1 Tutorial

Contents

1 Tutorial 1
Glossary 3
1.1 Initial setup of the development environment 1
1.1.1 components. e 1

1.1.2 installation 1

1.1.3 verification of successful installation 1

1.1.4 first steps with the xme-software fornios 2

Bibliography 19

Glossary

BSP Board Support Package. 14
CPU Central Processing Unit. 14
HDL Hardware Description Language. 8

IDE Integrated Development Environment. 13

IP Intellectual Property. 1, 4
JTAG Joint Test Action Group. 5
LED Light Emitting Diode. 6
PIO Parallel I/0. 15

SVN Subversion. 2

xme/chromosome a modular middleware architecture for cyber-physical systems. 2

Glossary

1.1 Initial setup of the development environment

1.1.1 components

Development means creation of a hardware description for the FPGA and writing soft-
ware for the created hardware. Altera Corporation provides the necessary tools, which are
Quartus II and the Nios2SBT, to achieve this.

1.1.2 installation

Please note that this installation description applies to installing the Altera Design Suite
v12 on Windows?7 64bit only. To install all the required software, Altera Corporation
provides a Free Download package at its website, called ”Altera Design Suite (Altera In-
staller)”. This is a installer package, which downloads all selected installation components
during the installation process from the internet. To start the installation, execute the in-
staller package as an administrative user (right-click and select “run as administrator”).
This step is very important, as your USB-Blaster will not work if you installed the software
as a low-privileged user.

If the installer asks you to select the desired components, deselect everything and only
select

¢ Quartus II Web Edition (Free) (includes Nios2SBT)
¢ Cyclone IV E in the Device Families category

If you are running Quartus II v12.0 on a 64bit machine, you might still have difficulties
finding the USB Blaster hardware in the Programmer tool. Altera does not ship the 64bit
JTAG-Server with the Quartusll Web-Edition. To resolve this issue, install the standalone
Programmer Software fromhttps://www.altera.com/download/software/prog-software,
which contains a 64bit Programmer and JTAG-Server. (update: as of Quartus II v12.1, you
do not need to separately install the standalone Programmer)

Altera offers a paid (Quartus II Subscription Edition) and a free (Quartus II Web Edition)
version of its Quartus development suite. The free version includes most of the features for
beginners or even professionals. One striking difference are the missing Intellectual Prop-
erty (IP) license files for several more complex components. These components, which are
not fully licensed to free edition users include, but are not limited to NiosIl/s or NioslI/f
processors (the Niosll/e processor does not require a license), the DDR RAM controller or
the tse ethernet MAC component.

1.1.3 verification of successful installation
designing an FPGA

To verify that your installation was successful, this tutorial, which is based on [4] and [1]
will guide you through your first steps in the Quartus Il environment. You will create your
first Nios II CPU on your FPGA. Please note that Altera has removed the SOPC-builder
from Quartus II v12 on, which means that for designing the CPU core, [4] is no longer
usable. To verify that you have a working set-up, please follow the steps described in [2].

https://www.altera.com/download/software/prog-software

Glossary

cera Installer (12.0 B

Select products
Select the software products you want to install.

Products Install Sze Download Size
4[] Quartus II Subscription Edition (includes Nios II EDS) 440G 1.2G
[] Quartus 11 software (64-bit) 810 M 122 M
> [C] Device Families - -
- Quartus II Web Edition (Free) (incudes Nios I EDS) . 1.3 G
4 Device Farmilies
[T Arria I GX
[Cydone 11
[7] Cyclone 1111 LS
Cyclone IV E
[T Cyclone v GX
[Cyclane v
[] Legacy Families
[[] MAX I
7] max v
[7] ModelSim-Altera Starter Edition (Free)
[[] ModelSim-Altera Edition
[DSP Builder

Description
> Select Products
¢ . Includes Cyclone IV E device support

Install: Download:

Space Required: 456G 136 Select/Deselect Al

Space Avalable: 886G 88G

[< Back][Mext >][Cancel]

Figure 1.1: Component selection in the Altera Installer

It is of particular importance to use the correct names for the components, as references to
these names have to be consistent.

