 3

−1

0

1

2

3

c

l(1) l(2)

(b) c⊕ l(1) ⊕ l(2)
−2 0 2 4

−1

0

1

2

3

c

l(1) l(2)

l(3)

(c) c⊕ . . .⊕ l(3)

Figure 3: Step-by-step construction of a zonotope.

We support the following methods for zonotopes:

• box – computes an enclosing axis-aligned box in generator representation.

• cartesianProduct – returns the Cartesian product of two zonotopes.

• center – returns the center of the zonotope.

• deleteAligned – combines aligned generators to a single generator. This reduces the
order of a zonotope while not causing any over-approximation.

• deleteZeros – deletes generators whose entries are all zero.

• dim – returns the dimension of a zonotope in the sense that the rank of the generator
matrix is computed.

• display – standard method, see Sec. 5.

• enclose – generates a zonotope that encloses two zonotopes of equal dimension according
to [5, Equation 2.2 + subsequent extension].

• enclosingPolytope – converts a zonotope to a polytope representation in an over-approximative
way to save computational time. The technique can be influenced by options, but most
techniques are inspired by [5, Sec. 2.5.6].

• enlarge – enlarges the generators of a zonotope by a vector of factors for each dimension.

• inParallelotope – checks if a zonotope is a subset of a parallelotope, where the latter is
represented as a zonotope.

7

5 SET REPRESENTATIONS AND OPERATIONS

• interval – standard method, see Sec. 5. More details can be found in [5, Proposition
2.2].

• is empty – returns 1 if a zonotope is empty and 0 otherwise.

• mtimes – standard method, see Sec. 5. More details can be found in Sec. 5.1.1.

• plot – standard method, see Sec. 5. More details can be found in Sec. 5.8.

• plus – standard method, see Sec. 5. More details can be found in Sec. 5.1.2.

• polygon – converts a two-dimensional zonotope into a polygon and returns its vertices.

• polytope – returns an exact polytope in halfspace representation according to [5, Theorem
2.1].

• project – returns a zonotope, which is the projection of the input argument onto the
specified dimensions.

• quadraticMultiplication – given a zonotope Z and a discrete set of matrices Q(i) ∈
Rn×n for i = 1 . . . n, quadraticMultiplication computes {ϕ|ϕi = xTQ(i)x, x ∈ Z} as
described in [6, Lemma 1].

• randPoint – generates a random point within a zonotope.

• randPointExtreme – generates a random extreme point of a zonotope.

• reduce – returns an over-approximating zonotope with fewer generators as detailed in Sec.
5.1.3.

• split – splits a zonotope into two or more zonotopes that enclose the original zonotope.
More details can be found in Sec. 5.1.4.

• underapproximate – returns the vertices of an under-approximation. The under-approximation
is computed by finding the vertices that are extreme in the direction of a set of vectors,
stored in the matrix S. If S is not specified, it is constructed by the vectors spanning an
over-approximative parallelotope.

• vertices – returns a vertices object including all vertices of the zonotope (Warning:
high computational complexity).

• volume – computes the volume of a zonotope according to [7, p.40].

• zonotope – constructor of the class.

5.1.1 Method mtimes

Table 1 lists the classes that can be multiplied with a zonotope. Please note that the order plays
a role and that the zonotope has to be on the right side of the ’*’ operator.

Table 1: Classes that can be multiplied with a zonotope.

class reference literature

MATLAB matrix - -
interval Sec. 5.6 [5, Theorem 3.3]
intervalMatrix Sec. 6.3 [5, Theorem 3.3]
matZonotope Sec. 6.2 [8, Sec. 4.4.1]

8

5 SET REPRESENTATIONS AND OPERATIONS

5.1.2 Method plus

Table 2 lists the classes that can be added to a zonotope. Other than for multiplication, the
zonotope can be on both sides of the ’+’ operator.

Table 2: Classes that can be added to a zonotope.

class reference literature

MATLAB vector - -
zonotope Sec. 5.1 [5, Equation 2.1]

5.1.3 Method reduce

The zonotope reduction returns an over-approximating zonotope with less generators as de-
scribed in [5, Proposition 2.5]. Table 3 lists some of the implemented reduction techniques. The
standard reduction technique is ’girard’.

Table 3: Reduction techniques for zonotopes.

reduction technique primary use literature

girard Reduction of high to medium order [4, Sec. 3.4]
MethA Reduction to parallelotope Method A in [5, Sec. 2.5.5]
MethB Reduction to parallelotope Method B in [5, Sec. 2.5.5]
MethC Reduction to parallelotope Method C in [5, Sec. 2.5.5]

5.1.4 Method split

The ultimate goal is to compute the reachable set of a single point in time or time interval
with a single set representation. However, reachability analysis often requires abstractions of
the original dynamics, which might become inaccurate for large reachable sets. In that event
it can be useful to split the reachable set and continue with two or more set representations
for the same point in time or time interval. Zonotopes are not closed under intersection, and
thus not under splits. Several options as listed in Table 4 can be selected to optimize the split
performance.

Table 4: Split techniques for zonotopes.

split technique comment literature

splitOneGen splits one generator [5, Proposition 3.8]
directionSplit splits all generators in one direction —
directionSplitBundle exact split using zonotope bundles [9, Section V.A]
halfspaceSplit split along a given halfspace —

5.1.5 Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

2 Z2 = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2

3 A = [0.5 1; 1 0.5]; % numerical matrix A

9

5 SET REPRESENTATIONS AND OPERATIONS

4

5 Z3 = Z1 + Z2; % Minkowski addition

6 Z4 = A*Z3; % linear map

7

8 figure; hold on

9 plot(Z1,[1 2],’b’); % plot Z1 in blue

10 plot(Z2,[1 2],’g’); % plot Z2 in green

11 plot(Z3,[1 2],’r’); % plot Z3 in red

12 plot(Z4,[1 2],’k’); % plot Z4 in black

13

14 P = polytope(Z4) % convert to and display halfspace representation

15 I = interval(Z4) % convert to and display intervah hull

16

17 figure; hold on

18 plot(Z4); % plot Z4

19 plot(I,[1 2],’g’); % plot intervalhull in green

This produces the workspace output

Normalized, minimal representation polytope in R^2

H: [8x2 double]

K: [8x1 double]

normal: 1

minrep: 1

xCheb: [2x1 double]

RCheb: 1.4142

[0.70711 0.70711] [6.364]

[0.70711 -0.70711] [2.1213]

[0.89443 -0.44721] [3.3541]

[0.44721 -0.89443] [2.0125]

[-0.70711 -0.70711] x <= [2.1213]

[-0.70711 0.70711] [0.70711]

[-0.89443 0.44721] [0.67082]

[-0.44721 0.89443] [2.0125]

Intervals:

[-1.5,5.5]

[-2.5,4.5]

The plots generated in lines 9-12 are shown in Fig. 4 and the ones generated in lines 18-19 are
shown in Fig. 5.

5.2 Zonotope Bundles

A disadvantage of zonotopes is that they are not closed under intersection, i.e., the intersection
of two zonotopes does not return a zonotope in general. In order to overcome this disadvantage,
zonotope bundles are introduced in [9]. Given a finite set of zonotopes Zi, a zonotope bundle is
Z∩ =

⋂s
i=1Zi, i.e. the intersection of zonotopes Zi. Note that the intersection is not computed,

but the zonotopes Zi are stored in a list, which we write as Z∩ = {Z1, . . . ,Zs}
∩.

We support the following methods for zonotope bundles:

• and – returns the intersection with a zonotope bundle or a zonotope.

10

5 SET REPRESENTATIONS AND OPERATIONS

−4 −2 0 2 4 6

−2

0

2

4

x1

x
2

Figure 4: Zonotopes generated in lines 9-12
of the zonotope example in Sec. 5.1.5.

−2 0 2 4 6

−2

0

2

4

x1

x
2

Figure 5: Sets generated in lines 18-19 of
the zonotope example in Sec. 5.1.5.

• display – standard method, see Sec. 5.

• enclose – generates a zonotope bundle that encloses two zonotopes bundles of equal
dimension according to [9, Proposition 5].

• encloseTight – generates a zonotope bundle that encloses two zonotopes bundles in a
possibly tighter way than enclose as outlined in [9, Sec. VI.A].

• enlarge – enlarges the generators of each zonotope in the bundle by a vector of factors
for each dimension.

• enclosingPolytope – returns an over-approximating polytope in halfspace representation.
For each zonotope the method enclosingPolytope of the class zonotope in Sec. 5.1 is
called.

• interval – standard method, see Sec. 5. More details can be found in [9, Proposition 6].

• mtimes – standard method, see Sec. 5. More details can be found in [9, Proposition 1].

• plot – standard method, see Sec. 5. More details can be found in Sec. 5.8.

• plus – standard method, see Sec. 5. More details can be found in [9, Proposition 2].

• polytope – returns an exact polytope in halfspace representation. Each zonotope is con-
verted to halfspace representation according to [5, Theorem 2.1] and later all obtained H
polytopes are intersected.

• project – returns a zonotope bundle, which is the projection of the input argument onto
the specified dimensions.

• reduce – returns an over-approximating zonotope bundle with less generators. For each
zonotope the method reduce of the class zonotope in Sec. 5.1 is called.

• reduceCombined – reduces the order of a zonotope bundle by not reducing each zonotope
separately as in reduce, but in a combined fashion.

• shrink – shrinks the size of individual zonotopes by explicitly computing the intersection
of individual zonotopes; however, in total, the size of the zonotope bundle will increase.
This step is important when individual zonotopes are large, but the zonotope bundles

11

5 SET REPRESENTATIONS AND OPERATIONS

represents a small set. In this setting, the over-approximations of some operations, such
as mtimes might become too over-approximative. Although shrink initially increases the
size of the zonotope bundle, subsequent operations are less over-approximative since the
individual zonotopes have been shrunk.

• split – splits a zonotope bundle into two or more zonotopes bundles. Other than for
zonotopes, the split is exact. The method can split halfway in a particular direction or
given a separating hyperplane.

• volume – computes the volume of a zonotope bundle by converting it to a polytope using
polytope and using a volume computation for polytopes.

• zonotopeBundle – constructor of the class.

5.2.1 Zonotope Bundle Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z{1} = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1;

2 Z{2} = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2;

3 Zb = zonotopeBundle(Z); % instantiate zonotope bundle from Z1, Z2

4 vol = volume(Zb) % compute and display volume of zonotope bundle

5

6 figure; hold on

7 plot(Z{1}); % plot Z1

8 plot(Z{2}); % plot Z2

9 plotFilled(Zb,[1 2],[.675 .675 .675],’EdgeColor’,’none’); % plot Zb in gray

This produces the workspace output

vol =

1.0000

The plot generated in lines 7-9 is shown in Fig. 6.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x1

x
2

Figure 6: Sets generated in lines 7-9 of the zonotope bundle example in Sec. 5.2.1.

12

5 SET REPRESENTATIONS AND OPERATIONS

5.3 Polynomial Zonotopes

Zonotopes are a very efficient representation for reachability analysis of linear systems [4] and of
nonlinear systems that can be well abstracted by linear differential inclusions [5]. However, more
advanced techniques, such as in [10], abstract more accurately to nonlinear difference inclusions.
As a consequence, linear maps of reachable sets are replaced by nonlinear maps. Zonotopes are
not closed under nonlinear maps and are not particularly good at over-approximating them. For
this reason, polynomial zonotopes are introduced in [10]. Polynomial zonotopes are a new non-
convex set representation and can be efficiently stored and manipulated. The new representation
shares many similarities with Taylor models [11] (as briefly discussed later) and is a generalization
of zonotopes.

Given a starting point c ∈ Rn, multi-indexed generators f ([i],j,k,...,m) ∈ Rn, and single-indexed
generators g(i) ∈ Rn, a polynomial zonotope is defined as

PZ =
{

c+

p
∑

j=1

βjf
([1],j) +

p
∑

j=1

p
∑

k=j

βjβkf
([2],j,k) + . . .+

p
∑

j=1

p
∑

k=j

. . .

p
∑

m=l

βjβk . . . βm
︸ ︷︷ ︸

η factors

f ([η],j,k,...,m)

+

q
∑

i=1

γig
(i)
∣
∣
∣βi, γi ∈ [−1, 1]

}

. (2)

The scalars βi are called dependent factors, since changing their values does not only affect the
multiplication with one generator, but with other generators too. On the other hand, the scalars
γi only affect the multiplication with one generator, so they are called independent factors. The
number of dependent factors is p, the number of independent factors is q, and the polynomial
order η is the maximum power of the scalar factors βi. The order of a polynomial zonotope is
defined as the number of generators ξ divided by the dimension, which is ρ = ξ

n
. For a concise

notation and later derivations, we introduce the matrices

E[i] = [f ([i],1,1,...,1)

︸ ︷︷ ︸

=:e([i],1)

. . . f ([i],p,p,...,p)

︸ ︷︷ ︸

=:e([i],p)

] (all indices are the same value),

F [i] = [f ([i],1,1,...,1,2) f ([i],1,1,...,1,3) . . . f ([i],1,1,...,1,p)

f ([i],1,1,...,2,2) f ([i],1,1,...,2,3) . . . f ([i],1,1,...,2,p)

f ([i],1,1,...,3,3) . . .] (not all indices are the same value),

G = [g(1) . . . g(q)],

and E =
[

E[1] . . . E[η]
]
, F =

[

F [2] . . . F [η]
]
(F [i] is only defined for i ≥ 2). Note that the

indices in F [i] are ascending due to the nested summations in (2). In short form, a polynomial
zonotope is written as PZ = (c,E, F,G).

For a given polynomial order i, the total number of generators in E[i] and F [i] is derived using
the number

(
p+i−1

i

)
of combinations of the scalar factors β with replacement (i.e. the same factor

can be used again). Adding the numbers for all polynomial orders and adding the number of
independent generators q, results in ξ =

∑η
i=1

(
p+i−1

i

)
+ q generators, which is in O(pη) with

respect to p. The non-convex shape of a polynomial zonotope with polynomial order 2 is shown
in Fig. 7.

So far, polynomial zonotopes are only implemented up to polynomial order η = 2 so that the
subsequent class is called quadZonotope due to the quadratic polynomial order. We support
the following methods for the quadZonotope class:

• cartesianProduct – returns the Cartesian product of a quadZonotope and a zonotope.

13

5 SET REPRESENTATIONS AND OPERATIONS

x1

x
2

polynomial zonotope

PZ = (0, E, F,G)

sample

E[1] =

[

−1 0
0 0.5

]

E[2] =

[

1 1
0.5 0.3

]

F [2] =

[

−0.5
1

]

G =

[

0.3
0.3

]

3

2

1

0

−1

0 2 4

Figure 7: Over-approximative plot of a polynomial zonotope as specified in the figure. Random
samples of possible values demonstrate the accuracy of the over-approximative plot.

• center – returns the starting point c.

• display – standard method, see Sec. 5.

• enclose – generates an over-approximative quadZonotope that encloses two quadZonotopes
of equal dimension by first over-approximating them by zonotopes and subsequently ap-
plying enclose of the zonotope class.

• enclosingPolytope – returns an over-approximating polytope in halfspace representa-
tion by first over-approximating by a zonotope object and subsequently applying its
enclosingPolytope method.

• generators – returns the generators of a quadZonotope.

• interval – standard method, see Sec. 5. The interval hull is obtained by over-approximating
the quadZonotope by a zonotope and subsequent application of its interval method.
Other than for the zonotope class, the generated interval hull is not tight in the sense
that it touches the quadZonotope.

• intervalhullAccurate – over-approximates a quadZonotope by a tighter interval hull as
when applying interval. The procedure is based on splitting the quadZonotope in parts
that can be more faithfully over-approximated by interval hulls. The union of the partially
obtained interval hulls constitutes the result.

