



## Real-time 3D Reconstruction and Localization Hauptseminar Computer Vision & Visual Tracking for Robotic Applications SS2012

Robert Maier

Technische Universität München Department of Informatics Robotics and Embedded Systems

12.06.2012





## Overview

#### 1 Motivation

- 2 Existing related work
- 3 Real-time 3D Reconstruction and Localization
  - Basic approach
  - 3D data aquisition
  - Reconstruction: Volume representation & ray casting
  - Localization
  - Volumetric integration
  - Visualization
- 4 Examples

#### 5 Conclusion





# Outline

#### 1 Motivation

- 2 Existing related work
- 3 Real-time 3D Reconstruction and Localization
  - Basic approach
  - 3D data aquisition
  - Reconstruction: Volume representation & ray casting
  - Localization
  - Volumetric integration
  - Visualization
- 4 Examples

#### 5 Conclusion





## Motivation

- Reverse Engineering: How to get a CAD model of a work piece? (e.g. for measuring purposes)
  - $\rightarrow$  Elaborate manual creation!



 Environment reconstruction for robots







## Motivation: Task

General task: reconstruct 3D models of real world scenes

- $\rightarrow$  Solution: Real-time 3D Reconstruction and Localization
  - 3D Reconstruction: build digital 3D model from physical object
  - Localization: track camera to fuse different views
  - Desired properties:
    - Infrastructure- and marker-free
    - (Single) handheld camera
    - Real-time capability
    - Accurate reconstruction





## Outline

#### 1 Motivation

#### 2 Existing related work

#### 3 Real-time 3D Reconstruction and Localization

- Basic approach
- 3D data aquisition
- Reconstruction: Volume representation & ray casting
- Localization
- Volumetric integration
- Visualization
- 4 Examples

#### 5 Conclusion





# Existing related work

Approaches:

- SLAM: Simultaneous Localization And Mapping
- PTAM: Parallel Tracking And Mapping



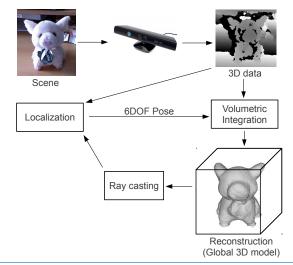
Limitations:

- Only use of sparse (feature-based) depth maps
- Reconstruction of only sparse models, used mostly for tracking





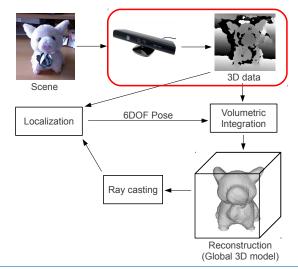
## Outline


#### 1 Motivation

- 2 Existing related work
- 3 Real-time 3D Reconstruction and Localization
  - Basic approach
  - 3D data aquisition
  - Reconstruction: Volume representation & ray casting
  - Localization
  - Volumetric integration
  - Visualization
- 4 Examples

#### 5 Conclusion




### Basic approach







## Basic approach: 3D data aquisition







## Aquisition of depth maps

Dense depth map: 2D image with distances to next surface at *each* pixel

Depth sensors:

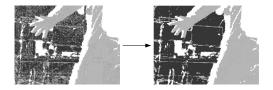
- Microsoft Kinect
- Time-of-flight cameras
- 3D laser scanner





Standard cameras:

- Stereo vision setup
- Single camera: depth from multiple views

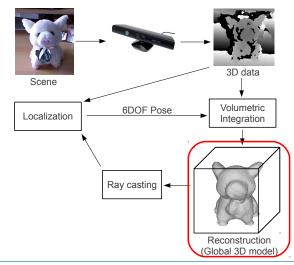





### Depth map conversion

#### Initial data: depth map

 $\rightarrow$  Remove noise using bilateral filter: filtered depth map

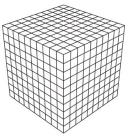



 $\rightarrow$  Project into 3D camera space: **vertex map** (point cloud)

 $\rightarrow$  Compute surface normals for each vertex: normal map



### Basic approach: Volume representation








## Volumetric scene representation

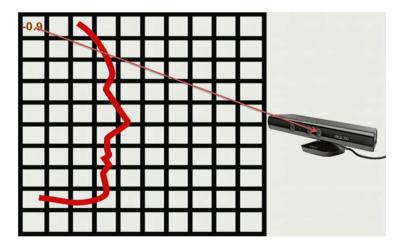
- Goal: Find representation for reconstructed 3D model
- Store all point clouds from all frames  $\rightarrow$  too expensive
- Better: partition physical 3D space into discrete 3D voxel grid



 Fuse all depth maps from different views into this global model
 Implicit surfaces: Truncated Signed Distance Function (TSDF)



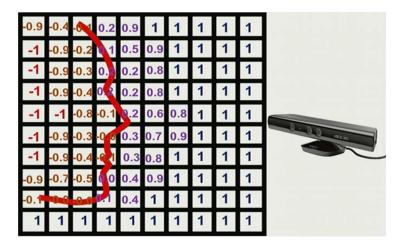



### Truncated Signed Distance Function

- Object lies inside volume
- Assumption: Pose of camera w.r.t. to volume known
- Compute and store for each voxel of the volume:
  - Truncated signed distance: relative distance of each voxel to the surface (between -1.0 and 1.0)
  - Accumulated weight (for volumetric integration)
- Object surface defined by zero-crossings of TSDF