1.1.4 first steps with the xme-software for nios

In this section, all the steps to create a executable binary for the DE2-115 development board
are described. All steps in this tutorial are based on the Altera Software in version 12.0
spl. If you have a different software version, the same steps may apply but some screens
or identifiers may differ drom this description. First of all, make sure that you have a copy
of the xme/chromosome Subversion (SVN). We will refer to the root of this SVN tree as
jSUN-100t; .

designing your hardware

This section gives you a quick introduction into the main Quartusll features and on how
to build a simple Niosll hardware design with Quartusll. It is based on [2]. This introduc-
tion uses Quartusll v12.1 64-Bit on a Windows machine and creates a demo project for the
DE2-115 development board. For different Quartus versions or FPGAs, please take care to
change this description at the corresponding sections.

Glossary

b=

&4 New Project Wizard

Directory, Name, Top-Level Entity [page 1 of 5]

What is the working directory for this project?

C:/Users martin/Documents/quartus_nios_dema

@

What is the name of this project?

@

quartus_nios_demo

What is the name of the topevel design entity for this project? This name is case sensitive and must exactly match the entity name in the design file.

E)

quartus_nios_demao

Use Existing Project Settings...

< Back Mext =] | Finish | | Cancel ‘ ‘ Help

Figure 1.2: page 1 of the Quartusll New Project Wizard

basic QuartuslI project setup We assume that you have started an instance of QuartusIL.
Begin by creating a new Quartusll project, by selecting File/New from the menubar and
choosing ”"New Quartus II Project”” from the window, which opens. This starts the New
Project Wizard. Fill in your project name and the top-level design entity name (remember
this name carefully and name your top component exactly like this). Now you just have
to choose the working directory for this project (QuartusIl will not create a folder within
the working directory, so choose an empty folder). Your project settings should like like
figure 1.2) now. If you have checked your input, you can continue by choosing the ”"Next
¢ button. You can skip the Add Files Wizard page by selecting ""Next ;" again. On
page three, you have to select your exact model of FPGA device. Choosing your FPGA
device with caution as a wrong device setting could cause damage to the hardware. For
the DE2-115 development board that was used for this introduction, we had to choose the
"'EP4CE115F29C7"” device (see figure 1.3). To be sure, which device is used in your board,
check the label on the FPGA chip (see figure 1.4). You can skip page four by selecting
"Next ;. Page five will give you a summary of your project settings. Finish the New
Project Wizard with ”“Finish””’.

designing the NioslII system First of all, we have to create our Processor Block. This can
be either be accomplished by using SOPC Builder or Qsys. Qsys is the newer of them, so we
are using Qsys in this introduction. Qsys can be used to create a NioslI system, including
components such as timers or memory. This is exactly what we are doing now.

Glossary

~
&4 New Project Wizard Iﬁ
— — — - -
Family & Device Settings [page 3 of 5]
Select the family and device you want to target for compilation.
Device family Show in 'Available devices' list
Family: |Cydene IVE S Package: [Any)]
Devices: | All Pin count: [Any A]
Target device Speed grade: [Arvy i]
() Auto device selected by the Fitter Name filter:
@ Spedfic device selected in Available devices' list Show advanced devices HardCopy compatible only &
Other: nfa
Available devices:
| Name Core Yoltage LEs User 1/0s Memory Bits Embedded multiplier 9-bit elements PLL &
EP4CE115F2318L 1.0V 114480 281 3981312 532 4 20
EPACELISF25C7 529 e = N
EP4CE115F29C8 1.2V 114480 529 3981312 532 4 20
EP4CE115F29CEL 1.0V 114480 529 3981312 532 4 20
EP4CE115F29CaL 1.0V 114480 529 3981312 532 4 20
EP4CE115F2917 1.2V 114480 529 3981312 532 4 20 I
EP4CE115F2918L 1.0V 114480 529 3981312 532 4 0 - f
q I] " M
Companion device =) :
HardCopy: :
Limit DSP & RAM to HardCopy device resources
[< Back] [Mext =] [Finish] [Cancel] [Help
.

Figure 1.3: page 3 of the Quartusll New Project Wizard

A Niosll system requires memory to store instructions and data. To keep the design sim-
ple, we are choosing On-Chip memory for our design. On the left of the Qsys window,
you have a Component Library, which gives you a selection of all available components
for your system. Choose ""Memory and Memory Controllers” /”’On-Chip”’/”’On-Chip
Memory (RAM or ROM)”” from the Component Library and double-click on it, to add it
to your system. A new window opens, which lets you choose the parameters for your new
component. Change the total memory size to 200480 bytes (see figure 1.5). 20 kiB should
be enough for our small demonstration system. Click Finish to add the On-Chip Memory
to the system. It will appear in the System Contents list of Qsys.