• mtimes – standard method, see Sec. 5 as stated in [9, Equation 14] for numeric matrix
multiplication. As described in Sec. 5.1.1 the multiplication of interval matrices is also
supported, whereas the implementation for matrix zonotopes is not yet implemented.

• plot – standard method, see Sec. 5. More details can be found in Sec. 5.8.

• plus – standard method, see Sec. 5. Addition is realized for quadZonotope objects with
MATLAB vectors, zonotope objects, and quadZonotope objects.

• pointSet – computes a user-defined number of random points within the quadZonotope.

• pointSetExtreme – computes a user-defined number of random points when only allowing
the values {−1, 1} for βi, γi (see (2)).

• project – returns a quadZonotope, which is the projection of the input argument onto
the specified dimensions.

• quadraticMultiplication – given a quadZonotopeZ and a discrete set of matrices Q(i) ∈
Rn×n for i = 1 . . . n, quadraticMultiplication computes {ϕ|ϕi = xTQ(i)x, x ∈ Z} as

14

5 SET REPRESENTATIONS AND OPERATIONS

described in [10, Corollary 1].

• quadZonotope – constructor of the class.

• randPoint – computes a random point within the quadZonotope.

• randPointExtreme – computes a random point when only allowing the values {−1, 1} for
βi, γi (see (2)).

• reduce – returns an over-approximating quadZonotope with less generators as detailed in
Sec. 5.3.1.

• splitLongestGen – splits the longest generator factor and returns two quadZonotope

objects whose union encloses the original quadZonotope object.

• splitOneGen – splits one generator factor and returns two quadZonotope objects whose
union encloses the original quadZonotope object.

• zonotope – computes an enclosing zonotope as presented in [10, Proposition 1].

5.3.1 Method reduce

The zonotope reduction returns an over-approximating zonotope with less generators. Table 5
lists the implemented reduction techniques.

Table 5: Reduction techniques for zonotopes.

reduction

technique comment literature

redistribute Changes dependent and independent generators [10, Proposition 2]
girard Only changes independent generators [4, Sec. 3.4]

as for a regular zonotope

5.3.2 Polynomial Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

1 c = [0;0]; % starting point

2 E1 = diag([-1,0.5]); % generators of factors with identical indices

3 E2 = [1 1; 0.5 0.3]; % generators of factors with identical indices

4 F = [-0.5; 1]; % generators of factors with different indices

5 G = [0.3; 0.3]; % independent generators

6

7 qZ = quadZonotope(c,E1,E2,F,G); % instantiate quadratic zonotope

8 Z = zonotope(qZ) % over-approximate by a zonotope

9

10 figure; hold on

11 plot(Z); % plot Z

12 plotFilled(qZ,[1 2],7,[],[.6 .6 .6],’EdgeColor’,’none’); % plot qZ

This produces the workspace output

id: 0

dimension: 2

c:

1.0000

15

5 SET REPRESENTATIONS AND OPERATIONS

0.4000

g_i:

-1.0000 0 0.5000 0.5000 -0.5000 0.3000

0 0.5000 0.2500 0.1500 1.0000 0.3000

The plot generated in lines 11-12 is shown in Fig. 8.

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

x1

x
2

Figure 8: Sets generated in lines 11-12 of the polynomial zonotope example in Sec. 5.3.2.

5.4 Probabilistic Zonotopes

Probabilistic zonotopes have been introduced in [12] for stochastic verification. A probabilistic
zonotope has the same structure as a zonotope, except that the values of some βi in (1) are
bounded by the interval [−1, 1], while others are subject to a normal distribution 4. Given
pairwise independent Gaussian distributed random variables N (µ,Σ) with expected value µ
and covariance matrix Σ, one can define a Gaussian zonotope with certain mean:

Zg = c+

q
∑

i=1

N (i)(0, 1) · g(i),

where g(1), . . . , g(q) ∈ Rn are the generators, which are underlined in order to distinguish them
from generators of regular zonotopes. Gaussian zonotopes are denoted by a subscripted g:
Zg = (c, g(1...q)).

A Gaussian zonotope with uncertain mean Z is defined as a Gaussian zonotope Zg, where the
center is uncertain and can have any value within a zonotope Z, which is denoted by

Z := Z ⊞ Zg, Z = (c, g(1...p)), Zg = (0, g(1...q)).

or in short by Z = (c, g(1...p), g(1...q)). If the probabilistic generators can be represented by
the covariance matrix Σ (q > n) as shown in [12, Proposition 1], one can also write Z =
(c, g(1...p),Σ). As Z is neither a set nor a random vector, there does not exist a probability
density function describing Z . However, one can obtain an enclosing probabilistic hull which is
defined as f̄Z (x) = sup

{
fZg(x)

∣
∣E[Zg] ∈ Z

}
, where E[] returns the expectation and fZg(x) is

the probability density function (PDF) of Zg. Combinations of sets with random vectors have

4Other distributions are conceivable, but not implemented.

16

5 SET REPRESENTATIONS AND OPERATIONS

also been investigated, e.g. in [13]. Analogously to a zonotope, it is shown in Fig. 9 how the
enclosing probabilistic hull (EPH) of a Gaussian zonotope with two non-probabilistic and two
probabilistic generators is built step-by-step from left to right.

−4
−2

0
2

4

−4

−2

0

2

4

0

0.05

0.1

0.15

0.2

(a) PDF of (0, g(1)).

−4
−2

0
2

4

−4
−2

0
2

4
0

0.05

0.1

(b) PDF of (0, g(1,2)).

−5

0

5

−5

0

5
0

0.05

0.1

(c) EPH of (0, g(1...2), g(1...2)).

Figure 9: Construction of a probabilistic zonotope.

We support the following methods for probabilistic zonotopes:

• center – returns the center of the probabilistic zonotope.

• display – standard method, see Sec. 5.

• enclose – generates a probabilistic zonotope that encloses two probabilistic zonotopes Z ,
A⊗ Z (A ∈ Rn×n) of equal dimension according to [12, Section VI.A].

• enclosingProbability – computes values to plot the mesh of a two-dimensional projec-
tion of the enclosing probability hull.

• max – computes an over-approximation of the maximum on the m-sigma bound according
to [12, Equation 3].

• mean – returns the uncertain mean of a probabilistic zonotope.

• mSigma – converts a probabilistic zonotope to a common zonotope where for each generator,
a m-sigma interval is taken.

• mtimes – standard method, see Sec. 5 as stated in [12, Equation 4] for numeric matrix
multiplication. The multiplication of interval matrices is also supported.

• plot – standard method, see Sec. 5. More details can be found in Sec. 5.8.

• plus – standard method, see Sec. 5. Addition is realized for probZonotope objects
with MATLAB vectors, zonotope objects, and probZonotope objects as described in [12,
Equation 4].

• probReduce – reduces the number of single Gaussian distributions to the dimension of the
state space.

• probZonotope – constructor of the class.

• pyramid – encloses a probabilistic zonotope Z by a pyramid with step sizes defined by an
array of confidence bounds and determines the probability of intersection with a polytope
P as described in [12, Section VI.C].

• reduce – returns an over-approximating zonotope with fewer generators. The zonotope
of the uncertain mean Z is reduced as detailed in Sec. 5.1.3, while the order reduction of

17

5 SET REPRESENTATIONS AND OPERATIONS

the probabilistic part is done by the method probReduce.

• sigma – returns the Σ matrix of a probabilistic zonotope.

5.4.1 Probabilistic Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z1=[10 ; 0]; % uncertain center

2 Z2=[0.6 1.2 ; 0.6 -1.2]; % generators with normally distributed factors

3 pZ=probZonotope(Z1,Z2,2); % probabilistic zonotope

4

5 M=[-1 -1;1 -1]*0.2; % mapping matrix

6 pZencl = enclose(pZ,M); % probabilistic enclosur of pZ and M*pZ

7

8 figure(’renderer’,’zbuffer’)

9 hold on

10 plot(pZ,’dark’); % plot pZ

11 plot(expm(M)*pZ,’light’); % plot expm(M)*pZ

12 plot(pZencl,’mesh’) % plot enclosure

13

14 campos([-3,-51,1]); %set camera position

15 drawnow; % draw 3D view

The plot generated in lines 10-15 is shown in Fig. 10.

Figure 10: Sets generated in lines 10-15 of the probabilistic zonotope example in Sec. 5.4.1.

5.5 MPT Polytopes

There exist two representations for polytopes: The halfspace representation (H-representation)
and the vertex representation (V-representation). The halfspace representation specifies a convex
polytope P by the intersection of q halfspaces H(i): P = H(1) ∩H(i) ∩ . . . ∩H(q). A halfspace is
one of the two parts obtained by bisecting the n-dimensional Euclidean space with a hyperplane
S, which is given by S := {x|cTx = d}, c ∈ Rn, d ∈ R. The vector c is the normal vector of the
hyperplane and d the scalar product of any point on the hyperplane with the normal vector.
From this follows that the corresponding halfspace is H := {x|cTx ≤ d}. As the convex polytope
P is the nonempty intersection of q halfspaces, q inequalities have to be fulfilled simultaneously.

18

5 SET REPRESENTATIONS AND OPERATIONS

H-Representation of a Polytope A convex polytope P is the bounded intersection of q
halfspaces:

P =
{

x ∈ Rn
∣
∣C x ≤ d, C ∈ Rq×n, d ∈ Rq

}

.

When the intersection is unbounded, one obtains a polyhedron [14].

A polytope with vertex representation is defined as the convex hull of a finite set of points in
the n-dimensional Euclidean space. The points are also referred to as vertices and are denoted
by v(i) ∈ Rn. A convex hull of a finite set of r points is obtained from their linear combination:

Conv(v(1), . . . , v(r)) :=
{ r∑

i=1

αiv
(i)
∣
∣v(i) ∈ Rn, αi ∈ R, αi ≥ 0,

r∑

i=1

αi = 1
}

.

Given the convex hull operator Conv(), a convex and bounded polytope can be defined in vertex
representation as follows:

V-Representation of a Polytope For r vertices v(i) ∈ Rn, a convex polytope P is the set
P = Conv(v(1), . . . , v(r)).

The halfspace and the vertex representation are illustrated in Fig. 11. Algorithms that convert
from H- to V-representation and vice versa are presented in [15].

v(i)

Conv(v(1), . . . , v(r))

(a) V − representation

S = {x|cT x = d}

H(i)

H(1) ∩H(2) . . . ∩H(q)

fig:polytopeHRepresentation
(b) H − representation

Figure 11: Possible representations of a polytope.

The class mptPolytope is a wrapper class that interfaces with the MATLAB toolbox Multi-

Parametric Toolbox (MPT) for the following methods:

• and – computes the intersection of two mptPolytopes.

• display – standard method, see Sec. 5.

• enclose – computes the convex hull of two mptPolytopes.

• in – determines if a zonotope is enclosed by a mptPolytope.

• interval – encloses a mptPolytope by intervals of INTLAB.

• interval – encloses a mptPolytope by an interval.

• iscontained – returns if a mptPolytope is contained in another mptPolytope.

• is empty – returns 1 if a mptPolytope is empty and 0 otherwise.

19

5 SET REPRESENTATIONS AND OPERATIONS

• mldivide – computes the set difference of two mptPolytopes.

• mptPolytope – constructor of the class.

• mtimes – standard method, see Sec. 5 for numeric and interval matrix multiplication.

• plot – standard method, see Sec. 5. More details can be found in Sec. 5.8.

• plus – standard method, see Sec. 5 for numeric vectors and mptPolytope objects.

• vertices – returns a vertices object including all vertices of the polytope.

• volume – computes the volume of a polytope.

5.5.1 MPT Polytope Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

2 Z2 = zonotope([-1 1 0; 1 0 1]); % create zonotope Z2

3

4 P1 = polytope(Z1); % convert zonotope Z1 to halfspace representation

5 P2 = polytope(Z2); % convert zonotope Z2 to halfspace representation

6

7 P3 = P1 + P2 % perform Minkowski addition and display result

8 P4 = P1 & P2; % compute intersection of P1 and P2

9

10 V = vertices(P4) % obtain and display vertices of P4

11

12 figure; hold on

13 plot(P1); % plot P1

14 plot(P2); % plot P2

15 plot(P3,[1 2],’g’); % plot P3

16 plotFilled(P4,[1 2],[.6 .6 .6],’EdgeColor’,’none’); % plot P4

This produces the workspace output

Normalized, minimal representation polytope in R^2

H: [8x2 double]

K: [8x1 double]

normal: 1

minrep: 1

xCheb: [2x1 double]

RCheb: 2.8284

[0.70711 -0.70711] [1.4142]

[0 -1] [1]

[-0.70711 -0.70711] [1.4142]

[-1 0] [3]

[-0.70711 0.70711] x <= [4.2426]

[0 1] [5]

[0.70711 0.70711] [4.2426]

[1 0] [3]

V:

0 -1.0000 0

20

5 SET REPRESENTATIONS AND OPERATIONS

0 1.0000 2.0000

The plot generated in lines 13-16 is shown in Fig. 12.

−3 −2 −1 0 1 2 3

−1

0

1

2

3

4

5

x1

x
2

Figure 12: Sets generated in lines 13-16 of the MPT polytope example in Sec. 5.5.1.

5.6 Intervals

A real-valued interval [x] = [x, x] = {x ∈ R|x ≤ x ≤ x} is a connected subset of R and can be
specified by a left bound x ∈ R and right bound x ∈ R, where x ≤ x. A detailed description of
how intervals are treated in CORA can be found in [1]. Since this class has a lot of methods,
we separate them into methods that realize mathematical functions and methods that do not
realize mathematical functions.

Methods realizing mathematical functions and operations

• abs – returns the absolute value as defined in [1, Eq. (10)].

• acos – arccos(·) function as defined in [1, Eq. (6)].

• acosh – arccosh(·) function as defined in [1, Eq. (8)].

• and – computes the intersection of two intervals as defined in [1, Eq. (1)].

• asin – arcsin(·) function as defined in [1, Eq. (6)].

• asinh – arcsinh(·) function as defined in [1, Eq. (8)].

• atan – arctan(·) function as defined in [1, Eq. (6)].

• atanh – arctanh(·) function as defined in [1, Eq. (8)].

• cos – cos(·) function as defined in [1, Eq. (13)].

• cosh – cosh(·) function as defined in [1, Eq. (7)].

• ctranspose – overloaded ”’ operator for single operand to transpose a matrix.

• eq – overloads the ’==’ operator to check if both intervals are equal.

• exp – exponential function as defined in [1, Eq. (4)].

• le – overloads <= operator: Is one interval equal or the subset of another interval?

21

5 SET REPRESENTATIONS AND OPERATIONS

• log – natural logarithm function as defined in [1, Eq. (5)].

• lt – overloads < operator: Is one interval equal or the subset of another interval?

• minus – overloaded ’-’ operator, see [1, Eq. (2)].

• mpower – overloaded ˆ operator (power), see [1, Eq. (9)].

• mrdivide – overloaded ’/’ operator (division), see [1, Eq. (3)].

• mtimes – overloaded ’*’ operator (multiplication), see [1, Eq. (2)] for scalars and [1,
Eq. (16)] for matrices.

• plus – overloaded ’+’ operator (addition), see [1, Eq. (2)] for scalars and [1, Eq. (17)] for
matrices.

• power – overloaded ’.ˆ’ operator for intervals (power), see [1, Eq. (9)].

• rdivide – overloads the ’./’ operator: provides elementwise division of two matrices.

• sin – sin(·) function as defined in [1, Eq. (12)].

• sinh – sinh(·) function as defined in [1, Eq. (7)].

