Technische Universitat Minchen
o . .
(M| Faculty of Informatics (D)

Robotics and Embedded Systems

http://www6.in.tum.de May 26, 2010
Lab Course: Human Robot Interaction Sheet 5
Manuel Giuliani, Thomas Mduller, Prof. Alois Knoll giuliani@in.tum.de, muelleth@in.tum.de

Submission Deadline: June 09, 2010

Exercise 7

Until now, we only used modules that had direct Ice connections. However, in JAST we are using
the publish/subscribe service by Ice, which is called lceStorm. With this, all JAST input modules
(object recognition, speech recognition, ...) send messages to defined topics via a topic manager
and other modules can subscribe for these topics at the topic manager to retrieve the messages by
the input modules. Chapter 44 of the Ice user manual gives an introduction to lceStorm.

In order that you can integrate your code into the JAST system at the end of the course, we
are giving you a runtime environment, which you have to setup on your computer. The runtime
environment already contains a dummy robot server and a simulated speech recognition.

Runtime Environment Installation

To install the runtime environment, please follow these steps (copied from README.txt that’s also
part of the runtime environment package):

1. Download the runtime environment from
http://www6.in.tum.de/pub/Main/TeachingSs2010LabCourseHRI/hri-lab-course-runtime.zip

2. Make sure the following tools are installed:

- Ice 3.2.1 (http://www.zeroc.com/), we can only give support for this older
version of Ice, since JAST runs with this version. We made the experience that
you can install different Ice versions in parallel without running into
problems.

- Java 1.5 or greater (http://java.sun.com/)

3. Set environment variables:
- Make sure the Ice utilities and Java are in the system path
- Set a variable ICE_HOME to point to the root of the Ice
installation (i.e., $ICE_HOME/bin/slice2java should exist)
- On Unix, make sure that LD_LIBRARY_PATH includes the Ice libraries if they’re

Lab Course: Human Robot Interaction May 26, 2010

not in /usr/lib (i.e., include $ICE_HOME/1lib in the path)

4. Create a directory for everything to be installed in (e.g., ${HOME}/jast).
In what follows, we’ll assume that you used ${HOME}/jast; adapt
appropriately if you put it somewhere else.

5. Extract the runtime files from the zip file to ${HOME}/jast

6. Set the JAST_RUNTIME environment variable to ${HOME}/jast/runtime (or wherever
you put the runtime).

7. Copy the JAST Ice interfaces from the folder "slice" in the zip file in
whatever directory you want.

8. Set the JAST_ICE_DIR variable to wherever you copied the ice interfaces to.

You’re now ready to run things! To start the runtime up, you need to do the
following:

1. Make sure that the JAST_RUNTIME (and ICE_HOME) variables are set properly
as described above.

2. Start the IceGrid registry:
- cd ${JAST_RUNTIME}
- icegridregistry --Ice.Config=config/config.grid

3. Start the IceGrid node (in another window; leave the registry alone):
- cd ${JAST_RUNTIME}
- icegridnode --Ice.Config=config/config.localhost

4. Start the IceGrid GUI (in yet another window):
- cd ${JAST_RUNTIME}
- java -jar ${ICE_HOME}/bin/IceGridGUI.jar --Ice.Config=config/config.grid

5. If you use Windows, you can also use the batch scripts we packaged with the
runtime environment.

6. Set up the IceGrid runtime to run servers:
- Start up the registry, node, and GUI as described above
- In the IceGrid GUI, choose "File - Login"
- In the IceGrid GUI, choose "File - Open application from file"
- Browse to the ${JAST_RUNTIME}/config directory and select
"hri-labcourse-config.xml"
- Choose "File - Save to registry"

Lab Course: Human Robot Interaction May 26, 2010

7. Start the servers in the GUI (for example speech recognition):

- In the GUI, choose the "Live Deployment" tab and open the "localhost"
node

- Right click on "SpeechRecognizer" and choose "start"

- In the window that pops up you can now type sentences which are then sent

over IceStorm

- Speech recognition will print out an error message when you start it,
this is because it cannot find the actual speech recognition program

Installing New Servers

When you finished installing the runtime environment, you can start to integrate your own code into
it. In the following we will explain how to integrate your object inventory into the runtime, similarily
you can also integrate other servers. Here are the steps to integrate your object inventory into the
runtime environment:

1. The zip file with the runtime environment also contains a folder code, which holds an ant build
file and a directory with source code. Unzip the code folder to any folder on your computer.