Next, add the NioslI processor core to the system by choosing ”“Embedded Processors””/”’Nios
II Processor”” from the Component Library. The NioslI parameter window opens and you
have to choose a NioslI core variant. More complex cores give performance advantages
and have useful functions. For out tutorial, we do not need any special functionality and
can choose the smallest core version, ”"“Nios II/e””. Nios II/e is the only core variant, which
does not need any IP and thus can be used without time limitation in the free Web Edition
of Quartus. In the bottom part of the Niosll parameter window, you can see some error
messages, letting you know that the exception and reset vector memory are not set. Ignore
these error messages for now and add the processor core by clicking the Finish button.
Figure 1.6 shows the parameter window (ignore the Reset Vector and Exception Vector
settings for now).

Now you should have three components in the System Components list:

¢ the clock source clk_0 (this component was automatically generated for you)

Glossary

Figure 1.4: label of the FPGA chip

¢ the On-Chip Memory onchip_memory2_0
¢ the Niosll CPU core nios2_gsys_0

To connect components to each other, you can toggle the connection state between com-
ponents by clicking the semi-transparent dots in the Connections column of the System
Contents list. Connect the clk port of the clk_0 component to the clk1 port of the On-Chip
Memory by clicking on the dot in the clkl row. Connect the clock source clk of the clk_0
component to the Clock Input of your Niosll processor in the same way. Connect the
clk_reset port from the clock source to the reset1 port of your memory and to the reset_n port
of the processor. Now connect the processor with the memory block, by connecting the
s1 port of the memory to both the data_master and instruction_master ports of the processor.
This finishes the first stage of wiring.

After connecting the memory to the CPU, we can fix the processor errors we encountered
before. Double-click on the processor component in the System Contents list to open the
processor parameter window again. set both options, Reset vector memory and Exception
vector memory to your onchip_memory2_0.s1 component. The final NioslI settings in the pa-
rameter window should look like figure 1.6.

To be able to flash and debug our applications later on, we add a Joint Test Action Group
(JTAG) component to our system: Add the JTAG UART component from "““Interface Proto-
cols””/”’Serial”’ /”’JTAG UART”” in the Component Library. Do not change any settings
in the parameter window and add the component by selecting the Finish button. Connect
the clk port of the jtag_uart_0 component to clk_0 of your clock source and reset to clk_reset.
Connect the JTAG’s avalon_jtag_slave port to the data_master port of your CPU.

To be able to generate a BSP for our system later on, we need to have an Interval Timer
in our system. Add "”‘Peripherals”’/”’Microcontroller Peripherals”’/”’Interval Timer”” to
the system. Choose Full-features from the Presets setting and add the component through
the Finish button. Connect clk and reset to your clk_0 component and connect the s1 port to
the data_master port of the NioslII CPU.

The system ID component can identify our generated system and thus protect it from ac-
cidentally flashing software, which is not intended for this system. The component can
be found at ”“Peripherals”’/”’Debug and Performance”’/”’System ID Peripheral”’. When
adding the System ID component, add a (randomly chosen) 32bit ID into the 32 bit System
ID field. This value will identify your system (but is not important for us in this example).

Glossary

%/ On-Chip Mermory (RAM or ROM) - onchip_memory2_0 . o - — =]

W& On-Chip Memory (RAM or ROM)
Megocor Sltera_avalon_onchip_memory2 Documentation

~ Block Diagram

[] show signals

[~ Memory type]
Type RAM (Writable) = |

onchip_memory2 0 |t

Single clock operation
il Read During Write Mode DONT_CARE
d I Block type: Auto
eset!

[~ size
ahera, emory?

Data width 2 .