• sqrt –
√

(·) function as defined in [1, Eq. (5)].

• tan – tan(·) function as defined in [1, Eq. (14)].

• tanh – tanh(·) function as defined in [1, Eq. (7)].

• times – overloaded ’.*’ operator for elementwise multiplication of matrices.

• transpose – overloads the ’.’ ’ operator to compute the transpose of an interval matrix.

• uminus – overloaded ’-’ operator for a single operand.

• uplus – overloaded ’+’ operator for single operand.

Other methods

• display – standard method, see Sec. 5.

• gridPoints – computes grid points of an interval; the points are generated in a way, such
that a continuous space is uniformly partitioned.

• horzcat – overloads the operator for horizontal concatenation, e.g. a = [b,c,d].

• hull – returns the union of two intervals.

• infimum – returns the infimum of an interval.

• interval – constructor of the class.

• isempty – returns 1 if a interval is empty and 0 otherwise.

• isIntersecting – determines if a set intersects an interval.

• isscalar – returns 1 if interval is scalar and 0 otherwise.

• length – overloads the operator that returns the length of the longest array dimension.

• mid – returns the center of an interval.

• plot – standard method, see Sec. 5. More details can be found in Sec. 5.8.

• polytope – converts an interval object to a polytope.

22

5 SET REPRESENTATIONS AND OPERATIONS

• rad – returns the radius of an interval.

• reshape – overloads the operator ’reshape’ for reshaping matrices.

• size – overloads the operator that returns the size of the object, i.e., length of an array
in each dimension.

• subsasgn – overloads the operator that assigns elements of an interval matrix I, e.g.
I(1,2)=value, where the element of the first row and second column is set.

• subsref – overloads the operator that selects elements of an interval matrix I, e.g.
value=I(1,2), where the element of the first row and second column is read.

• sum – overloaded ’sum()’ operator for intervals.

• supremum – returns the supremum of an interval.

• vertcat – overloads the operator for vertical concatenation, e.g. a = [b;c;d].

• vertices – returns a vertices object including all vertices.

• volume – computes the volume of an interval.

• zonotope – converts an interval object to a zonotope object.

5.6.1 Interval Example

The following MATLAB code demonstrates some of the introduced methods:

1 I1 = interval([0; -1], [3; 1]); % create interval I1

2 I2 = interval([-1; -1.5], [1; -0.5]); % create interval I2

3 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

4

5 r = rad(I1) % obtain and display radius of I1

6 is_intersecting = isIntersecting(I1, Z1) % Z1 intersecting I1?

7 I3 = I1 & I2; % computes the intersection of I1 and I2

8 c = mid(I3) % returns and displays the center of I3

9

10 figure; hold on

11 plot(I1); % plot I1

12 plot(I2); % plot I2

13 plot(Z1,[1 2],’g’); % plot Z1

14 plotFilled(I3,[1 2],[.6 .6 .6],’EdgeColor’,’none’); % plot I3

This produces the workspace output

r =

1.5000

1.0000

is_intersecting =

1

c =

23

5 SET REPRESENTATIONS AND OPERATIONS

0.5000

-0.7500

The plot generated in lines 11-14 is shown in Fig. 13.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−2

−1

0

1

2

3

x1

x
2

Figure 13: Sets generated in lines 11-14 of the interval example in Sec. 5.6.1.

5.7 Vertices

The vertices class performs operations on a set of vertices, such as enclosing them by a par-
allelotope. The following methods are implemented:

• collect – collects cell arrays (MATLAB-specific container) of vertices.

• display – standard method, see Sec. 5.

• interval – encloses all vertices by an interval.

• mtimes – standard method, see Sec. 5 for numeric matrix multiplication.

• parallelotope – computes a parallelotope in generator representation based on a coor-
dinate transformation in which the transformed vertices are enclosed by an interval hull.

• plot – standard method, see Sec. 5. More details can be found in Sec. 5.8.

• plus – standard method, see Sec. 5. Addition is only realized for vertices objects with
MATLAB vectors.

• vertices – constructor of the class.

• zonotope – computes a zonotope that encloses all vertices according to [16, Section 3].

5.7.1 Vertices Example

The following MATLAB code demonstrates some of the introduced methods:

1 Z1 = zonotope([1 1 1; 1 -1 1]); % create zonotope Z1

2 V1 = vertices(Z1); % compute vertices of Z1

3 A = [0.5 1; 1 0.5]; % numerical matrix A

4

5 V2{1} = A*V1; % linear map of vertices

24

6 MATRIX SET REPRESENTATIONS AND OPERATIONS

6 V2{2} = V2{1} + [1; 0]; % translation of vertices

7 V3 = collect(V2{1},V2); % collect vertices of cell array V2

8 Zencl = zonotope(V3); % obtain parallelotope containing all vertices

9

10 figure

11 hold on

12 plot(V2{1},’k+’); % plot V2{1}

13 plot(V2{2},’ko’); % plot V2{2}

14 plot(Zencl); % plot Zencl

The plot generated in lines 11-14 is shown in Fig. 14.

−1 0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

x1

x
2

Figure 14: Sets generated in lines 11-14 of the vertices example in Sec. 5.7.1.

5.8 Plotting of Sets

Plotting of reachable sets is performed by first projecting the set onto two dimensions. Those
dimensions can be two states for plots in state space, or a state and a time interval for plots
involving a time axis. A selection of plot types is presented in Fig. 15 for two zonotopes using
the standard MATLAB LineSpec, ColorSpec, and Patch settings. The command plot only
plots the edge, while plotFilled also fills the sets. The corresponding standard MATLAB
functions are plot and fill, respectively.

6 Matrix Set Representations and Operations

Besides vector sets as introduced in the previous section, it is often useful to represent sets of
possible matrices. This occurs for instance, when a linear system has uncertain parameters as
described later in Sec. 7.2. CORA supports the following matrix set representations:

• Matrix polytope (Sec. 6.1)

• Matrix zonotope (Sec. 6.2); specialization of a matrix polytope.

• Interval matrix (Sec. 6.3); specialization of a matrix zonotope.

For each matrix set representation, the conversion to all other matrix set computations is im-
plemented. Of course, conversions to specializations are realized in an over-approximative way,
while the other direction is computed exactly. Note that we use the term matrix polytope instead

25

6 MATRIX SET REPRESENTATIONS AND OPERATIONS

−2 −1 0 1 2 3
−1

0

1

2

3

(a) plot(Z)

−2 −1 0 1 2 3
−1

0

1

2

3

(b) plot(Z, [1,2], ’r:’)

−2 −1 0 1 2 3
−1

0

1

2

3

(c) plotFilled(Z, [1,2], ’w’,

’EdgeColor’, ’b’)

−2 −1 0 1 2 3
−1

0

1

2

3

(d) plotFilled(Z, [1,2],

[.75 .75 .75], ’EdgeColor’,

’none’)

−2 −1 0 1 2 3
−1

0

1

2

3

(e) plotFilled(Z, [1,2], [.6

.6 .6], ’EdgeColor’, ’none’)

−2 −1 0 1 2 3
−1

0

1

2

3

(f) plot(Z, [1,2], ’k-’,

’lineWidth’, 3’)

Figure 15: Selection of different plot styles.

of polytope matrix. The reason is that the analogous term vector polytope makes sense, while
polytope vector can be misinterpreted as a vertex of a polytope. We do not use the term matrix

interval since the term interval matrix is already established. Important operations for matrix
sets are

• display: Displays the parameters of the set in the MATLAB workspace.

• mtimes: Overloads the ’*’ operator for the multiplication of various objects with a matrix
set. For instance if M set is a matrix set of proper dimension and Z is a zonotope,
M set ∗ Z returns the linear map {Mx|M ∈ M set, x ∈ Z}.

• plus: Overloads the ’+’ operator for the addition of various objects with a matrix set. For
instance if M1 set and M2 set are interval matrices of proper dimension, M1 set+ M2 set

returns the Minkowski sum {M1 +M2|M1 ∈ M1 set,M2 ∈ M2 set}.

• expm: Returns the set of matrix exponentials for a matrix set.

• intervalMatrix: Computes an enclosing interval matrix.

• vertices: returns the vertices of a matrix set.

26

6 MATRIX SET REPRESENTATIONS AND OPERATIONS

6.1 Matrix Polytopes

A matrix polytope is analogously defined as a V-polytope (see Sec. 5.5):

A[p] =
{ r∑

i=1

αiV
(i)
∣
∣
∣V (i) ∈ Rn×n, αi ∈ R, αi ≥ 0,

∑

i

αi = 1
}

. (3)

The matrices V (i) are also called vertices of the matrix polytope. When substituting the matrix
vertices by vector vertices v(i) ∈ Rn, one obtains a V-polytope (see Sec. 5.5).

We support the following methods for polytope matrices:

• display – standard method, see Sec. 6.

• expmInd – operator for the exponential matrix of a matrix polytope, evaluated indepen-
dently.

• expmIndMixed – operator for the exponential matrix of a matrix polytope, evaluated in-
dependently. Higher order terms are computed via interval arithmetic.

• intervalMatrix – standard method, see Sec. 6.

• matPolytope – constructor of the class.

• matZonotope – computes an enclosing matrix zonotope of a matrix polytope analogously
to zonotope of the vertices class.

• mpower – overloaded ’∧’ operator for the power of matrix polytopes.

• mtimes – standard method, see Sec. 6 for numeric matrix multiplication or multiplication
with another matrix polytope.

• plot – plots 2-dimensional projection of a matrix polytope.

• powers – computes the powers of a matrix zonotope up to a certain order.

• plus – standard method, see Sec. 6. Addition is realized for two matrix polytopes or a
matrix polytope with a matrix.

• polytope – converts a matrix polytope to a polytope.

• simplePlus – computes the Minkowski addition of two matrix polytopes without reducing
the vertices by a convex hull computation.

• vertices – standard method, see Sec. 6.

Since the matrix polytope class is written using the new structure for object oriented program-
ming in MATLAB, it has the following public properties:

• dim – dimension.

• verts – number of vertices.

• vertex – cell array of vertices V (i) according to (3).

6.1.1 Matrix Polytope Example

The following MATLAB code demonstrates some of the introduced methods:

1 P1{1} = [1 2; 3 4]; % 1st vertex of matrix polytope P1

2 P1{2} = [2 2; 3 3]; % 2nd vertex of matrix polytope P1

27

6 MATRIX SET REPRESENTATIONS AND OPERATIONS

3 matP1 = matPolytope(P1); % instantiate matrix polytope P1

4

5 P2{1} = [-1 2; 2 -1]; % 1st vertex of matrix polytope P2

6 P2{2} = [-1 1; 1 -1]; % 2nd vertex of matrix polytope P2

7 matP2 = matPolytope(P2); % instantiate matrix polytope P2

8

9 matP3 = matP1 + matP2 % perform Minkowski addition and display result

10 matP4 = matP1 * matP2 % compute multiplication of and display result

11

12 intP = intervalMatrix(matP1) % compute interval matrix and display result

This produces the workspace output

dimension:

2

nr of vertices:

4

vertices:

0 4

5 3

0 3

4 3

1 4

5 2

1 3

4 2

dimension:

2

nr of vertices:

4

vertices:

3 0

5 2

1 -1

1 -1

2 2

3 3

28

6 MATRIX SET REPRESENTATIONS AND OPERATIONS

0 0

0 0

dimension:

2

left limit:

1 2

3 3

right limit:

2 2

3 4

6.2 Matrix Zonotopes

A matrix zonotope is defined analogously to zonotopes (see Sec. 5.1):

A[z] =
{

G(0) +
κ∑

i=1

piG
(i)
∣
∣
∣pi ∈ [−1, 1], G(i) ∈ Rn×n

}

(4)

and is written in short form as A[z] = (G(0), G(1), . . . , G(κ)), where the first matrix is referred
to as the matrix center and the other matrices as matrix generators. The order of a matrix
zonotope is defined as ρ = κ/n. When exchanging the matrix generators by vector generators
g(i) ∈ Rn, one obtains a zonotope (see e.g. [4]).

We support the following methods for zonotope matrices:

• concatenate – concatenates the center and all generators of two matrix zonotopes.

• display – standard method, see Sec. 6.

• dependentTerms – considers dependency in the computation of Taylor terms for the matrix
zonotope exponential according to [8, Proposition 4.3].

• dominantVertices – computes the dominant vertices of a matrix zonotope according to
a heuristics.

• expmInd – operator for the exponential matrix of a matrix zonotope, evaluated indepen-
dently.

• expmIndMixed – operator for the exponential matrix of a matrix zonotope, evaluated
independently. Higher order terms are computed via interval arithmetic.

• expmMixed – operator for the exponential matrix of a matrix zonotope, evaluated depen-
dently. Higher order terms are computed via interval arithmetic as discussed in [8, Section
4.4.4].

• expmOneParam – operator for the exponential matrix of a matrix zonotope when only one
parameter is uncertain as described in [17, Theorem 1].

• expmVertex – computes the exponential matrix for a selected number of dominant vertices
obtained by the dominantVertices method.

29

6 MATRIX SET REPRESENTATIONS AND OPERATIONS

• infNorm – returns the maximum of the infinity norm of a matrix zonotope.

• infNormRed – returns a faster over-approximation of the maximum of the infinity norm of
a matrix zonotope by reducing its representation size in an over-approximative way.

• intervalMatrix – standard method, see Sec. 6.

• matPolytope – converts a matrix zonotope into a matrix polytope representation.

• matZonotope – constructor of the class.

• mpower – overloaded ’∧’ operator for the power of matrix zonotopes.

• mtimes – standard method, see Sec. 6 for numeric matrix multiplication or a multiplication
with another matrix zonotope according to [8, Equation 4.10].

• plot – plots 2-dimensional projection of a matrix zonotope.

• plus – standard method (see Sec. 6) for a matrix zonotope or a numerical matrix.

• powers – computes the powers of a matrix zonotope up to a certain order.

• reduce – reduces the order of a matrix zonotope. This is done by converting the matrix
zonotope to a zonotope, reducing the zonotope, and converting the result back to a matrix
zonotope.

• uniformSampling – creates samples uniformly within a matrix zonotope.

• vertices – standard method, see Sec. 6.

• volume – computes the volume of a matrix zonotope by computing the volume of the
corresponding zonotope.

• zonotope – converts a matrix zonotope into a zonotope.

Since the matrix zonotope class is written using the new structure for object oriented program-
ming in MATLAB, it has the following public properties:

• dim – dimension.

• gens – number of generators.

• center – G(0) according to (4).

• generator – cell array of matrices G(i) according to (4).

6.2.1 Matrix Zonotope Example

The following MATLAB code demonstrates some of the introduced methods:

1 Zcenter = [1 2; 3 4]; % center of matrix zonotope Z1

2 Zdelta{1} = [1 0; 1 1]; % generators of matrix zonotope Z1

3 matZ1 = matZonotope(Zcenter, Zdelta); % instantiate matrix zonotope Z1

4

5 Zcenter = [-1 2; 2 -1]; % center of matrix zonotope Z2

6 Zdelta{1} = [0 0.5; 0.5 0]; % generators of matrix zonotope Z2

7 matZ2 = matZonotope(Zcenter, Zdelta); % instantiate matrix zonotope Z2

8

9 matZ3 = matZ1 + matZ2 % perform Minkowski addition and display result

10 matZ4 = matZ1 * matZ2 % compute multiplication of and display result

11

30

6 MATRIX SET REPRESENTATIONS AND OPERATIONS

12 intZ = intervalMatrix(matZ1) % compute interval matrix and display result

This produces the workspace output

dimension:

2

nr of generators:

2

center:

0 4

5 3

generators:

1 0

1 1

0 0.5000

0.5000 0

dimension:

1

nr of generators:

3

center:

3 0

5 2

generators:

1.0000 0.5000

2.0000 1.5000

-1 2

1 1

0 0.5000

0.5000 0.5000

dimension:

2

left limit:

0 2

31

6 MATRIX SET REPRESENTATIONS AND OPERATIONS

2 3

right limit:

2 2

4 5

6.3 Interval Matrices

An interval matrix is a special case of a matrix zonotope and specifies the interval of possible
values for each matrix element:

A[i] = [A,A], ∀i, j : aij ≤ aij, A,A ∈ Rn×n.

