Overview of RGB-D SLAM Approaches

Seminar Computer Vision & Visual Tracking for Robotic Applications

Tobias Hollarek

Technische Universität München

June 5, 2012

- 2 The Approaches
- 3 Simultaneous Localization and Mapping
- 4 Global Optimization
- 5 Internal Map Representation
- 6 Practical demonstration

7 Questions

- 2 The Approaches
- 3 Simultaneous Localization and Mapping
- 4 Global Optimization
- 5 Internal Map Representation
- 6 Practical demonstration

7 Questions

Simultaneous Localization and Mapping

- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment
- SLAM using RGB-D data
 - traditional approaches:
 - SLAM with RGB data only
 - SLAM using laser scanners.
 - new development: Kinect style cameras
 - => cheap acquisition of RGB-D data.

Simultaneous Localization and Mapping

- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment
- SLAM using RGB-D data
 - traditional approaches:
 - SLAM with RGB data only
 - SLAM using laser scanners
 - new development: Kinect style cameras
 - cheap acquisition of RGB-D data.

Simultaneous Localization and Mapping

- Localization: knowing your environment, calculate your position
- Mapping: building a map of your environment
- SLAM using RGB-D data
 traditional approaches:
 new development: Kinect style camera

- Simultaneous Localization and Mapping
 - Localization: knowing your environment, calculate your position
 - Mapping: building a map of your environment
- SLAM using RGB-D data
 - traditional approaches:
 - SLAM with RGB data only
 - 2 SLAM using laser scanners
 - new development: Kinect style cameras
 - cheap acquisition of RGB-D data

- Simultaneous Localization and Mapping
 - Localization: knowing your environment, calculate your position
 - Mapping: building a map of your environment
- SLAM using RGB-D data
 - traditional approaches:
 - SLAM with RGB data only
 - 2 SLAM using laser scanners
 - new development: Kinect style cameras
 - -> cheap acquisition of RGB-D data

- Simultaneous Localization and Mapping
 - Localization: knowing your environment, calculate your position
 - Mapping: building a map of your environment
- SLAM using RGB-D data
 - traditional approaches:
 - 1 SLAM with RGB data only
 - 2 SLAM using laser scanners
 - new development: Kinect style cameras
 - -> cheap acquisition of RGB-D data

- Simultaneous Localization and Mapping
 - Localization: knowing your environment, calculate your position
 - Mapping: building a map of your environment
- SLAM using RGB-D data
 - traditional approaches:
 - 1 SLAM with RGB data only
 - 2 SLAM using laser scanners
 - new development: Kinect style cameras
 - => cheap acquisition of RGB-D data

- Simultaneous Localization and Mapping
 - Localization: knowing your environment, calculate your position
 - Mapping: building a map of your environment
- SLAM using RGB-D data
 - traditional approaches:
 - 1 SLAM with RGB data only
 - 2 SLAM using laser scanners
 - new development: Kinect style cameras
 - => cheap acquisition of RGB-D data

- Simultaneous Localization and Mapping
 - Localization: knowing your environment, calculate your position
 - Mapping: building a map of your environment
- SLAM using RGB-D data
 - traditional approaches:
 - 1 SLAM with RGB data only
 - 2 SLAM using laser scanners
 - new development: Kinect style cameras
 - => cheap acquisition of RGB-D data

- Simultaneous Localization and Mapping
 - Localization: knowing your environment, calculate your position
 - Mapping: building a map of your environment
- SLAM using RGB-D data
 - traditional approaches:
 - 1 SLAM with RGB data only
 - 2 SLAM using laser scanners
 - new development: Kinect style cameras
 - => cheap acquisition of RGB-D data

2 The Approaches

- 3 Simultaneous Localization and Mapping
- 4 Global Optimization
- 5 Internal Map Representation
- 6 Practical demonstration

7 Questions

RGB-D Mapping using RGB-D ICP (Henry et al.)

Figure: Henry et al., *RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments* in: International Journal of Robotics Research, 2012

The Approaches

RGB-D SLAM System (Endres et al.)

Figure: Endres et al., *An Evaluation of the RGB-D SLAM System* in **Proc. of the IEEE Int. Conf. on Robotics and Automation** (ICRA), 2012

The Approaches

Visual Odometry (Audras et al.)