Total memory size: 20450 bytes

Minimize memory block usage (may impact fmax]

[~ Read latency
Slave =1 Latency: 1+

Slave s2 Latency. 1

Initialize memory content

[] Enable non-defaut intialization file
User created inlalzation fle: 5 1o memory2 0
[Enable In-System Memary Content Editor feature

Instance ID: NONE

@ Info: anchip_memary?2_0: Memory wil be iniialized from onchip_memory2_0.hex

Figure 1.5: On-Chip Memory parameters

Connect the sysid_gsys_0 component to the clock source and the CPU’s data_master port.
Our system cannot communicate with its surroundings yet. We want it to be able to con-
trol Light Emitting Diodes (LEDs) to let us know if the program is working. To control the
LEDs, we need a connection to the LEDs on the board. Add ”“Peripherals”’/”’Microcontroller
Peripherals”’/”’PIO (Parallel I/O)”” to the system. The parameter window appears. Do
not change any settings, as the default value configures the PIO as an 8 bit output device.
As we referring to this component later in the software design process, we give it a new
name. Right-click on the pio_0 component, select the Rename option and enter led_pio as its
new name. Connect clk and reset to the clock source and connect s1 to the data_master port
of the processor. To export the external_connection port of the led_pio component, double-
click in the Export column of the external_connection row.

The PIO component finishes the list of components that are needed for this basic NiosII
system. Now it is time to remove the errors from our Qsys system. By just adding all
the components to the system, Qsys automatically assign base address 0x00000000 to all
of them. This creates conflicts, as a memory address can only be used by one component.
Qsys provides a function to automatically create a non-conflicting memory assignment. To
run this function, select ”’System”’ /"’ Assign Base Addresses”” from the menubar.

Finally, the only warnings remaining apply to the Interrupts of the system. Low interrupt
numbers mean high priorities in NiosllI systems. We assign a low priority (i.e. a high inter-
rupt number) to the JTAG component. You can assign an interrupt to the JTAG component
by clicking on the semi-transparent dot in the IRQ column of the jtag_uart_0 component.
Type the number 16 into the connection point. Set the interrupt number of the timer_0 com-
ponent to 1 by applying the same procedure to the timer_0 component.

Glossary

“ Nios Il Processor
Moguerst AMera_nios2_gsys Documentation
[~ Block Diagram |
Core Nios I
Wl = snow signas | caches and Memory Interfaces | Advanced Features | MMU and MPU Settings | JTAG Debug Module|
|~ select a Nios Il Core
nios2_qsys_0 Nios Il Core: @ Nios lie:
) Nios Us.
I data_master
eset_n instruction_master, (=T
i jtag_diebug_moclule_res: . o 7
4 v Nios Il/e Nios Il/s Nios I/
ag_debug_modle " custom_nstruction_master
ustom . RISC RISC RISC
Py Nios Il 32.0it 2.0t a2-bit
— Selector Guide Instruction Cache nstruction Cache
Branch Prediction Branch Prediction I
Hardware Multiply Hardware Multply
Hardware Divide Hardware Divide
Barrel Shifter
Data Cache
I Dynamic Branch Prediction
Memary Usage (e.g Stratix V) [Two M9Ks (or equiv.) Two MoKs + cache Three WeKs + cache
= Hardware Arithmetic Operation
Hardware mukipication type: Embedded Mulipliers.
Hardwiare divide
[~ Reset Vector
Reset vector memory: onchip_memory2_0.51 v
Reset vector offset 0x00000000
Reset vector: 0x00000000
|~ Exception Vector
Exception vector memory: onchip_memory2_0.51 -
Exception vector offset 0x00000020
Exception vector X00000020
[~ MMU and MPU
Include WU
Only include the MMU using an operating system that explicitly supporis. an MU
Fast TLB Miss Exception vector memary [jjope
Fast TLB Miss Exception vector offset | 0,00000000
Fast TLB Wiss Exception vector 0x00000000
Include WPU

Figure 1.6: NioslI processor parameters

Figure 1.7 gives an overview of all the components, which are used in this Qsys system.
It also shows the connections between the components (black dots and lines on the left vi-
sualize a connection). Further, the Interrupt numbers for the JTAG and Timer components
are set (compare column IRQ). Base Addresses in this figure were automatically assigned.
The assignment can be checked in columns Base and End.