The matrix A is referred to as the lower bound and A as the upper bound of A[i].

We support the following methods for interval matrices:

• abs – returns the absolute value bound of an interval matrix.

• display – standard method, see Sec. 6.

• dependentTerms – considers dependency in the computation of Taylor terms for the in-
terval matrix exponential according to [8, Proposition 4.4].

• dominantVertices – computes the dominant vertices of an interval matrix zonotope ac-
cording to a heuristics.

• expm – operator for the exponential matrix of an interval matrix, evaluated dependently.

• expmAbsoluteBound – returns the over-approximation of the absolute bound of the sym-
metric solution of the computation of the exponential matrix.

• expmInd – operator for the exponential matrix of an interval matrix, evaluated indepen-
dently.

• expmIndMixed – dummy function for interval matrices.

• expmMixed – dummy function for interval matrices.

• expmNormInf – returns the over-approximation of the norm of the difference between
the interval matrix exponential and the exponential from the center matrix according
to [8, Theorem 4.2].

• expmVertex – computes the exponential matrix for a selected number of dominant vertices
obtained by the dominantVertices method.

• exponentialRemainder – returns the remainder of the exponential matrix according to [8,
Proposition 4.1].

• infNorm – returns the maximum of the infinity norm of an interval matrix.

• interval – converts an interval matrix to an interval.

• intervalMatrix – constructor of the class.

• matPolytope – converts an interval matrix to a matrix polytope.

• matZonotope – converts an interval matrix to a matrix zonotope.

• mpower – overloaded ’∧’ operator for the power of interval matrices.

32

6 MATRIX SET REPRESENTATIONS AND OPERATIONS

• mtimes – standard method, see Sec. 6 for numeric matrix multiplication or a multiplication
with another interval matrix according to [8, Equation 4.11].

• plot – plots 2-dimensional projection of an interval matrix.

• plus – standard method, see Sec. 6. Addition is realized for two interval matrices or an
interval matrix with a matrix.

• powers – computes the powers of an interval matrix up to a certain order.

• randomIntervalMatrix – generates a random interval matrix with a specified center and
a specified delta matrix or scalar. The number of elements of that matrix which are
uncertain has to be specified, too.

• uniformSampling – creates samples uniformly within an interval matrix.

• vertices – standard method, see Sec. 6.

• volume – computes the volume of an interval matrix by computing the volume of the
corresponding interval.

6.3.1 Interval Matrix Example

The following MATLAB code demonstrates some of the introduced methods:

1 Mcenter = [1 2; 3 4]; % center of interval matrix M1

2 Mdelta = [1 0; 1 1]; % delta of interval matrix M1

3 intM1 = intervalMatrix(Mcenter, Mdelta); % instantiate interval matrix M1

4

5 Mcenter = [-1 2; 2 -1]; % center of interval matrix M2

6 Mdelta = [0 0.5; 0.5 0]; % delta of interval matrix M2

7 intM2 = intervalMatrix(Mcenter, Mdelta); % instantiate interval matrix M2

8

9 intM3 = intM1 + intM2 % perform Minkowski addition and display result

10 intM4 = intM1 * intM2 % compute multiplication of and display result

11

12 matZ = matZonotope(intM1) % compute matrix zonotope and display result

This produces the workspace output

dimension:

2

left limit:

-1.0000 3.5000

3.5000 2.0000

right limit:

1.0000 4.5000

6.5000 4.0000

dimension:

2

left limit:

1.0000 -3.0000

33

7 CONTINUOUS DYNAMICS

-0.5000 -3.0000

right limit:

5.0000 3.0000

10.5000 7.0000

dimension:

2

nr of generators:

3

center:

1 2

3 4

generators:

1 0

0 0

0 0

1 0

0 0

0 1

7 Continuous Dynamics

This section introduces various classes to compute reachable sets of continuous and hybrid
dynamics. One can directly compute reachable sets for each class, or include those classes into a
hybrid automaton for the reachability analysis of hybrid systems. Note that besides reachability
analysis, the simulation of particular trajectories is also supported. CORA supports the following
continuous dynamics:

• Linear systems (Sec. 7.1)

• Linear systems with uncertain fixed parameters (Sec. 7.2)

• Linear systems with uncertain varying parameters (Sec. 7.3)

• Linear probabilistic systems (Sec. 7.4)

• Nonlinear systems (Sec. 7.5)

• Nonlinear systems with uncertain fixed parameters (Sec. 7.6)

• Nonlinear differential-algebraic systems (Sec. 7.7)

Each class for continuous dynamics inherits from the parent class contDynamics. This class
itself is inherited from the handle class. This implied that objects created from this class only

34

7 CONTINUOUS DYNAMICS

reference the object data instead of reserving dedicated memory (call by reference). Copying an
object creates another reference to the same data. To create a true copy, a dedicated method
has to be implemented. Since for reachability analysis, multiple instances of the same dynamics
are not required, the instantiation from a handle class makes sense since one does not have to
pass the changed object for each called method. The continuous set classes, which inherit from
contSet are not using this concept, since sets have to be copied even for simple operations, such
as Z3 = Z1 + Z2, where Zi are zonotope objects.

The parent class provides the following methods:

• dimension: Returns the dimension of the system.

• display: Displays the parameters of the parent class in the MATLAB workspace.

• reach: Computes the reachable set for the entire time horizon.

• simulate random: Performs several random simulation of the system. It can be set of
many simulations should be performed, what percentage of initial states should start at
vertices of the initial set, what percentage of inputs should be chosen from vertices of the
input set, and how often the input should be changed.

In addition, each class realizes at least these methods:

• display: Displays the parameters of particular continuous dynamics beyond the informa-
tion of the parent class in the MATLAB workspace.

• initReach: Initializes the reachable set computation.

• post: Computes the reachable set for the next time interval.

• simulate: Produces a single trajectory that numerically solves the system for a particular
initial state and a particular input trajectory.

There exist some further auxiliary methods for each class, but those are not relevant unless one
aims to change details of the provided algorithms. In contrast to the set representations, all
continuous systems have the same methods, therefor the methods are not listed for the individual
classes. We mainly focus on the method initReach, which is computed differently for each class.

7.1 Linear Systems

The most basic system dynamics considered in this software package are linear systems of the
form

ẋ(t) = Ax(t) +Bu(t), x(0) ∈ XO ⊂ Rn, u(t) ∈ U ⊂ Rn (5)

For the computation of reachable sets, we use the equivalent system

ẋ(t) = Ax(t) + ũ(t), x(0) ∈ XO ⊂ Rn, ũ(t) ∈ Ũ = B ⊗ U ⊂ Rn, (6)

where C ⊗ D = {C D|C ∈ C,D ∈ D} is the set-based multiplication (one argument can be a
singleton).

7.1.1 Method initReach

The method initReach computes the required steps to obtain the reachable set for the first
point in time r and the first time interval [0, r] as follows. Given is the linear system in (6). For
further computations, we introduce the center of the set of inputs uc and the deviation from the

35

https://en.wikipedia.org/wiki/Evaluation_strategy

7 CONTINUOUS DYNAMICS

center of Ũ , Ũ∆ := Ũ ⊕ (−uc). According to [5, Section 3.2], the reachable set for the first time
interval τ0 = [0, r] is computed as shown in Fig. 16:

1. Starting from XO, compute the set of all solutions Rd
h for the affine dynamics ẋ(t) =

Ax(t) + uc at time r.

2. Obtain the convex hull of XO and Rd
h to approximate the reachable set for the first time

interval τ0.

3. Compute Rd(τ0) by enlarging the convex hull, firstly to bound all affine solutions within
τ0 and secondly to account for the set of uncertain inputs Ũ∆.

XO

R
d
h

convex hull of
XO, R

d
h

R
d(τ0)

➀ ➁ ➂

enlargement

Figure 16: Steps for the computation of an over-approximation of the reachable set for a linear
system.

The following private functions take care of the required computations:

• exponential – computes an over-approximation of the matrix exponential eAr based on
the Lagrangian remainder as proposed in [18, Proposition 2]. A more conservative approach
previously used [5, Equation 3.2,3.3].

• tie (time interval error) – computes the error made by generating the convex hull of
reachable sets of points in time for the reachable set of the corresponding time interval as
described in [18, Section 4]. A more conservative approach previously used [5, Proposition
3.1], which can only be used in combination with [5, Equation 3.2,3.3].

• inputSolution – computes the reachable set due to the input according to the superposi-
tion principle of linear systems. The computation is performed as suggested in [5, Theorem
3.1]. As noted in [18, Theorem 2], it is required that the input set is convex. The error
term in [18, Theorem 2] is slightly better, but is computationally more expensive so that
the algorithm form [5, Theorem 3.1] is used.

7.2 Linear Systems with Uncertain Fixed Parameters

This class extends linear systems by uncertain parameters that are fixed over time:

ẋ(t) = A(p)x(t) + ũ(t), x(0) ∈ XO ⊂ Rn, p ∈ P, ũ(t) ∈ Ũ = {B(p)⊗ U|U ⊂ Rn, p ∈ P},
(7)

The set of state and input matrices is denoted by

A = {A(p)|p ∈ P}, B = {B(p)|p ∈ P} (8)

An alternative is to define each parameter as a state variable x̃i with the trivial dynamics ˙̃xi = 0.
The result is a nonlinear system that can be handled as described in Sec. 7.5. The problem of
which approach to use for any particular case is still open.

36

7 CONTINUOUS DYNAMICS

Since the linParamSys class is written using the new structure for object oriented programming
in MATLAB, it has the following public properties:

• A – set of system matrices A, see (8). The set of matrices can be represented by any matrix
set introduced in Sec. 6.

• B – set of input matrices B, see (8). The set of matrices can be represented by any matrix
set introduced in Sec. 6.

• stepSize – constant step size tk−1− tk for time intervals of the reachable set computation.

• taylorTerms – number of Taylor terms for computing the matrix exponential, see [5,
Theorem 3.2].

• mappingMatrixSet – set of exponential matrices, see Sec. 6.

• E – remainder of matrix exponential computation.

• F – uncertain matrix to bound the error for time interval solutions, see e.g. [5, Proposition
3.1].

• inputF – uncertain matrix to bound the error for time interval solutions of inputs, see
e.g. [5, Proposition 3.4].

• inputCorr – additional uncertainty of the input solution if origin is not contained in input
set, see [5, Equation 3.9].

• Rinput – reachable set of the input solution, see Sec. 7.1.

• Rtrans – reachable set of the input uc, see Sec. 7.1.

• RV – reachable set of the input Ũ∆, see Sec. 7.1.

• sampleMatrix – possible matrix Â such that Â ∈ A.

7.2.1 Method initReach

The method initReach computes the reachable set for the first point in time r and the first
time interval [0, r] similarly as for linear systems with fixed parameters. The main difference is
that we have to take into account an uncertain state matrix A and an uncertain input matrix
B. The initial state solution becomes

Rd
h = eArXO = {eArx0|A ∈ A, x0 ∈ XO}. (9)

Similarly, the reachable set due to the input solution changes as described in [5, Section 3.3].
The following private functions take care of the required computations:

• mappingMatrix – computes the set of matrices which map the states for the next point in
time according to [8, Section 3.1].

• tie (time interval error) – computes the error made by generating the convex hull of
reachable sets of points in time for the reachable set of the corresponding time interval as
described in [8, Section 3.2].

• inputSolution – computes the reachable set due to the input according to the superposi-
tion principle of linear systems. The computation is performed as suggested in [8, Theorem
1].

37

7 CONTINUOUS DYNAMICS

7.3 Linear Systems with Uncertain Varying Parameters

This class extends linear systems with uncertain, but fixed parameters to linear systems with
time-varying parameters:

ẋ(t) = A(t)x(t) + ũ(t), x(0) ∈ XO ⊂ Rn, A(t) ∈ A, ũ(t) ∈ Ũ .

The set of state matrices can be represented by any matrix set introduced in Sec. 6. The
provided methods of the class are identical to the ones in Sec. 7.2, except that the computation
is based on [18].

Since the linVarSys class is written using the new structure for object oriented programming
in MATLAB, it has the following public properties:

• A – set of system matrices A, see (8). The set of matrices can be represented by any matrix
set introduced in Sec. 6.

• B – set of input matrices B, see (8). The set of matrices can be represented by any matrix
set introduced in Sec. 6.

• stepSize – constant step size tk−1− tk for time intervals of the reachable set computation.

• taylorTerms – number of Taylor terms for computing the matrix exponential, see [5,
Theorem 3.2].

• mappingMatrixSet – set of exponential matrices, see Sec. 6.

• E – remainder of matrix exponential computation.

• F – uncertain matrix to bound the error for time interval solutions, see e.g. [5, Proposition
3.1].

• inputF – uncertain matrix to bound the error for time interval solutions of inputs, see
e.g. [5, Proposition 3.4].

• inputCorr – additional uncertainty of the input solution if origin is not contained in input
set, see [5, Equation 3.9].

• Rinput – reachable set of the input solution, see Sec. 7.1.

• Rtrans – reachable set of the input uc, see Sec. 7.1.

• sampleMatrix – possible matrix Â such that Â ∈ A.

7.4 Linear Probabilistic Systems

In contrast to all other systems, we consider stochastic properties in the class linProbSys. The
system under consideration is defined by the following linear stochastic differential equation
(SDE) which is also known as the multivariate Ornstein-Uhlenbeck process [19]:

ẋ = Ax(t) + u(t) + Cξ(t), (10)

x(0) ∈ Rn, u(t) ∈ U ⊂ Rn, ξ ∈ Rm

where A and C are matrices of proper dimension and A has full rank. There are two kinds of
inputs: the first input u is Lipschitz continuous and can take any value in U ⊂ Rn for which
no probability distribution is known. The second input ξ ∈ Rm is white Gaussian noise. The
combination of both inputs can be seen as a white Gaussian noise input, where the mean value
is unknown within the set U .

38

7 CONTINUOUS DYNAMICS

In contrast to the other system classes, we compute enclosing probabilistic hulls, i.e. a hull over
all possible probability distributions when some parameters are uncertain and do not have a
probability distribution. In the probabilistic setting (C 6= 0), the probability density function
(PDF) at time t = r of the random process X(t) defined by (10) for a specific trajectory
u(t) ∈ U is denoted by fX(x, r). The enclosing probabilistic hull (EPH) of all possible probability
density functions fX(x, r) is denoted by f̄X(x, r) and defined as: f̄X(x, r) = sup{fX(x, r)|X(t)
is a solution of (10) ∀t ∈ [0, r], u(t) ∈ U , fX(x, 0) = f0}. The enclosing probabilistic hull for a
time interval is defined as f̄X(x, [0, r]) = sup{f̄X(x, t)|t ∈ [0, r]}.

7.4.1 Method initReach

The method initReach computes the probabilistic reachable set for a first point in time r and
the first time interval [0, r] similarly to Sec. 7.1.1. The main difference is that we compute
enclosing probabilistic hulls as defined above. The following private functions take care of the
required computations:

• pexpm – computes the over-approximation of the exponential of a system matrix similarly
as for linear systems in Sec. 7.1.

• tie (time interval error – computes the tie similarly as for linear systems in Sec. 7.1.