2. In the unziped source code folder there are two source files ObjectInventoryI.java and
ObjectInventoryApp.java. ObjectInventoryApp.java does not need to be changed, it holds
the code to make a connection to the JAST runtime. You have to copy your object inventory
source code to ObjectInventoryl. java.

3. Now run the ant build file, it should create a java container HRILabCourse. jar and copy it to
the folder share of the JAST runtime. To do that cd to the folder with the build file and type
ant install. You can also use the build file to create the Ice files by typing ant slice2java
or clean the generated files with ant slice2java.

4. When you compiled HRILabCourse. jar and copied it to the runtime environment

e go to the lceGrid Admin window

e click on File - Login

e click Okay

e click File - Open - Application from Registry and open the JAST application

e in the appearing JAST configuration tab right-click on Nodes - localhost and add New
server from Template

e For the new server chose template JastServerJava
e Name: Objectinventory

e mainClass: sheet05.0bjectinventoryApp

e classpath: share/HRILabCourse.jar

e endpoints: use default

e type: :jast::representation::Objectinventory

Lab Course: Human Robot Interaction May 26, 2010

e click File - Save to Registry
e click the Apply button
e change to Live Deployment tab

e there should be a new server Objectinventory now, that can be started like the other
already existing servers.

Exercise 8

Now that we have the runtime environment with the speech recognition simulator running, we will
use it to command the robot to make movements and to answer questions about the objects it
sees on the table. For that, you first have to write a new class that implements the interface
jast/listener/SpeechRecognitionListener.ice. To integrate this class into the runtime envi-
ronment you can copy and adjust the files we gave you to integrate the object inventory, basi-
cally you just have to replace any mention of object recognition with speech recognition. For ex-
ample the new class has to listen to ::jast::listener: :SpeechRecognitionListener instead of
::jast::listener::0bjectRecognitionListener. You will also need to write your own slice file for
your class, you can place it into a new folder jast/reasoning since this will be your first cognitive
class.

When you have the class that implements SpeechRecognitionListener you get all inputs from
speech recognition over the method void recognizedTurn (string top, ::Ice::StringSeq alternatives,
::jast::common: :Timestamp startTime, ::jast::common::Timestamp endTime. The paramter
top holds the speech recognition result with the highest confidence value, alternatives gives you
recognition results with lower confidence values.

Take the sentence from the string top and translate it into robot movements and queries to the
object inventory. The robot should be able to understand sentences of the following form:

verb adjective noun

where verb can be:

e give me a

e show me a

o take a

e open the

e close the
adjective can be:
e blue

e green

e red

yellow

orange

Lab Course: Human Robot Interaction May 26, 2010

e small

e medium
e big

o left

e right
and noun can be
e bolt

e cube

e nut

e slat

e hand

With this “grammar” you can parse sentences like “give me a green cube” or “open the left hand”.
When you translate these simple oders into robot movements, the robot should reason if the orders
you give make any sense, for example if it gets a command “give me a yellow bolt”, the robot should
dispay a message “there is no reachable yellow bolt on the table” if it cannot reach any yellow bolts.
Also, in the current form of our “command grammar” one can build sentences like “close the small
cube” which do not make sense in the JAST context, in that case the robot should also display a
message.

Notice

Please send your solution files by June 09, 2010 t0 giuliani@in.tum.de and muelleth@in.tum.de
with subject HRI Lab Course as usual.

giuliani@in.tum.de
muelleth@in.tum.de

