Final Project Proposal Systematic Evaluation of Binary Descriptors

Approach

- Input:
 - Rotation invariance?
 - Memory consumption
 - Performance related parameters
- Automatic optimization
- Output:
 - Best binary descriptor for the given settings, training data and search space

Training data

- Given data, e.g.
 Multi-view Stereo
 Correspondence Dataset
 from the University of
 British Columbia
- Any set of images Apply transformations for known perspective distortions and do lighting changes / add noise

Render 3D objects from multiple views and calculate nonoccluded correspondences

Parameters to optimize

- Sample positions and combinations
- Sample averaging sizes
- Sample source:
 - Color image
 - Intensity image
 - Gradient image

Optimization

- Start with a set of parameters
- In a loop:
 - Slightly perturb parameters and evaluate quality
 - If quality improved, take over new parameters
- Global optimization method:
 Simulated annealing

Comparison with existing descriptors

• BRIEF

Binary Robust Independent Elementary Features

• ORB

Oriented FAST and Rotated BRIEF

• FREAK Fast Retina Keypoint

Figure 1: Illustration of our FREAK descriptor. A series of Difference of Gaussians (DoG) over a retinal pattern are 1 bit quantized.

• BRISK

Binary Robust Invariant Scalable Keypoints

Evaluation

Roadmap

- 1. Find / build / select training data
- 2. Implement evaluation of existing descriptors (graphs)
- 3. Implement optimization process
- 4. Add and play around with parameters to optimize :)