• inputSolution – computes the reachable set due to the input according to the superposi-
tion principle of linear systems. The computation is performed as suggested in [12, Secttion
VI.B].

7.5 Nonlinear Systems

So far, reachable sets of linear continuous systems have been presented. Although a fairly large
group of dynamic systems can be described by linear continuous systems, the extension to non-
linear continuous systems is an important step for the analysis of more complex systems. The
analysis of nonlinear systems is much more complicated since many valuable properties are no
longer valid. One of them is the superposition principle, which allows the homogeneous and
the inhomogeneous solution to be obtained separately. Another is that reachable sets of linear
systems can be computed by a linear map. This makes it possible to exploit that geometric
representations such as ellipsoids, zonotopes, and polytopes are closed under linear transforma-
tions, i.e. they are again mapped to ellipsoids, zonotopes and polytopes, respectively. In CORA,
reachability analysis of nonlinear systems is based on abstraction. We present abstraction by
linear systems as presented in [5, Section 3.4] and by polynomial systems as presented in [10].
Since the abstraction causes additional errors, the abstraction errors are determined in an over-
approximative way and added as an additional uncertain input so that an over-approximative
computation is ensured.

General nonlinear continuous systems with uncertain parameters and Lipschitz continuity are
considered. In analogy to the previous linear systems, the initial state x(0) can take values from
a set XO ⊂ Rn and the input u takes values from a set U ⊂ Rm. The evolution of the state x is
defined by the following differential equation:

ẋ(t) = f(x(t), u(t)), x(0) ∈ XO ⊂ Rn, u(t) ∈ U ⊂ Rm,

where u(t) and f(x(t), u(t)) are assumed to be globally Lipschitz continuous so that the Taylor
expansion for the state and the input can always be computed, a condition required for the
abstraction.

39

7 CONTINUOUS DYNAMICS

replacemen

➀

➁

➂

➃

➄

➅

➆

Initial set: R(0) = XO, time step: k = 1

Compute system abstraction (linear/polynomial)

Obtain required abstraction errors L̄ heuristically

Compute Rabstract(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L̄

Compute L based on Rabstract(τk)

L ⊆ L̄ ? Enlarge L̄

Compute R(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L

Cancellation of redundant reachable sets

Next initial set: R(tk+1), time step: k := k + 1

Yes

No

Figure 17: Computation of reachable sets – overview.

A brief visualization of the overall concept for computing the reachable set is shown in Fig.
17. As in the previous approaches, the reachable set is computed iteratively for time intervals
t ∈ τk = [k r, (k + 1)r] where k ∈ N+. The procedure for computing the reachable sets of the
consecutive time intervals is as follows:

➀ The nonlinear system ẋ(t) = f(x(t), u(t)) is either abstracted to a linear system as shown
in (6) or after introducing z = [xT , uT]T a polynomial system of the form

ẋi = fabstract(x, u) =wi +
1

1!

o∑

j=1

Cijzj(t) +
1

2!

o∑

j=1

o∑

k=1

Dijkzj(t)zk(t)

+
1

3!

o∑

j=1

o∑

k=1

o∑

l=1

Eijklzj(t)zk(t)zl(t) + . . .

(11)

The set of abstraction errors L ensures that f(x, u) ∈ fabstract(x, u)⊕L, which allows the
reachable set to be computed in an over-approximative way.

➁ Next, the set of required abstraction errors L̄ is obtained heuristically.

➂ The reachable set Rabstract(τk) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L̄ is computed.

➃ The set of abstraction errors L is computed based on the reachable set Rabstract(τk).

➄ When L * L̄, the abstraction error is not admissible, requiring the assumption L̄ to be
enlarged. If several enlargements are not successful, one has to split the reachable set and
continue with one more partial reachable set from then on.

➅ If L ⊆ L̄, the abstraction error is accepted and the reachable set is obtained by using the
tighter abstraction error: ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L.

➆ It remains to increase the time step (k := k+1) and cancel redundant reachable sets that
are already covered by previously computed reachable sets. This decreases the number of
reachable sets that have to be considered in the next time interval.

40

7 CONTINUOUS DYNAMICS

The nexessity of splitting reachable sets is indicated in the workspace outputs using the keyword
split and the ratio of the current abstraction errors to the allowed abstraction errors is indicated
in the workspace outputs using the keyword perfInd. If perfInd >= 1, the reachable set has
to be split.

7.5.1 Method initReach

The method initReach computes the reachable set for a first point in time r and the first
time interval [0, r]. In contrast to linear systems, it is required to call initReach for each time
interval τk since the system is abstracted for each time interval τk by a different abstraction
fabstract(x, u).

The following private functions take care of the required computations:

• linReach – computes the reachable set of the abstraction fabstract(x(t), u(t)) ⊕ L̄ and
returns if the initial set has to be split in order to control the abstraction error. The
name of the function has historical reasons and will change. The distinction between the
reachable set computation by polynomial abstractions and linear abstractions is made by
the computation of the reachable set due to the abstraction error:

– errorSolutionQuad – for polynomial abstraction.

– errorSolution – for linear abstraction.

• linearize – linearizes the nonlinear system.

• linError mixed noInt – computes the linearization error without use of interval arith-
metic according to [6, Theorem 1].

• linError thirdOrder – computes linearization errors according to [10, Section 4.1].

• linError – easiest, but also most conservative computation of the linearization error
according to [20, Proposition 1].

7.6 Nonlinear Systems with Uncertain Fixed Parameters

The class nonlinParamSys extends the class nonlinearSys by considering uncertain parameters
p:

ẋ(t) = f(x(t), u(t), p), x(0) ∈ XO ⊂ Rn, u(t) ∈ U ⊂ Rm, p ∈ P ⊂ Rp.

The functionality provided is identical to nonlinearSys, except that the abstraction to polyno-
mial systems is not yet implemented.

7.7 Nonlinear Differential-Algebraic Systems

The class nonlinDASys considers time-invariant, semi-explicit, index-1 DAEs without parametric
uncertainties since they are not yet implemented. The extension to parametric uncertainties can
be done using the methods applied in Sec. 7.6. Using the vectors of differential variables x,
algebraic variables y, and inputs u, the semi-explicit DAE can generally be written as

ẋ = f(x(t), y(t), u(t))

0 = g(x(t), y(t), u(t)),

[xT (0), yT (0)]T ∈ R(0), u(t) ∈ U ,

(12)

41

8 HYBRID DYNAMICS

where R(0) over-approximates the set of consistent initial states and U is the set of possible
inputs. The initial state is consistent when g(x(0), y(0), u(0)) = 0, while for DAEs with an
index greater than 1, further hidden algebraic constraints have to be considered [21, Chapter

9.1]. For an implicit DAE, the index-1 property holds if and only if ∀t : det(∂g(x(t),y(t),u(t))
∂y

) 6= 0,
i.e. the Jacobian of the algebraic equations is non-singular [22, p. 34]. Loosely speaking, the
index specifies the distance to an ODE (which has index 0) by the number of required time
differentiations of the general form 0 = F (˙̃x, x̃, u, t) along a solution x̃(t), in order to express ˙̃x
as a continuous function of x̃ and t [21, Chapter 9.1].

To apply the methods presented in the previous section to compute reachable sets for DAEs, an
abstraction of the original nonlinear DAEs to linear differential inclusions is performed for each
consecutive time interval τk. A different abstraction is used for each time interval to minimize
the over-approximation error. Based on a linearization of the functions f(x(t), y(t), u(t)) and
g(x(t), y(t), u(t)), one can abstract the dynamics of the original nonlinear DAE by a linear
system plus additive uncertainty as detailed in [6, Section IV]. This linear system only contains
dynamic state variables x and uncertain inputs u. The algebraic state y is obtained afterwards
by the linearized constraint function g(x(t), y(t), u(t)) as described in [6, Proposition 2].

Since the nonlinDASys class is written using the new structure for object oriented programming
in MATLAB, it has the following public properties:

• dim – number of dimensions.

• nrOfConstraints – number of constraints.

• nrOfInputs – number of inputs.

• dynFile – handle to the m-file containing the dynamic function f(x(t), y(t), u(t)).

• conFile – handle to the m-file containing the constraint function g(x(t), y(t), u(t)).

• jacobian – handle to the m-file containing the Jacobians of the dynamic function and the
constraint function.

• hessian – handle to the m-file containing the Hessians of the dynamic function and the
constraint function.

• thirdOrderTensor – handle to the m-file containing the third order tensors of the dynamic
function and the constraint function.

• linError – handle to the m-file containing the Lagrangian remainder.

• other – other information.

8 Hybrid Dynamics

In CORA, hybrid systems are modeled by hybrid automata. Besides a continuous state x,
there also exists a discrete state v for hybrid systems. The continuous initial state may take
values within continuous sets while only a single initial discrete state is assumed without loss of
generality5. The switching of the continuous dynamics is triggered by guard sets. Jumps in the
continuous state are considered after the discrete state has changed. One of the most intuitive
examples where jumps in the continuous state can occur is the bouncing ball example (see Sec.
12.2.1), where the velocity of the ball changes instantaneously when hitting the ground.

5In the case of several initial discrete states, the reachability analysis can be performed for each discrete state
separately.

42

8 HYBRID DYNAMICS

The formal definition of the hybrid automaton is similarly defined as in [16]. The main difference
is the consideration of uncertain parameters and the restrictions on jumps and guard sets. A
hybrid automaton HA = (V, v0,X , X 0,U ,P, inv, T, g, h, f), as it is considered in CORA, consists
of:

• the finite set of locations V = {v1, . . . , vξ} with an initial location v0 ∈ V.

• the continuous state space X ⊆ Rn and the set of initial continuous states X 0 such that
X 0 ⊆ inv(v0).

• the continuous input space U ⊆ Rm.

• the parameter space P ⊆ Rp.

• the mapping6 inv: V → 2X , which assigns an invariant inv(v) ⊆ X to each location v.

• the set of discrete transitions T ⊆ V ×V. A transition from vi ∈ V to vj ∈ V is denoted by
(vi, vj).

• the guard function g : T → 2X , which associates a guard set g((vi, vj)) for each transition
from vi to vj , where g((vi, vj)) ∩ inv(vi) 6= ∅.

• the jump function h : T×X → X , which returns the next continuous state when a transition
is taken.

• the flow function f : V × X × U × P → R(n), which defines a continuous vector field for
the time derivative of x: ẋ = f(v, x, u, p).

The invariants inv(v) and the guard sets g((vi, vj)) are modeled by polytopes. The jump function
is restricted to a linear map

x′ = K(vi,vj) x+ l(vi,vj), (13)

where x′ denotes the state after the transition is taken and K(vi,vj) ∈ Rn×n, l(vi,vj) ∈ Rn are
specific for a transition (vi, vj). The input sets Uv are modeled by zonotopes and are also
dependent on the location v. Note that in order to use the results from reachability analysis
of nonlinear systems, the input u(t) is assumed to be locally Lipschitz continuous. The set of
parameters Pv can also be chosen differently for each location v.

The evolution of the hybrid automaton is described informally as follows. Starting from an
initial location v(0) = v0 and an initial state x(0) ∈ X 0, the continuous state evolves according
to the flow function that is assigned to each location v. If the continuous state is within a
guard set, the corresponding transition can be taken and has to be taken if the state would
otherwise leave the invariant inv(v). When the transition from the previous location vi to the
next location vj is taken, the system state is updated according to the jump function and the
continuous evolution within the next invariant.

Because the reachability of discrete states is simply a question of determining if the continuous
reachable set hits certain guard sets, the focus of CORA is on the continuous reachable sets.
Clearly, as for the continuous systems, the reachable set of the hybrid system has to be over-
approximated in order to verify the safety of the system. An illustration of a reachable set of a
hybrid automaton is given in Fig. 18.

8.1 Simulation of Hybrid Automata

While the reachable set computation of hybrid systems as performed in CORA is described in
several publications, see e.g. [5,23,24], the simulation of hybrid systems is nowhere documented.

62X is the power set of X .

43

8 HYBRID DYNAMICS

initial set

reachable set guard sets

guard sets

jump

etc.

invariant

unsafe set

x1

x2

location v1 location v2

Figure 18: Illustration of the reachable set of a hybrid automaton.

For this reason, the simulation is described in this subsection in more detail. The simulation is
performed by applying the following steps:

➀ Preparation 1: Guard sets and invariants can be specified by any set representation that
CORA offers. For simulation purposes, all set representations are transformed into a
halfspace representation as illustrated in Fig. ??. This is performed by transforming
intervals, zonotopes, and zonotope bundles to a polytope, see Fig. 2. Next, of all polytopes
the halfspace generation is obtained. Guard that are already defined as halfspaces do not
have to be converted, of course. In the end, one obtains a set of halfspaces for guard sets
and the invariant for each location. The result for one location is shown in Fig. ??.

➁ Preparation 2: The ordinary differential equation (ODE) solvers of MATLAB can be
connected to so-called event functions. If during the simulation, one of the event functions
has a zero crossing, MATLAB stops the simulation and goes forward and backward in
time in an iterative way to determine the zero crossing up to some numerical precision.
It can be set if the ODE solver should react to a zero crossing when the event function
changes from negative to positive (direction=+1), the other way round (direction=-1),
or in any direction (direction=0). It can also be set if the simulation should stop after a
zero crossing or not.

CORA automatically generates an event function for each halfspace, where the simulation
is stopped when the halfspace of the invariant is left (direction=+1) and stopped for
halfspaces of guard sets when the halfspace is entered (direction=-1). In any case, the
simulation will stop.

➂ During the simulation, the integration of the ODE stops as soon as any event function is
triggered. This, however, does not necessarily mean that a guard set is hit as shown in
Fig. 19(b). Only when the state is on the edge of a guard set, the integration is stopped
for the current location. Otherwise, the integration is continued. Please note that it is
not sufficient to check whether a state during the simulation enters a guard set, since this
could cause missing a guard set as shown in Fig. 20.

➃ After a guard set is hit, the discrete state changes according to the transition function and
the continuous state according to the jump function as described above. Currently, only
urgent semantics is implemented in CORA, i.e. a transition is taken as soon as a guard
set is hit, although the guard might model non-deterministic switching. The simulation
continues with step ➂ in the next location until the time horizon is reached.

44

8 HYBRID DYNAMICS

x1

x2

invariant

guard set

(a) Considered location.

x1

x2

initial state

first halfspace hit (not in guard set)

second halfspace hit (in guard set)

halfspace of guard set:

halfspace of invariant:

part belonging to halfspace

(b) Simulation using halfspaces.

Figure 19: Illustration of the algorithm for simulating a hybrid automaton.

8.2 Hybrid Automaton

A hybrid automaton is implemented as a collection of locations. We mainly support the
following methods for hybrid automata:

• hybridAutomaton – constructor of the class.

• plot – plots the reachable set of the hybrid automaton.

• reach – computes the reachable set of the hybrid automaton.

• simulate – computes a hybrid trajectory of the hybrid automaton.

8.3 Location

Each location consists of:

• invariant – specified by a set representation of Sec. 5.

• transitions – cell array of objects of the class transition.

• contDynamics – specified by a continuous dynamics of Sec. 7.

45

8 HYBRID DYNAMICS

x1

x2

invariant

guard set

initial state

intermediate states

Figure 20: Guard intersections can be missed when one only checks whether interndiate states
are in any guard set.

• name – saved as a string describing the location.

• id – unique number of the location.

We mainly support the following methods for locations:

• display – displays the parameters of the location in the MATLAB workspace.

• enclosePolytopes – encloses a set of polytopes using different over-approximating zono-
topes.

• guardIntersect – intersects the reachable sets with potential guard sets and returns
enclosing zonotopes for each guard set.

• location – constructor of the class.

• potInt – determines which reachable sets potentially intersect with guard sets of a location.