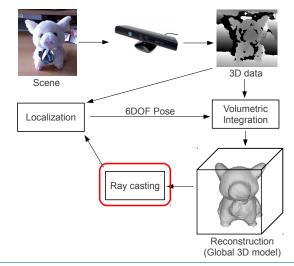



## Truncated Signed Distance Function







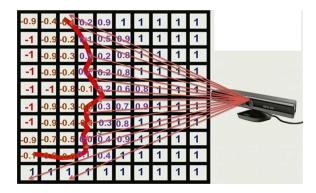

### Truncated Signed Distance Function







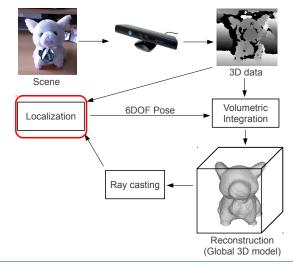
### Basic approach: Ray casting








# Ray casting


- Given pose (virtual camera): Shoot rays through volume
- $\blacksquare$  Zero-crossing of TSDF values  $\rightarrow$  surface
- Generate synthetic depth map







### Basic approach: Localization



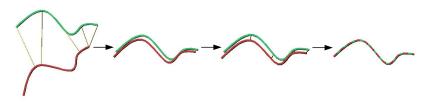




## Localization: Approaches

 Estimate camera pose for each new depth image w.r.t. global model frame




- Two different approaches:
  - Scan Alignment (KinectFusion)
  - Image Alignment (DTAM)





### Scan alignment: Iterative Closest Points algorithm

- Align overlapping point clouds (roughly aligned)
- Compute 6DOF pose between these scans
- Use of dense depth maps: more accurate localization
- ICP algorithm: Minimize distances between two point clouds
  - Find closest pairs of points in the two point clouds
  - Minimize distances between all closest points (= align scans)
  - Compute closest points again and minimize distances
  - Repeat steps iteratively until convergence







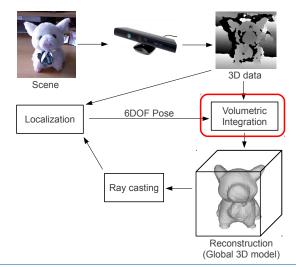
## Localization using Scan Alignment

- First frame: predefined camera pose w.r.t. global volume
- Then: Align vertex map of current frame to previous frame:
  Vertex map of previous frame:
  - $\blacksquare$  Raw depth map of camera  $\rightarrow$  significant drift
  - Better: Ray casting of synthetic depth map of global model
  - ICP computes transformation w.r.t. previous frame
  - Camera pose w.r.t. global model: combine consecutive transformations



• Camera motion too far: lost tracking  $\rightarrow$  Re-localization






### Localization using Image Alignment

- 2.5D image alignment
- Ray casting from the global model (starting from previous camera pose):
  - synthetic color image (from keyframes)
  - synthetic inverse depth image
- Compare synthetic image with current real image
- Adjust and find virtual camera pose which gives best match between synthetic and real image  $\rightarrow$  6DOF camera pose



### Basic approach: Volumetric integration





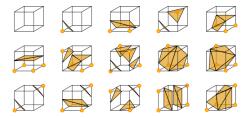


# Volumetric integration

- 6DOF pose (localization)  $\rightarrow$  project current vertex map into global volume
- Compute for each voxel using projected vertex map:
  - TSDF values: relative distances



Weight: angle between surface normal and viewing directionUpdate voxels of global model:


- Update only visible voxels
- Average TSDF values of voxels with new values
- Add new weight to weight of voxels





### Visualization: Marching cubes algorithm

- Compute polygonal mesh of an isosurface from 3D voxel grid:
  - Take eight neighbor voxels of voxel grid (cube)
  - Scalar values of cube corners: polygons to represent isosurface going through this cube
  - 8 bits: 1, if scalar value is lower than isosurface value (inside the surface), otherwise 0
  - Based on 8 bits: choose polygon representation (lookup table)
  - Place polygon vertices on cube edges (linear interpolation)







# Outline

#### 1 Motivation

- 2 Existing related work
- 3 Real-time 3D Reconstruction and Localization
  - Basic approach
  - 3D data aquisition
  - Reconstruction: Volume representation & ray casting
  - Localization
  - Volumetric integration
  - Visualization

#### 4 Examples

#### 5 Conclusion





## **KinectFusion**

Play time!



http://reconstructme.net





# Outline

#### 1 Motivation

- 2 Existing related work
- 3 Real-time 3D Reconstruction and Localization
  - Basic approach
  - 3D data aquisition
  - Reconstruction: Volume representation & ray casting
  - Localization
  - Volumetric integration
  - Visualization
- 4 Examples

#### 5 Conclusion





# Conclusion

#### Achievements:

- Accurate Reconstruction of full workspaces
- Real-time capability (due to use of GPU)

Limitations:

- Voxel model unflexible
- Limited support for large areas
- Only rigid scenes (no deformations)
- Kinect sensor (only indoor)
- $\rightarrow$  Current field of research!