Once your Qsys system design is finished, you can start generating it (similar to compiling
source code). Open the Generation tab in Qsys, leave all settings at their default values and
click the Generate button. Qsys will ask you if you want to save your system. Answer Yes
and save the system in your Quartusll project directory. The Generate window will show
the generation output. Generation can last several minutes, depending on the system de-
sign and your host computer’s performance. When the status bar in the Generate window
turns green, your system has been successfully generated. Your Generate window should
look like figure 1.8. Close the Generation window and exit Qsys to return to QuartusIL
Congratulations, you are finished with the processor system.

adding the NioslI system to the Quartusll project The newly generated processor sys-
tem has to be integrated into Quartusll. You can design FPGA hardware in QuartuslI either

Glossary

File Edit System View Tools Help

Component Library System Contents | Address Map | Clock Setiings | Project Setings | Instance Parameters | System inspector | HOL Example | Generation|

2 x| 4F |Use Connections Name Description Export Cock Base End IRQ Tags Opcode Name
Project X B clk_0 Clock Source:
H IQ Wew Component. ’S clk_in Clock Input ik
Library cl_in_reset Reset Input reset
Brioges. = — ck Clock Output clk_0
- Clock and Reset a ————— chkoreset Reset Output
Configuration & Programming - B onchip_memory2_0 On-Chip Memory (RAM or ROM)
psp cki Clock Input clk_0
Embedded Processors = s |Awvalon Memory Mapped Slave [elk1] 0x0000_8000 |0x0000_cs£s
Interface Protocols \? resetl Reset Input [cik1]
%) Memories and Memory Controllers B nias2 gsyz 0 e S E T
Jerin Components ck Clock Input clk 0
- Microconiroler Peripherals ey R D
— data_master |Awvalon Memary Mapped Master e 120 0of 120 31
PLL instruction_master | Avalon Memory Mapped Master [ck]
Qsys nterconnest jtag_debug_module_reset |Reset Output (e
ftag_debug_module | Avalon Memary Mapped Slave: [ck] 0xD001_D0800 [0x0001_0£££
E-University Program »—| custom_instruction_master|Custom Instruction Master
Verification STAGUART
-Window Bridge ck Clock Input clk_0
reset Reset Input ek
avalon_ftag_slave |Avalon Memary Mapped Slave (el 0x0001_1038 [0x0001_103% fig
B timer_0 Interval Timer
ck Clock Input clk 0
reset Reset lnput =]
sl | Avalon Memory Mapped Slave [clk] 0x0001_1000 |0x0001_101% fi]
B sysid_gsys 0 System ID Peripheral I
ck Clock Input clk_0
reset Reset Input (el
control_slave |Avalon Memory Mapped Slave [l 0x0001_1030 [0x0001_1037
B led_pio PIO (Paralel V0)
ck Clock Input clk_0
reset Reset Input (e
51 | Avalon Memary Mapped Slave: [ck] 0x0001_1020 [0x0001_102%
external_connection Conduit Endpoint led_pio_external_connecti..
Messages |
Description Path
@ 3 Info Wessages
@ Wemory wil be initialized from onchip_memory2_0.hex System.enchip_memoryZ_0
@ System D is not assigned automatically. Edt the System ID parameter to provide a unique ID System.sysid_gsys_0
(@ Time stamp wil be automatically updated when this component is generated Systemsysid_gsys_0
0 Errors, 0 Warnings

Figure 1.7: an overview of Qsys system

textually by using VHDL or by using the Verilog language. But QuartuslI also lets you de-
sign systems without having to use one of the Hardware Description Languages (HDLs).
Instead you can design your system graphically. This is what we are doing here to keep
things simple. Select File/New... from the menubar and select Block Diagram/Schematic File
in the New window. Create the new Block Diagram file by clicking OK. Save the new Block
Diagram file with the ”“File/Save As...”” command. Use the same name for this entity as
you used for your project (see section 1.1.4). We want to create an instance of the NioslI
system, that we created in section 1.1.4. Double-click on an empty space in the newly
created Block File. The Symbol window appears. In the Libraries pane on the left of the
window, choose your NioslI system, by selecting ““Project/qsys_nios_system”’. Create the
NioslI instance by clicking OK. Place the NioslI block in your Block Diagram file with your
mouse pointer. You can see three wires leaving the gsys_nios_system:

e clk_clk, the clock input to the NioslI system
* reset_reset_n, the reset input to the NioslI system

¢ led_pio_external_connection_export[7..0], the output of the led_pio component. This is an
8-bit wide wire, as can be seen by the [7..0] range.