• reach – computes the reachable set for the location.

• simulate – produces a single trajectory that numerically solves the system within the
location starting from a point rather than from a set.

8.4 Transition

Each transition consists of

• guard – specified by a set representation of Sec. 5.

• reset – struct containing the information for a linear reset.

• target – id of the target location when the transition occurs.

• inputLabel – input event to communicate over events.

• outputLabel – output event to communicate over events.

We mainly support the following methods for transitions:

• display – displays the parameters of the transition in the MATLAB workspace.

• reset – computes the reset map after a transition occurs (also called ’jump function’).

46

10 OPTIONS FOR REACHABILITY ANALYSIS

9 State Space Partitioning

It is sometimes useful to partition the state space into cells, for instance, when abstracting
a continuous stochastic system by a discrete stochastic system. CORA supports axis-aligned
partitioning using the class partition.

We mainly support the following methods for partitions:

• allSegmentIntervalHulls – generates all interval hulls of the partitioned space.

• cellCandidates – finds possible cells that might intersect with a continuous set over-
approximated by its bounding box (interval hull); more cell indices are returned than
actually intersect.

• cellCenter – return center of specified cell.

• cellIndices – returns cell indices given a set of cell coordinates.

• cellIntersection2 – returns the volumes of a polytope P intersected with touched cells
Ci.

• cellSegment – returns cell coordinates given a set of cell indices.

• display – displays the parameters of the partition in the MATLAB workspace.

• findSegment – find segment index for given state space coordinates.

• findSegments – return segment indices intersecting with a given interval hull.

• nrOfStates – returns the number of discrete states of the partition.

• partition – constructor of the class.

• segmentIntervals – returns intervals of segment.

• segmentPolytope – returns polytope of segment.

• segmentZonotope – returns zonotope of segment.

10 Options for Reachability Analysis

Most parameters for the computation of reachable sets are controlled by a struct called options.
These are the most important fields:

• tStart – start time of the analysis.

• tFinal – final time of the analysis.

• x0 – initial state.

• R0 – initial set of states.

• u – constant input for simulations.

• uTrans – uc: transition of the uncertain input set Ũ∆.

• uTransVec – varying uc for each time step: transition of the uncertain input set Ũ∆.

• U – uncertain input set Ũ∆.

• originContained – flag whether the origin is contained in the set of uncertain inputs Ũ
(1: yes, 0: no).

47

12 EXAMPLES

• timeStep – step size tk+1 − tk.

• taylorTerms – considered Taylor terms for the exponential matrix.

• zonotopeOrder – maximum order of zonotopes.

• intermediateOrder – order up to which no interval methods are used in matrix set com-
putations.

• advancedLinErrorComp – flag to enable advanced linearization error computation (1: on,
0: off).

• tensorOrder – maximum order up to which tensors are considered in the abstraction of
the system.

• errorOrder – maximum zonotope order for the computation of nonlinear maps.

• maxError – maximum allowed abstraction errors before a reachable set is split.

• reductionInterval – number of time steps after which redundant reachable sets are
removed.

11 Unit Tests

To better ensure that all functions in CORA work as they should, despite changes in the code,
CORA contains a number of unit tests. Those unit test are executed by two different test suits:

• runTestSuite: This test suite should always be executed after installing CORA or updat-
ing MATLAB/CORA/MPT. This test suite runs the basic tests and should be completed
after several minutes. This test suite executes all files in the folder unitTests whose
function name starts with test .

• runTestSuite INTLAB: This test suite compares the interval arithmetic results with those
of INTLAB. To successfully execute those tests, INTLAB has to be installed. The tests
are randomized and for each function, thousands of samples are generated. Simple, non-
randomized tests for the interval arithmetic are already included in runTestSuite. This
test suite executes all files in the folder unitTests whose function name starts with
testINTLAB .

12 Examples

This section presents a variety of examples that have been published in different papers. For
each example, we provide a reference to the paper so that the details of the system can be
studied there. The focus of this manual is on how the examples in the papers can be realized
using CORA—this, of course, is not shown in scientific papers due to space restrictions. The
examples are categorized along the different classes for dynamic systems realized in CORA.

All subsequent examples can handle uncertain inputs. Uncertain parameters can be realized
using different techniques:

1. Introduce constant parameters as additional states and assign the dynamics ẋi = 0 to
them. The disadvantage is that the dimension of the system is growing.

2. Introduce time-varying parameters as additional uncertain inputs.

3. Use specialized functions in CORA that can handle uncertain parameters.

48

12 EXAMPLES

It is generally advised to use the last technique, but there is no proof that this technique always
provides better results compared to the other techniques.

12.1 Continuous Dynamics

12.1.1 Linear Dynamics

For linear dynamics, a simple academic example from [5, Sec. 3.2.3] is used with not much focus
on a connection to a real system. However, since linear systems are solely determined by their
state and input matrix, adjusting this example to any other linear system is straightforward.
Here, the system dynamics is

ẋ =









−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2









x+ u(t), x(0) ∈









[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]
[0.9, 1.1]









, u(t) ∈









[0.9, 1.1]
[−0.25, 0.25]
[−0.1, 0.1]
[0.25, 0.75]

[−0.75,−0.25]









.

The MATLAB code that implements the simulation and reachability analysis of the linear
example is (the function is modified from the original file to better fit in this manual; line
numbers after the first line jump due to the removed function description):

1 function example_linear_reach_01_5dim()

31

32 dim=5;

33

34 %set options --

35 options.tStart=0; %start time

36 options.tFinal=5; %final time

37 options.x0=ones(dim,1); %initial state for simulation

38 options.R0=zonotope([options.x0,0.1*eye(length(options.x0))]); %initial set

39

40 options.timeStep=0.04; %time step size for reachable set computation

41 options.taylorTerms=4; %number of taylor terms for reachable sets

42 options.zonotopeOrder=200; %zonotope order

43 options.originContained=0;

44 options.reductionTechnique=’girard’;

45

46 uTrans=[1; 0; 0; 0.5; -0.5];

47 options.uTrans=uTrans; %center of uncertain inputs

48 options.U=0.5*zonotope([zeros(5,1),diag([0.2, 0.5, 0.2, 0.5, 0.5])]); %input set

49

50 options.path = [coraroot ’/contDynamics/stateSpaceModels’];

51 %--

52

53 %specify continuous dynamics---

54 A=[-1 -4 0 0 0; 4 -1 0 0 0; 0 0 -3 1 0; 0 0 -1 -3 0; 0 0 0 0 -2];

55 B=1;

56 fiveDimSys=linearSys(’fiveDimSys’,A,B); %initialize system

57 %--

58

59 %compute reachable set using zonotopes

60 tic

61 Rcont = reach(fiveDimSys, options);

62 tComp = toc;

63 disp([’computation time of reachable set: ’,num2str(tComp)]);

49

12 EXAMPLES

64

65 %create random simulations; RRTs would provide better results, but are

66 %computationally more demanding

67 runs = 60;

68 fracV = 0.5;

69 fracI = 0.5;

70 changes = 6;

71 simRes = simulate_random(fiveDimSys, options, runs, fracV, fracI, changes);

72

73 %plot results--

74 for plotRun=1:2

75 % plot different projections

76 if plotRun==1

77 dims=[1 2];

78 elseif plotRun==2

79 dims=[3 4];

80 end

81

82 figure;

83 hold on

84

85 %plot reachable sets

86 for i=1:length(Rcont)

87 plotFilled(Rcont{i},dims,[.8 .8 .8],’EdgeColor’,’none’);

88 end

89

90 %plot initial set

91 plot(options.R0,dims,’w-’,’lineWidth’,2);

92

93 %plot simulation results

94 for i=1:length(simRes.t)

95 plot(simRes.x{i}(:,dims(1)),simRes.x{i}(:,dims(2)),’Color’,0*[1 1 1]);

96 end

97

98 %abel plot

99 xlabel([’x_{’,num2str(dims(1)),’}’]);

100 ylabel([’x_{’,num2str(dims(2)),’}’]);

101 end

102 %--

The reachable set and the simulation are plotted in Fig. 28 for a time horizon of tf = 5.

12.1.2 Linear Dynamics with Uncertain Parameters

For linear dynamics with uncertain parameters, we use the transmission line example from [8,
Sec. 4.5.2], which can be modeled as an electric circuit with resistors, inductors, and capacitors.
The parameters of each component have uncertain values as described in [8, Sec. 4.5.2]. This
example shows how one can better take care of dependencies of parameters by using matrix
zonotopes instead of interval matrices.

The MATLAB code that implements the simulation and reachability analysis of the linear
example with uncertain parameters is (the function is modified from the original file to better fit
in this manual; line numbers after the first line jump due to the removed function description):

1 function example_linearParam_reach_01_rlc_const()

32

33 %init: get matrix zonotopes of the model

50

12 EXAMPLES

x
1

-1 0 1

x
2

-0.5

0

0.5

1

1.5

x
3

0 0.5 1

x
4

0

0.2

0.4

0.6

0.8

1

1.2

Figure 21: Illustration of the reachable set of the linear example. The white box shows the
initial set and the black lines show simulated trajectories.

34 [matZ_A,matZ_B] = initRLC_uTest();

35 matI_A = intervalMatrix(matZ_A);

36

37 %get dimension

38 dim=matZ_A.dim;

39

40 %compute initial set

41 %specify range of voltages

42 u0 = intervalMatrix(0,0.2);

43

44 %compute inverse of A

45 intA = intervalMatrix(matZ_A);

46 invAmid = inv(mid(intA.int));

47

48 %compute initial set

49 intB = intervalMatrix(matZ_B);

50 R0 = invAmid*intB*u0 + intervalMatrix(0,1e-3*ones(dim,1));

51

52 %convert initial set to zonotope

53 R0 = zonotope(interval(R0));

54

55 %initial set

56 options.x0=center(R0); %initial state for simulation

57 options.R0=R0; %initial state for reachability analysis

58

59 %inputs

60 u=intervalMatrix(1,0.01);

61 U = zonotope(interval(intB*u));

62 options.uTrans=center(U);

63 options.U=U+(-options.uTrans); %input for reachability analysis

64

65 %other

66 options.tStart=0; %start time

67 options.tFinal=0.7; %final time

68 options.intermediateOrder = 2;

69 options.originContained = 0;

70 options.timeStep = 0.002;

71 options.eAt = expm(matZ_A.center*options.timeStep);

51

12 EXAMPLES

72

73 options.zonotopeOrder=400; %zonotope order

74 options.polytopeOrder=3; %polytope order

75 options.taylorTerms=6;

76

77 %time step

78 r = options.timeStep;

79 maxOrder=options.taylorTerms;

80

81 %instantiate linear dynamics with constant parameters

82 linSys = linParamSys(matZ_A, eye(dim), r, maxOrder);

83 linSys2 = linParamSys(matI_A, eye(dim), r, maxOrder);

84

85 %reachable set computations

86 tic

87 Rcont = reach(linSys, options);

88 tComp = toc;

89 disp([’computation time of reachable set using matrix zonotopes: ’,num2str(tComp)]);

90

91 tic

92 Rcont2 = reach(linSys2, options);

93 tComp = toc;

94 disp([’computation time of reachable set using interval matrices: ’,num2str(tComp)]);

95

96 %create random simulations; RRTs would provide better results, but are

97 %computationally more demanding

98 runs = 60;

99 fracV = 0.5;

100 fracI = 0.5;

101 changes = 6;

102 simRes = simulate_random(linSys2, options, runs, fracV, fracI, changes);

103

104 %plot results--

105 for plotRun=1:2

106 % plot different projections

107 if plotRun==1

108 dims=[1 21];

109 else

110 dims=[20 40];

111 end

112

113 figure;

114 hold on

115

116 %plot reachable sets

117 for i=1:length(Rcont2)

118 Zproj = project(Rcont2{i},dims);

119 Zproj = reduce(Zproj,’girard’,3);

120 plotFilled(Zproj,[1 2],[.675 .675 .675],’EdgeColor’,’none’);

121 end

122

123 for i=1:length(Rcont)

124 Zproj = project(Rcont{i},dims);

125 Zproj = reduce(Zproj,’girard’,3);

126 plotFilled(Zproj,[1 2],[.75 .75 .75],’EdgeColor’,’none’);

127 end

128

129 %plot initial set

52

12 EXAMPLES

130 plotFilled(options.R0,dims,’w’,’EdgeColor’,’k’);

131

132 %plot simulation results

133 for i=1:length(simRes.t)

134 plot(simRes.x{i}(:,dims(1)),simRes.x{i}(:,dims(2)),’Color’,0*[1 1 1]);

135 end

136

137 %abel plot

138 xlabel([’x_{’,num2str(dims(1)),’}’]);

139 ylabel([’x_{’,num2str(dims(2)),’}’]);

140 end

141

142 %plot results over time

143

144 figure;

145 hold on

146

147 %plot time elapse

148 for i=1:length(Rcont2)

149 %get Uout

150 Uout1 = interval(project(Rcont{i},0.5*dim));

151 Uout2 = interval(project(Rcont2{i},0.5*dim));

152 %obtain times

153 t1 = (i-1)*options.timeStep;

154 t2 = i*options.timeStep;

155 %generate plot areas as interval hulls

156 IH1 = interval([t1; infimum(Uout1)], [t2; supremum(Uout1)]);

157 IH2 = interval([t1; infimum(Uout2)], [t2; supremum(Uout2)]);

158

159 plotFilled(IH2,[1 2],[.675 .675 .675],’EdgeColor’,’none’);

160 plotFilled(IH1,[1 2],[.75 .75 .75],’EdgeColor’,’none’);

161 end

162

163 %plot simulation results

164 for i=1:(length(simRes.t))

165 plot(simRes.t{i},simRes.x{i}(:,0.5*dim),’Color’,0*[1 1 1]);

166 end

167

168 %--

The reachable set and the simulation are plotted in Fig. 22 for a time horizon of tf = 0.7. The
plot showing the reachable set of the state x20 over time is shown in Fig. 23.

12.1.3 Nonlinear Dynamics

For nonlinear dynamics, several examples are presented.

Tank System The first example is the tank system from [20] where water flows from one tank
into another one. This example can be used to study the effect of water power plants on the
water level of rivers. This example can be easy extended by several tanks and thus is a nice
benchmark example to study the scalability of algorithms for reachability analysis. CORA can
compute the reachable set with at least 100 tanks.