Figure: Audras et al., *Real-time dense appearance-based SLAM for RGB-D sensors* in Australian Conference on Robotics and Automation, 2011

- 2 The Approaches
- 3 Simultaneous Localization and Mapping
- 4 Global Optimization
- 5 Internal Map Representation
- 6 Practical demonstration

7 Questions

1 extract feature points from F_s and F_t

• extract feature points from F_s and F_t

Figure: Henry et al., *RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments* in: International Journal of Robotics Research, 2012

- 1 extract feature points from F_s and F_t
- 2 perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers

- 1 extract feature points from F_s and F_t
- 2 perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers

- 1 extract feature points from F_s and F_t
- 2 perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers

- 1 extract feature points from F_s and F_t
- 2 perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers

- 1 extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers

- 1 extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers

- 1 extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers

- 1 extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
 - RANSAC = Random Sample Consensus
 - randomly choose three pairs of feature points
 - calculate a transformation from theses points
 - check errors from other feature points
 - repeat for other triplets
 - return Transformation with most inliers

- 1 extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard *T'*
- 4 if *inliers* > k_{high} : return T' as final transformation
- 5 else: compute T' from ICP

- 1 extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard T'
- 4 if *inliers* > k_{high} : return T' as final transformation
- 5 else: compute T' from ICP

- 1 extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard T'
- 4 if *inliers* > k_{high} : return T' as final transformation
- 5 else: compute T' from ICP

- 1 extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard T'
- 4 if *inliers* > k_{high} : return T' as final transformation
- 5 else: compute T' from ICP

- **1** extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard T'
- 4 if *inliers* > k_{high} : return T' as final transformation
- 5 else: compute T' from ICP
 - ICP = Iterative Closest Points
 - match features of F_s and F_t
 - sparse features AND dense depth data used
 - improve T' by minimizing matching error
 - repeat matching and minimizing until change(T') < γ or iterations > n_{max}

- **1** extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard T'
- 4 if *inliers* > k_{high} : return T' as final transformation
- **5** else: compute T' from ICP
 - ICP = Iterative Closest Points
 - match features of F_s and F_t
 - sparse features AND dense depth data used
 - improve T' by minimizing matching error
 - repeat matching and minimizing until change(T') < γ or iterations > n_{max}

- **1** extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard T'
- 4 if *inliers* > k_{high} : return T' as final transformation
- 5 else: compute T' from ICP
 - ICP = Iterative Closest Points
 - match features of F_s and F_t
 - sparse features AND dense depth data used
 - improve T' by minimizing matching error
 - repeat matching and minimizing until change(T') < γ or iterations > n_{max}

- **1** extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard T'
- 4 if *inliers* > k_{high} : return T' as final transformation
- 5 else: compute T' from ICP
 - ICP = Iterative Closest Points
 - match features of F_s and F_t
 - sparse features AND dense depth data used
 - improve T' by minimizing matching error
 - repeat matching and minimizing until change(T') < γ or iterations > n_{max}

- **1** extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard T'
- 4 if *inliers* > k_{high} : return T' as final transformation
- 5 else: compute T' from ICP
 - ICP = Iterative Closest Points
 - match features of F_s and F_t
 - sparse features AND dense depth data used
 - improve T' by minimizing matching error

repeat matching and minimizing until change(T') < γ or iterations > n_{max}

- **1** extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard T'
- 4 if *inliers* > k_{high} : return T' as final transformation
- 5 else: compute T' from ICP
 - ICP = Iterative Closest Points
 - match features of F_s and F_t
 - sparse features AND dense depth data used
 - improve T' by minimizing matching error
 - repeat matching and minimizing until change(T') < γ or iterations > n_{max}

- 1 extract feature points from F_s and F_t
- **2** perform RANSAC alignment => first approximation T'
- 3 if *inliers* $< k_{low}$: discard T'
- 4 if *inliers* > k_{high} : return T' as final transformation
- 5 else: compute *T'* from ICP until *change*(*T'*) < γ or *iterations* > n_{max}

similar to RGB-D ICP

- RANSAC + ICP to perform alignment
- alignment with up to 20 frames

similar to RGB-D ICP

RANSAC + ICP to perform alignment

alignment with up to 20 frames

similar to RGB-D ICP

- RANSAC + ICP to perform alignment
- alignment with up to 20 frames

only intensity data is used

- no feature extraction
- pixels with maximal gradient along one direction are chosen
- minimize jacobian of error function

only intensity data is used

- no feature extraction
- pixels with maximal gradient along one direction are chosen
- minimize jacobian of error function

- only intensity data is used
- no feature extraction
- pixels with maximal gradient along one direction are chosen
- minimize jacobian of error function