Now we have to connect these wires with input and output pins. in the toolbar of the Block
Diagram file, open the menu of the Pin Tool option and select Input. Now you should have

Glossary

% Generate Completed Py

@ Info: emd_xbar_mux: "gsys_nios_system"” instantiated altera_merlin_multiplexer "cmd m
@ Info: rep_xbar_demux_002: "gsys_nios_system" instantiated altera_merlin_demultiple:
@ Info: rep_xbar_mux: "gsys_nios_system” instantiated altera_merlin_multiplexer "rzp_»
@ Info: Reusging file C:/Users/martin/Documents/quartus_nios_demolqsys_nios_system/
@ Info: rsp_xbar_mux_001: "gsys_nios_system” instantiated altera_merlin_multiplexer "r
@ Info: Reusing file Ci/Users/martin/Documents/quartus_nios_demolgsys_nios_system/
@ Info: irg_mapper: "qsys_nios_system"” instantiated altera_irg_mapper “irg_mapper”

@ Info: gsys_nios_system: Done qsys_nios_system” with 24 modules, 74 files, 1405111 byl
@ Info: ip-generate succeeded.

@ Info: Finished: Create HDL design files for synthesis -
4 m 13

Q Generate Completed. 0 Errors, 0 Warnings.

Figure 1.8: output of succesful generation

an Pin hovering below your mouse pointer. Place it next to your NioslI system block, so
that the clk_clk wire connects to your pin. Press the menu of the Pin Tool again, but this time
select Output from the toolbar. Place the output pin next to your NiosllI block. Select it (by
using the Selection Tool from the toolbar) and rotate the output pin by 180 degrees. You can
do that by right-clicking on the output pin and selecting ”“Rotate by Degrees/Rotate Left
180”". connect the output pin to the led_pio_external_connection_export[7..0] wire. You can
easily distinguish input and output pins by their shape. Double-click on an empty space in
the Block Diagram file again, but this time add "“c:/altera/12.1/quartus/libraries/primitives/other/vcc
Place the VCC pin next to your NioslI block and connect the VCC pin with the reset_reset_n
wire using the Orthogonal Node Tool from the toolbar. Take care to draw the Orthogo-
nal Node line precisely from the reset_reset_n wire to the connection of the VCC pin. You
should have a small square at the VCC pin and the NioslI block, visualizing an electrical
link (the visualization appears only if you have selected the Orthogonal Node line).
Right-click on the output pin and open the Properties window of the output pin. Rename
the output pin, by typing LEDGI[7..0] in the Pin name(s) field. Rename the input pin, which
is connected to the clk_clk wire, to CLOCK_50 in the same way.

Now that all the pins for the hardware design are known, a mapping to the hardware pins
of the FPGA chip has to be created. Quartusll has to detect all the pins in our hardware
design, thus we have to start the first steps of a compilation run first. To do so, select ”*Pro-
cessing/Start/Start Analysis & Elaboration” from the menubar. A new Compilation Report
tab opens. If the compilation was successful, a window labeled Analysis & Elaboration was
successful appears.

If you have encounter an error, particularly the error ””Node instance jinstance name;
instantiates undefined entity <entity_name>"", then Quartusll might not find your NioslII
system synthesis files (the compiled files or the NioslI system). In this case, you should add
them manually by selecting ”“Project/ Add/Remove Files in Project...”” from the menubar.
Press the button with ... written on it, to select the files you want to add. Add the main .v
file, which describes your NiosII block from <quartusIl_project_dir>/<niosll_system_name>/synthesis/<nio:
and click the Add button. also add all the files contained in the <quartuslI_project dir>/<nioslI_system _nan
folder. After adding all the files to the project, the window should look like figure 1.9. close
the window wuth the OK button. Your Analysis & Elaboration should finish without any