The MATLAB code that implements the simulation and reachability analysis of the tank exam-
ple is (the function is modified from the original file to better fit in this manual; line numbers

53

12 EXAMPLES

x
1

0 1 2

x
21

-0.06

-0.04

-0.02

0

0.02

x
20

0 1 2

x
40

-0.05

0

0.05

Figure 22: Illustration of the reachable set of the transmission example. The light gray shows
the reachable set using matrix zonotopes and the dark gray shows the results using interval
matrices. A white box shows the initial set and the black lines are simulated trajectories.

time t
0 0.2 0.4 0.6

x
20

-0.5

0

0.5

1

1.5

2

Figure 23: Illustration of the reachable set of the transmission example over time. The light
gray shows the reachable set using matrix zonotopes and the dark gray shows the results using
interval matrices. Black lines show simulated trajectories.

after the first line jump due to the removed function description):

1 function example_nonlinear_reach_01_tank

37

38 dim=6;

39

40 %set options --

41 options.tStart=0; %start time

42 options.tFinal=400; %final time

43 options.x0=[2; 4; 4; 2; 10; 4]; %initial state for simulation

44 options.R0=zonotope([options.x0,0.2*eye(dim)]); %initial set

45

46 options.timeStep=4; %time step size for reachable set computation

47 options.taylorTerms=4; %number of taylor terms for reachable sets

48 options.zonotopeOrder=50; %zonotope order

49 options.intermediateOrder=5;

50 options.reductionTechnique=’girard’;

54

12 EXAMPLES

51 options.errorOrder=1;

52 options.polytopeOrder=2; %polytope order

53 options.reductionInterval=1e3;

54 options.maxError = 1*ones(dim,1);

55

56 options.plotType=’frame’;

57 options.dims=[1 2];

58

59 options.originContained = 0;

60 options.advancedLinErrorComp = 0;

61 options.tensorOrder = 2;

62

63 options.path = [coraroot ’/contDynamics/stateSpaceModels’];

64 %--

65

66

67 %obtain uncertain inputs

68 options.uTrans = 0;

69 options.U = zonotope([0,0.005]); %input for reachability analysis

70

71 %specify continuous dynamics---

72 tank = nonlinearSys(6,1,@tank6Eq,options); %initialize tank system

73 %--

74

75

76 %compute reachable set using zonotopes

77 tic

78 Rcont = reach(tank, options);

79 tComp = toc;

80 disp([’computation time of reachable set: ’,num2str(tComp)]);

81

82 %create random simulations; RRTs would provide better results, but are

83 %computationally more demanding

84 runs = 60;

85 fracV = 0.5;

86 fracI = 0.5;

87 changes = 6;

88 simRes = simulate_random(tank, options, runs, fracV, fracI, changes);

89

90 %plot results--

91 for plotRun=1:3

92 % plot different projections

93 if plotRun==1

94 dims=[1 2];

95 elseif plotRun==2

96 dims=[3 4];

97 elseif plotRun==3

98 dims=[5 6];

99 end

100

101 figure;

102 hold on

103

104 %plot reachable sets

105 for i=1:length(Rcont)

106 plotFilled(Rcont{i}{1},dims,[.8 .8 .8],’EdgeColor’,’none’);

107 end

108

55

12 EXAMPLES

109 %plot initial set

110 plotFilled(options.R0,dims,’w’,’EdgeColor’,’k’);

111

112 %plot simulation results

113 for i=1:length(simRes.t)

114 plot(simRes.x{i}(:,dims(1)),simRes.x{i}(:,dims(2)),’Color’,0*[1 1 1]);

115 end

116

117 %label plot

118 xlabel([’x_{’,num2str(dims(1)),’}’]);

119 ylabel([’x_{’,num2str(dims(2)),’}’]);

120 end

121 %--

The difference to specifying a linear systems is that a link to a nonlinear differential equation
has to be provided, rather than the system matrix A and the input matrix B. The nonlinear
system model ẋ = f(x, u), where x is the state and u is the input, is shown below:

1 function dx = tank6Eq(t,x,u)

2

3 %parameters

4 k = 0.015;

5 k2 = 0.01;

6 g = 9.81;

7

8 %differential equations

9 dx(1,1)=u(1)+0.1+k2*(4-x(6))-k*sqrt(2*g)*sqrt(x(1)); %tank 1

10 dx(2,1)=k*sqrt(2*g)*(sqrt(x(1))-sqrt(x(2))); %tank 2

11 dx(3,1)=k*sqrt(2*g)*(sqrt(x(2))-sqrt(x(3))); %tank 3

12 dx(4,1)=k*sqrt(2*g)*(sqrt(x(3))-sqrt(x(4))); %tank 4

13 dx(5,1)=k*sqrt(2*g)*(sqrt(x(4))-sqrt(x(5))); %tank 5

14 dx(6,1)=k*sqrt(2*g)*(sqrt(x(5))-sqrt(x(6))); %tank 6

The output of this function is ẋ for a given time t, state x, and input u.

Fig. 28 shows the reachable set and the simulation for a time horizon of tf = 0.7.

x
1

1 2 3 4

x
2

1

1.5

2

2.5

3

3.5

4

4.5

x
3

2 3 4

x
4

2

2.5

3

x
5

0 5 10

x
6

2

3

4

5

6

Figure 24: Illustration of the reachable set of the linear example. The white box shows the
initial set and the black lines show simulated trajectories.

Van der Pol Oscillator The Van der Pol oscillator is a standard example for limit cycles.
By using reachability analysis one can show that one always returns to the initial set so that the

56

12 EXAMPLES

obtained set is an invariant set. This example is used in [20] to demonstrate that one can obtain
a solution even if the linearization error becomes too large by splitting the reachable set. Later,
in [10] an improved method is presented that requires less splitting. This example demonstrates
the capabilities of the simpler approach presented in [20]. Due to the similarity of the MATLAB
code compared to the previous tank example, we only present the reachable set in Fig. 25.

x
1

-3 -2 -1 0 1 2 3

x
2

-3

-2

-1

0

1

2

3

Figure 25: Illustration of the reachable set of the Van der Pol oscillator. The white box shows
the initial set and the black lines show simulated trajectories.

Seven-Dimensional Example for Non-Convex Set Representation This academic ex-
ample is used to demonstrate the benefits of using higher-order abstractions of nonlinear systems
compared to linear abstractions. However, since higher order abstractions do not preserve con-
vexity when propagating reachable sets, the non-convex set representation polynomial zonotope

is used as presented in [10]. Please note that the entire reachable set for the complete time
horizon is typically non-convex, even when the propagation from one point in time to another
point in time is convex. Due to the similarity of the MATLAB code compared to the previous
tank example, we only present the reachable set in Fig. 26.

x
1

0.5 1 1.5 2

x
2

0

0.5

1

1.5

x
3

0 1 2

x
4

1

2

3

4

5

6

x
5

0 0.5 1

x
6

-0.2

0

0.2

0.4

Figure 26: Illustration of the reachable set of the seven-dimensional example for non-convex
set representation. The white box shows the initial set and the black lines show simulated
trajectories.

57

12 EXAMPLES

Autonomous Car Following a Reference Trajectory This example presents the reachable
set of an automated vehicle developed at the German Aerospace Center. The difference of this
example compared to the previous example is that a reference trajectory is followed. Similar
models have been used in previous publications, see e.g. [17,25,26]. In CORA, this only requires
to change the input in options.uTrans from a vector to a matrix, where each column vector is
the reference value at the next sampled point in time. Due to the similarity of the MATLAB
code compared to the previous tank example, we only present the reachable set in Fig. 27, where
the reference trajectory is plotted in red.

x
1

0 20 40 60 80

x
2

-1

0

1

2

3

x
3

-0.2 0 0.2

x
4

14

16

18

20

22

Figure 27: Illustration of the reachable set of the seven-dimensional example for non-convex
set representation. The white box shows the initial set and the black lines show simulated
trajectories.

12.1.4 Nonlinear Dynamics with Uncertain Parameters

As for linear systems, specialized algorithms have been developed for considering uncertain
parameters of nonlinear systems. To better compare the results, we use again the tank system
of which we now the reachable set from a previous example. The plots show not only the case
with uncertain parameters, but also the one without uncertain parameters.

The MATLAB code that implements the simulation and reachability analysis of the nonlinear
example with uncertain parameters is (the function is modified from the original file to better fit
in this manual; line numbers after the first line jump due to the removed function description):

1 function example_nonlinearParam_reach_01_tank()

37

38 dim=6;

39

40 %set options --

41 options.tStart=0; %start time

42 options.tFinal=400; %final time

43 options.x0=[2; 4; 4; 2; 10; 4]; %initial state for simulation

44 options.R0=zonotope([options.x0,0.2*eye(dim)]); %initial set

45 options.timeStep=4;

46 options.taylorTerms=4; %number of taylor terms for reachable sets

47 options.intermediateOrder = options.taylorTerms;

48 options.zonotopeOrder=10; %zonotope order

49 options.reductionTechnique=’girard’;

50 options.maxError = 1*ones(dim,1);

58

12 EXAMPLES

51 options.reductionInterval=1e3;

52 options.tensorOrder = 1;

53

54 options.advancedLinErrorComp = 0;

55

56 options.u=0; %input for simulation

57 options.U=zonotope([0,0.005]); %input for reachability analysis

58 options.uTrans=0;

59

60 options.p=0.015; %parameter values for simulation

61 options.paramInt=interval(0.0148,0.015); %parameter intervals

62 %--

63

64 %--

65

66 %specify continuous dynamics with and without uncertain parameters---------

67 tankParam = nonlinParamSys(6,1,1,@tank6paramEq,options.maxError,options);

68 tank = nonlinearSys(6,1,@tank6Eq,options);

69 %--

70

71 %compute reachable set of tank system with and without uncertain parameters

72 tic

73 RcontParam = reach(tankParam,options); %with uncertain parameters

74 tComp = toc;

75 disp([’time of reachable set with uncertain parameters: ’,num2str(tComp)]);

76 tic

77 RcontNoParam = reach(tank, options); %without uncertain parameters

78 tComp = toc;

79 disp([’time of reachable set without uncertain parameters: ’,num2str(tComp)]);

80

81 %create random simulations; RRTs would provide better results, but are

82 %computationally more demanding

83 runs = 60;

84 fracV = 0.5;

85 fracI = 0.5;

86 changes = 6;

87 simRes = simulate_random(tank, options, runs, fracV, fracI, changes);

88

89

90 %plot results--

91 plotOrder = 8;

92 for plotRun=1:3

93 % plot different projections

94 if plotRun==1

95 dims=[1 2];

96 elseif plotRun==2

97 dims=[3 4];

98 elseif plotRun==3

99 dims=[5 6];

100 end

101

102 figure;

103 hold on

104

105 %plot reachable sets of zonotope; uncertain parameters

106 for i=1:length(RcontParam)

107 for j=1:length(RcontParam{i})

108 Zproj = reduce(RcontParam{i}{j},’girard’,plotOrder);

59

12 EXAMPLES

109 plotFilled(Zproj,dims,[.675 .675 .675],’EdgeColor’,’none’);

110 end

111 end

112

113 %plot reachable sets of zonotope; without uncertain parameters

114 for i=1:length(RcontNoParam)

115 for j=1:length(RcontNoParam{i})

116 Zproj = reduce(RcontNoParam{i}{j},’girard’,plotOrder);

117 plotFilled(Zproj,dims,’w’,’EdgeColor’,’k’);

118 end

119 end

120

121 %plot initial set

122 plotFilled(options.R0,dims,’w’,’EdgeColor’,’k’);

123

124

125 %plot simulation results

126 for i=1:length(simRes.x)

127 plot(simRes.x{i}(:,dims(1)),simRes.x{i}(:,dims(2)),’k’);

128 end

129

130 %label plot

131 xlabel([’x_{’,num2str(dims(1)),’}’]);

132 ylabel([’x_{’,num2str(dims(2)),’}’]);

133 end

134 %--

The reachable set and the simulation are plotted in Fig. 28 for a time horizon of tf = 0.7.

x
1

1 2 3 4

x
2

1

1.5

2

2.5

3

3.5

4

4.5

x
3

2 3 4

x
4

1.5

2

2.5

3

3.5

x
5

0 5 10

x
6

2

3

4

5

6

Figure 28: Illustration of the reachable set of the linear example. The gray region shows the
reachable set with uncertain parameters, while the white area shows the reachable set without
uncertain parameters. Another white box shows the initial set and the black lines show simulated
trajectories.

12.1.5 Nonlinear Differential-Algebraic Systems

CORA is also capable of computing reachable sets for semi-explicit, index-1 differential-algebraic
equations. Although many index-1 differential-algebraic equations can be transformed into an
ordinary differential equation, this is not always possible. For instance, power systems cannot be
simplified due to Kirchhoff’s law which constraints the currents of a node to sum up to zero. The

60

12 EXAMPLES

capabilities of computing reachable sets are demonstrated for a small power system consisting
of three buses. More complicated examples can be found in [6, 27,28].

The MATLAB code that implements the simulation and reachability analysis of the nonlinear
example with uncertain parameters is (the function is modified from the original file to better fit
in this manual; line numbers after the first line jump due to the removed function description):

1 function example_nonlinearDA_reach_01_powerSystem_3bus()

26

27 %set path

28 options.path = [coraroot ’/contDynamics/stateSpaceModels’];

29 options.tensorOrder = 1;

30

31 %specify continuous dynamics---

32 powerDyn = nonlinDASys(2,6,2,@bus3Dyn,@bus3Con,options);

33 %--

34

35 %set options --

36 options.tStart = 0; %start time

37 options.tFinal = 5; %final time

38 options.x0 = [380; 0.7]; %initial state

39 options.y0guess = [ones(0.5*powerDyn.nrOfConstraints, 1);

zeros(0.5*powerDyn.nrOfConstraints, 1)];

40 options.R0 = zonotope([options.x0,diag([0.1, 0.01])]); %initial set

41 options.uTrans = [1; 0.4];

42 options.U = zonotope([zeros(2,1),diag([0, 0.1*options.uTrans(2)])]);

43

44 %options.timeStep=0.01; %time step size for reachable set computation

45 options.timeStep=0.05; %time step size for reachable set computation

46 options.taylorTerms=6; %number of taylor terms for reachable sets

47 options.zonotopeOrder=200; %zonotope order

48 options.errorOrder=1.5;

49 options.polytopeOrder=2; %polytope order

50 options.reductionTechnique=’girard’;

51

52 options.originContained = 0;

53 options.reductionInterval = 1e5;

54 options.advancedLinErrorComp = 0;

55

56 options.maxError = [0.5; 0];

57 options.maxError_x = options.maxError;

58 options.maxError_y = 0.005*[1; 1; 1; 1; 1; 1];

59 %--

60

61 %compute reachable set

62 tic

63 Rcont = reach(powerDyn, options);

64 tComp = toc;

65 disp([’computation time of reachable set: ’,num2str(tComp)]);

66

67 %create random simulations; RRTs would provide better results, but are

68 %computationally more demanding

69 runs = 60;

70 fracV = 0.5;

71 fracI = 0.5;

72 changes = 6;

73 simRes = simulate_random(powerDyn, options, runs, fracV, fracI, changes);

74

75 %plot results--

61

12 EXAMPLES

76 dims=[1 2];

77

78 figure;

79 hold on

80

81 %plot reachable sets

82 for i=1:length(Rcont)

83 for j=1:length(Rcont{1})

84 Zproj = project(Rcont{i}{j},dims);

85 Zproj = reduce(Zproj,’girard’,3);

86 plotFilled(Zproj,[1 2],[.75 .75 .75],’EdgeColor’,’none’);

87 end

88 end

89

90 %plot initial set

91 plotFilled(options.R0,dims,’w’,’EdgeColor’,’k’);

92

93 %plot simulation results

94 for i=1:length(simRes.t)

95 plot(simRes.x{i}(:,dims(1)),simRes.x{i}(:,dims(2)),’Color’,0*[1 1 1]);

96 end

97

98 %label plot

99 xlabel([’x_{’,num2str(dims(1)),’}’]);

100 ylabel([’x_{’,num2str(dims(2)),’}’]);

101 %--

The reachable set and the simulation are plotted in Fig. 29 for a time horizon of tf = 5.

x
1

379 380 381 382

x
2

0.7

0.75

0.8

Figure 29: Illustration of the reachable set of nonlinear differential-algebraic example. The white
box shows the initial set and the black lines show simulated trajectories.

12.2 Hybrid Dynamics

As already described in Sec. 8, CORA can compute reachable sets of mixed discrete/continuous
or so-called hybrid systems. The difficulty in computing reachable set of hybrid systems is
the intersection of reachable sets with guard sets and the subsequent enclosure by the used
set representation. Two major methods are demonstrated by the bouncing ball example and
a powertrain example: geometric-based guard intersection for the bouncing ball example and

62

12 EXAMPLES

mapping-based guard intersection for the powertrain example. The geometric-based approach
is the dominant method in the literature (see e.g. [23,29–34]), but the mapping-based approach
has shown great scalability for some examples [24]. Determining advantages and disadvantages
of both methods require further research.