- only intensity data is used
- no feature extraction
- pixels with maximal gradient along one direction are chosen
- minimize jacobian of error function

- 2 The Approaches
- 3 Simultaneous Localization and Mapping
- 4 Global Optimization
- 5 Internal Map Representation
- 6 Practical demonstration

7 Questions

imperfect alignment => accumulated error (drift)

- goal: minimize drift
- different approaches possible
- here: loop closure detection
 - detect if same location is visited for the second time
 use information to optimize map:

Figure: Henry et al., RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments in: International Journal of Robotics Research, 2012

- imperfect alignment => accumulated error (drift)goal: minimize drift
- different approaches possible
- here: loop closure detection

detect if same location is visited for the second time
 use information to optimize map:

Figure: Henry et al., *RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments* in: International Journal of Robotics Research, 2012

- imperfect alignment => accumulated error (drift)
- goal: minimize drift
- different approaches possible
- here: loop closure detection
 - detect if same location is visited for the second time
 use information to optimize map:

Technische Universität Münch

Figure: Henry et al., *RGB-D mapping: Using Kinect-style* depth cameras for dense 3D modeling of indoor environments in: International Journal of Robotics Research, 2012

- imperfect alignment => accumulated error (drift)
- goal: minimize drift
- different approaches possible
- here: loop closure detection

detect if same location is visited for the second time use information to optimize map:

Figure: Henry et al.,*RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments* in: International Journal of Robotics Research, 2012

- imperfect alignment => accumulated error (drift)
- goal: minimize drift
- different approaches possible
- here: loop closure detection

use information to optimize map:

Technische Universität Münc

Figure: Henry et al.,*RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments* in: International Journal of Robotics Research, 2012

- imperfect alignment => accumulated error (drift)
- goal: minimize drift
- different approaches possible
- here: loop closure detection
 - 1 detect if same location is visited for the second time
 - 2 use information to optimize map:

Technische Universität Mür

Figure: Henry et al.,*RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments* in: International Journal of Robotics Research, 2012

- 2 The Approaches
- 3 Simultaneous Localization and Mapping
- 4 Global Optimization
- 5 Internal Map Representation
- 6 Practical demonstration

7 Questions

- expensive regarding space
- no improvement possible
- a lot of redundancy
- surfels
 - improvements possible
 - needs less space

- improvements possible
- can store free space explicitly
- multi resolution mapping

expensive regarding space

- no improvement possible
- a lot of redundancy

surfels

- improvements possible
- needs less space

- improvements possible
- can store free space explicitly
- multi resolution mapping

- expensive regarding space
- no improvement possible
- a lot of redundancy
- surfels
 - improvements possible
 - needs less space

- improvements possible
- can store free space explicitly
- multi resolution mapping

- expensive regarding space
- no improvement possible
- a lot of redundancy
- surfels
 - improvements possible
 - needs less space

- improvements possible
- can store free space explicitly
- multi resolution mapping

- expensive regarding space
- no improvement possible
- a lot of redundancy

surfels

- improvements possible
- needs less space

- improvements possible
- can store free space explicitly
- multi resolution mapping

- expensive regarding space
- no improvement possible
- a lot of redundancy
- surfels
 - improvements possible
 - needs less space
- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping

- expensive regarding space
- no improvement possible
- a lot of redundancy
- surfels
 - improvements possible
 - needs less space
- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping

- expensive regarding space
- no improvement possible
- a lot of redundancy
- surfels
 - improvements possible
 - needs less space

- improvements possible
- can store free space explicitly
- multi resolution mapping

- expensive regarding space
- no improvement possible
- a lot of redundancy
- surfels
 - improvements possible
 - needs less space
- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping

- expensive regarding space
- no improvement possible
- a lot of redundancy
- surfels
 - improvements possible
 - needs less space
- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping

- expensive regarding space
- no improvement possible
- a lot of redundancy
- surfels
 - improvements possible
 - needs less space
- voxels
 - improvements possible
 - can store free space explicitly
 - multi resolution mapping

- 2 The Approaches
- 3 Simultaneous Localization and Mapping
- 4 Global Optimization
- 5 Internal Map Representation
- 6 Practical demonstration

7 Questions

■ YouTube Video from Henry et al.:

http://www.youtube.com/watch?v=58_xG8AkcaE&feature=player

- 2 The Approaches
- 3 Simultaneous Localization and Mapping
- 4 Global Optimization
- 5 Internal Map Representation
- 6 Practical demonstration

7 Questions

Thank you for your attention! Questions?