12.2.1 Bouncing Ball Example

We demonstrate the syntax of CORA for the well-known bouncing ball example, see e.g. [35,
Section 2.2.3]. Given is a ball in Fig. 30 with dynamics s̈ = −g, where s is the vertical position
and g is the gravity constant. After impact with the ground at s = 0, the velocity changes
to v′ = −αv (v = ṡ) with α ∈ [0, 1]. The corresponding hybrid automaton can be formalized
according to Sec. 8 as

s0

v0

g

Figure 30: Bouncing ball.

V = {v1}
X = R+ × R (ball is above ground)
U = Yc = {}
T = {(z1, z1)}
inv(z1) = {[x1, x2]

T |x1 ∈ R+
0 , x2 ∈ R}

g
(
(z1, z1)

)
= {[x1, x2]

T |x1 = 0, x2 ∈ R−
0 }

h
(
(z1, z1), x

)
=

[
x1

−αx2

]

f(z1, x) =

[
x2
−g

]

The MATLAB code that implements the simulation and reachability analysis of the bouncing
ball example is (the function is modified from the original file to better fit in this manual; line
numbers after the first line jump due to the removed function description):

1 function example_hybrid_reach_01_bouncingBall

28

29 %set options---

30 options.x0 = [1; 0]; %initial state

31 options.R0 = zonotope([options.x0, diag([0.05, 0.05])]); %initial set

32 options.startLoc = 1; %initial location

33 options.finalLoc = 0; %0: no final location

34 options.tStart = 0; %start time

35 options.tFinal = 1.7; %final time

36 options.timeStepLoc{1} = 0.05; %time step size

37 options.taylorTerms = 10;

38 options.zonotopeOrder = 20;

39 options.polytopeOrder = 10;

40 options.errorOrder=2;

41 options.reductionTechnique = ’girard’;

42 options.isHyperplaneMap = 0;

43 options.enclosureEnables = 5; %choose enclosure method(s)

44 options.originContained = 0;

45 %--

46

47

63

12 EXAMPLES

48 %specify hybrid automaton--

49 %specify linear system of bouncing ball

50 A = [0 1; 0 0];

51 B = eye(2); % no loss of generality to specify B as the identity matrix

52 linSys = linearSys(’linearSys’,A,B);

53

54 %define large and small distance

55 dist = 1e3;

56 eps = 1e-6;

57 alpha = -0.75; %rebound factor

58

59 %invariant

60 inv = interval([-2*eps; -dist], [dist; dist]);

61 %guard sets

62 guard = interval([-eps; -dist], [0; -eps]);

63 %resets

64 reset.A = [0, 0; 0, alpha]; reset.b = zeros(2,1);

65 %transitions

66 trans{1} = transition(guard,reset,1,’a’,’b’); %--> next loc: 1

67 %specify location

68 loc{1} = location(’loc1’,1,inv,trans,linSys);

69 %specify hybrid automata

70 HA = hybridAutomaton(loc); % for "geometric intersection"

71 %--

72

73 %set input:

74 options.uLoc{1} = [0; -9.81]; %input for simulation

75 options.uLocTrans{1} = options.uLoc{1}; %input center

76 options.Uloc{1} = zonotope(zeros(2,1)); %input deviation

77

78 %simulate hybrid automaton

79 HA = simulate(HA,options);

80

81 %compute reachable set

82 [HA] = reach(HA,options);

83

84 %choose projection and plot--

85 figure

86 hold on

87 options.projectedDimensions = [1 2];

88 options.plotType = ’b’;

89 plot(HA,’reachableSet’,options); %plot reachable set

90 plotFilled(options.R0,options.projectedDimensions,’w’,’EdgeColor’,’k’);

91 plot(HA,’simulation’,options); %plot simulation

92 axis([0,1.2,-6,4]);

93 %--

The reachable set and the simulation are plotted in Fig. 32 for a time horizon of tf = 5.

12.2.2 Powertrain Example

The powertrain example is taken out of [24, Sec. 6], which models the powertrain of a car with
backlash. To investigate the scalability of the approach, one can add further rotating masses,
similarly to adding further tanks for the tank example. Since the code of the powertrain example
is rather length, we are not presenting it in the manual, but the interested reader can look it up
in the example folder of the CORA code. The reachable set and the simulation are plotted in

64

13 CONCLUSIONS

0 0.2 0.4 0.6 0.8 1 1.2

−1.5

−1

−0.5

0

0.5

1

x1

x
2

initial set

simulated trajectory

reachable set

Figure 31: Illustration of the reachable set of the bouncing ball. The black box shows the initial
set and the black line shows the simulated trajectory.

Fig. 32 for a time horizon of tf = 2.

x
1

-0.1 0 0.1

x
2

-40

-20

0

20

40

60

80

100

guard

x
1

-0.1 0 0.1

x
3

0

20

40

60

80 guard

Figure 32: Illustration of the reachable set of the bouncing ball. The black box shows the initial
set and the black line shows the simulated trajectory.

13 Conclusions

CORA is a toolbox for the implementation of prototype reachability analysis algorithms in
MATLAB. The software is modular and is organized into four main categories: vector set
representations, matrix set representations, continuous dynamics, and hybrid dynamics. CORA
includes novel algorithms for reachability analysis of nonlinear systems and hybrid systems with
a special focus on scalability; for instance, a power network with more than 50 continuous state
variables has been verified in [28]. The efficiency of the algorithms used means it is even possible
to verify problems online, i.e. while they are in operation [26].

One particularly useful feature of CORA is its adaptability: the algorithms can be tailored to
the reachability analysis problem in question. Forthcoming integration into SpaceEx, which has
a user interface and a model editor, should go some way towards making CORA more accessible
to non-experts.

65

B LICENSING

Acknowledgment

The author gratefully acknowledges financial support by the European Commission project
UnCoVerCPS under grant number 643921.

A Migrating the intervalhull Class into the interval Class

This table should help automatically renaming old functions to make own code compatible with
CORA 2016. Details on the functionality of each method can be found in Sec. 5.6.

old command new command

abs [-1,1]supremum(abs)
and and

bloat enlarge

center mid

display display

edgeLength 2*rad

enclose hull

eventFcn −
get −
gridPoints gridPoints

halfspace −
in isIntersecting

infimum infimum

isempty isempty

le le

lt lt

mptPolytope −
mtimes mtimes

or hull

plot plot

plus plus

polytope polytope

radius enclosingRadius

rdivide rdivide

relativeGridPoints −
subsref subsref (different semantics)
supremum supremum

vertices vertices

volume volume

zonotope zonotope

B Licensing

CORA is released under the GPLv3.

66

http://www.gnu.org/licenses/gpl.txt

REFERENCES

C Disclaimer

The toolbox is primarily for research. We do not guarantee that the code is bug-free.

One needs expert knowledge to obtain optimal results. This tool is prototypical and not all
parameters for reachability analysis are automatically set. Not all functions that exist in the
software package are explained. Reasons could be that they are experimental or designed for
special applications that are addressing a limited audience.

If you have questions or suggestions, please contact us through http://www6.in.tum.de/.

D Contributors

The following people have contributed so far (alphabetical order of last name):

• Matthias Althoff

• Victor Charlent

• Dmitry Grebenyuk

• Daniel Heß

References

[1] M. Althoff and D. Grebenyuk, “Implementation of interval arithmetic in cora 2016,” in Proc. of the

3rd International Workshop on Applied veRification for Continuous and Hybrid Systems, 2016.

[2] G. Lafferriere, G. J. Pappas, and S. Yovine, “Symbolic reachability computation for families of linear
vector fields,” Symbolic Computation, vol. 32, pp. 231–253, 2001.

[3] M. Althoff, “An introduction to CORA 2015,” in Proc. of the Workshop on Applied Verification for

Continuous and Hybrid Systems, 2015, pp. 120–151.

[4] A. Girard, “Reachability of uncertain linear systems using zonotopes,” in Hybrid Systems: Compu-

tation and Control, ser. LNCS 3414. Springer, 2005, pp. 291–305.

[5] M. Althoff, “Reachability analysis and its application to the safety assessment of
autonomous cars,” Dissertation, Technische Universität München, 2010, http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20100715-963752-1-4.

[6] M. Althoff and B. H. Krogh, “Reachability analysis of nonlinear differential-algebraic systems,”
IEEE Transactions on Automatic Control, vol. 59, no. 2, pp. 371–383, 2014.

[7] E. Gover and N. Krikorian, “Determinants and the volumes of parallelotopes and zonotopes,” Linear

Algebra and its Applications, vol. 433, no. 1, pp. 28–40, 2010.

[8] M. Althoff, B. H. Krogh, and O. Stursberg, Modeling, Design, and Simulation of Systems with Un-

certainties. Springer, 2011, ch. Analyzing Reachability of Linear Dynamic Systems with Parametric
Uncertainties, pp. 69–94.

[9] M. Althoff and B. H. Krogh, “Zonotope bundles for the efficient computation of reachable sets,” in
Proc. of the 50th IEEE Conference on Decision and Control, 2011, pp. 6814–6821.

[10] M. Althoff, “Reachability analysis of nonlinear systems using conservative polynomialization and
non-convex sets,” in Hybrid Systems: Computation and Control, 2013, pp. 173–182.

[11] J. Hoefkens, M. Berz, and K. Makino, Scientific Computing, Validated Numerics, Interval Methods.
Springer, 2001, ch. Verified High-Order Integration of DAEs and Higher-Order ODEs, pp. 281–292.

67

http://www6.in.tum.de/

REFERENCES

[12] M. Althoff, O. Stursberg, and M. Buss, “Safety assessment for stochastic linear systems using en-
closing hulls of probability density functions,” in Proc. of the European Control Conference, 2009,
pp. 625–630.

[13] D. Berleant, “Automatically verified reasoning with both intervals and probability density functions,”
Interval Computations, vol. 2, pp. 48–70, 1993.

[14] G. M. Ziegler, Lectures on Polytopes, ser. Graduate Texts in Mathematics. Springer, 1995.

[15] V. Kaibel and M. E. Pfetsch, Algebra, Geometry and Software Systems. Springer, 2003, ch. Some
Algorithmic Problems in Polytope Theory, pp. 23–47.

[16] O. Stursberg and B. H. Krogh, “Efficient representation and computation of reachable sets for
hybrid systems,” in Hybrid Systems: Computation and Control, ser. LNCS 2623. Springer, 2003,
pp. 482–497.

[17] M. Althoff and J. M. Dolan, “Reachability computation of low-order models for the safety verification
of high-order road vehicle models,” in Proc. of the American Control Conference, 2012, pp. 3559–
3566.

[18] M. Althoff, C. Le Guernic, and B. H. Krogh, “Reachable set computation for uncertain time-varying
linear systems,” in Hybrid Systems: Computation and Control, 2011, pp. 93–102.

[19] C. W. Gardiner, Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences,
H. Haken, Ed. Springer, 1983.

[20] M. Althoff, O. Stursberg, and M. Buss, “Reachability analysis of nonlinear systems with uncertain
parameters using conservative linearization,” in Proc. of the 47th IEEE Conference on Decision and

Control, 2008, pp. 4042–4048.

[21] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equations and

Differential-Algebraic Equations. SIAM: Society for Industrial and Applied Mathematics, 1998.

[22] K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial Value Problems in

Differential-Algebraic Equations. North-Holland, 1989.

[23] M. Althoff, O. Stursberg, and M. Buss, “Computing reachable sets of hybrid systems using a combi-
nation of zonotopes and polytopes,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 2, pp. 233–249,
2010.

[24] M. Althoff and B. H. Krogh, “Avoiding geometric intersection operations in reachability analysis of
hybrid systems,” in Hybrid Systems: Computation and Control, 2012, pp. 45–54.

[25] M. Althoff and J. M. Dolan, “Set-based computation of vehicle behaviors for the online verification of
autonomous vehicles,” in Proc. of the 14th IEEE Conference on Intelligent Transportation Systems,
2011, pp. 1162–1167.

[26] ——, “Online verification of automated road vehicles using reachability analysis,” IEEE Transactions

on Robotics, vol. 30, no. 4, pp. 903–918, 2014.

[27] M. Althoff, M. Cvetković, and M. Ilić, “Transient stability analysis by reachable set computation,”
in Proc. of the IEEE PES Conference on Innovative Smart Grid Technologies Europe, 2012.

[28] M. Althoff, “Formal and compositional analysis of power systems using reachable sets,” IEEE Trans-

actions on Power Systems, vol. 29, no. 5, pp. 2270–2280, 2014.

[29] A. Girard and C. Le Guernic, “Zonotope/hyperplane intersection for hybrid systems reachability
analysis,” in Proc. of Hybrid Systems: Computation and Control, ser. LNCS 4981. Springer, 2008,
pp. 215–228.

[30] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past HyTech,” International Journal

on Software Tools for Technology Transfer, vol. 10, pp. 263–279, 2008.

[31] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler, “SpaceEx: Scalable verification of hybrid systems,” in Proc. of the 23rd International

Conference on Computer Aided Verification, ser. LNCS 6806. Springer, 2011, pp. 379–395.

68

REFERENCES

[32] N. Ramdani and N. S. Nedialkov, “Computing reachable sets for uncertain nonlinear hybrid systems
using interval constraint-propagation techniques,” Nonlinear Analysis: Hybrid Systems, vol. 5, no. 2,
pp. 149–162, 2010.

[33] G. Frehse and R. Ray, “Flowpipe-guard intersection for reachability computations with support
functions,” in Proc. of Analysis and Design of Hybrid Systems, 2012, pp. 94–101.

[34] X. Chen, “Reachability analysis of non-linear hybrid systems using taylor models,” Ph.D. disserta-
tion, RWTH Aachen University, 2015.

[35] A. van der Schaft and H. Schumacher, An Introduction to Hybrid Dynamical Systems. Springer,
2000.

69

	What's new compared to CORA 2015?
	Philosophy and Architecture
	Installation
	Architecture
	Set Representations and Operations
	Zonotopes
	Method mtimes
	Method plus
	Method reduce
	Method split
	Zonotope Example

	Zonotope Bundles
	Zonotope Bundle Example

	Polynomial Zonotopes
	Method reduce
	Polynomial Zonotope Example

	Probabilistic Zonotopes
	Probabilistic Zonotope Example

	MPT Polytopes
	MPT Polytope Example

	Intervals
	Interval Example

	Vertices
	Vertices Example

	Plotting of Sets

	Matrix Set Representations and Operations
	Matrix Polytopes
	Matrix Polytope Example

	Matrix Zonotopes
	Matrix Zonotope Example

	Interval Matrices
	Interval Matrix Example

	Continuous Dynamics
	Linear Systems
	Method initReach

	Linear Systems with Uncertain Fixed Parameters
	Method initReach

	Linear Systems with Uncertain Varying Parameters
	Linear Probabilistic Systems
	Method initReach

	Nonlinear Systems
	Method initReach

	Nonlinear Systems with Uncertain Fixed Parameters
	Nonlinear Differential-Algebraic Systems

	Hybrid Dynamics
	Simulation of Hybrid Automata
	Hybrid Automaton
	Location
	Transition

	State Space Partitioning
	Options for Reachability Analysis
	Unit Tests
	Examples
	Continuous Dynamics
	Linear Dynamics
	Linear Dynamics with Uncertain Parameters
	Nonlinear Dynamics
	Nonlinear Dynamics with Uncertain Parameters
	Nonlinear Differential-Algebraic Systems

	Hybrid Dynamics
	Bouncing Ball Example
	Powertrain Example

	Conclusions
	Migrating the intervalhull Class into the interval Class
	Licensing
	Disclaimer
	Contributors