Glossary

" Settings - quartus_nios_demo S =RRCE X
Cotegrrs
General Files
Fles
Libraries Select the design files you want to include in the project. Click Add All o add al design fles in the project directory to the
4 Operating Settings and Conditions st
voltage
Temperature cuae G [
4 Compilation Process Settings .
Erly Timing Estmate File Name Type Lbrary Design Entry/Synthesis To +
Incremental Compilation gsys_nios_system/synthesi... Verlog HDL File <None>
Physical Synthess Optimizations asys_nios_system/synthesi... Verllog HOL File <None> Remove
4 EDATool Settings gsys_nios_system/synthesi... Systemieriog HOL Fie <None>
Design Entry/Synthesis gsys_nios_systemfeynthesi... Systemyerlog HOL Fie <None> Up
Simulation asys_nios_systemfsynthesi... Systemierlog HOL Fie <None>
Formal Verification gsys _nios_system/synthesi... Verllog HDL File <None>
Board-Level asys_nios_system/synthesi... Verilog HOL File <Nane>
4 Analysis & Synthesis Settings asys_nios_system/synthesi... Verilog HDL File <None>
VHDL Input gsys_nios_system/synthesi... Verlog HDL File <None>
Veriog HDL Input asys_nios_system/synthesi... Verilog HDL File <None>
Default Parameters gsys_nios_system/synthesi... Verilog HDL File <None>
Fitter Settings gsys_nios_system/synthesi... Verlog HDL File <None> E
TmeQuest Tming Analyzer asys_nios_system/synthesi... Verilog HDL File <None>
Assembler gsys _nios_system/synthesi... Verilog HDL File <None>
Design Assistant asys_nios_system/synthesi... Systemveriog HOL Fiie <Nane>
SignalTap 11 Logic Analyzer asys_nios_system/synthesi... Systemierlog HOL Fie <None>
Logic Analyzer Interface gsys_nios_system/synthesi... Systemverlog HOL Fiie <None>
PowerPlay Power Analyzer Settings asys_nios_system/synthesi... Systemveriog HOL Fiie <None>
S5 Analyzer gsys_nios_systemfsynthesi... Systemieriog HOL Fie <None>
aqsys_nios_system/synthesi... Systemverlog HDL File <None>
asys_nios_systemfsynthesi... Systemierlog HOL Fie <None>
gsys_nios_system/synthesi... Systemieriog HOL Fie <None>
asys_nios_system/synthesi... Verilog HOL File <None>
asys_nios_system/synthesi... Verilog HDL File <None>
gsys_nios_system/synthesi... Systemverlog HOL Fiie <None>
asys_nios_system/synthesi... Systemveriog HOL Fiie <None>
gsys_nios_systemfsynthesi... Systemieriog HOL Fie <None>
gsys_nios_system/synthesi... Systemveriog HDL File <Nene> M
et s et A P ;
W Buy Software | [ok | [cancel | [Ay | [keb

Figure 1.9: project file setup window for QuartuslII

issues.
If Analysis & Elaboration has indexed your hardware design, you can proceed to assign
hardware positions to the pins in your hardware design. Open the Pin Planner by selecting
”*Assignments/Pin Planner”” from the menubar. At the bottom of the Pin Planner win-
dow, there is a list with all the pins in your design. Assign a location on the FPGA chip for
each of the pins (Nodes in Pin Planner) by clicking on the empty cells in the Location col-
umn. According to [3], the pin locations can be looked up in table 1.1. After assigning the
Locations, the Pin Planner window should look like figure 1.10. You can close Pin Planner
and your hardware design is finished.

To finally generate your hardware design, choose ”“Processing/Start Compilation

124

from

] Node Name \ Location ‘

CLOCK 50 | PIN_Y2

LEDGI0] PIN_E21
LEDGI[1] PIN_E22
LEDG[2] PIN_E25
LEDG[3] PIN F24
LEDG[4] PIN_H21
LEDG[5] PIN_G21
LEDG[6] PIN_G22
LEDG[7] PIN_E21

Table 1.1: pin assignments for the DE2-115 board

the menubar. This process might take several minutes, depending on your machine and
hardware design. If your Compilation finishes without errors, you just created your first
FPGA hardware design! You can proceed and program your FPGA chip with this hard-

10

Glossary

% Pin Planner - C:/L ;_nios_ nios_demo - quartus_nios_demo =AACl X
Fle Edt View Processng Toos Window Hep 5 Search altera, com @
x
B G'”“Zs) Top View - Vire Bond
bELS e Cyclone IV E - EPACE116F29CT
= Node Name Direction Location _
@ 4 4 1ED6[7..0] Output Group T TETEE i LT
241 1EDG[7] Output PIN_G21 7 O .
L L
EY 2% 1enos) output PN G22 7 NVGOVA -
o 24 LEDGS] Output: PIN_G20 7 N
it 24 LEDG[4] Output PIN_H21 7 :
A 24 1EDG[3] Output: PIN_E24 7
248 1EnG[Y] Output PIN_E25 7 <
9 24 1encli] output PIN 22 7 eegova
] 22 1EG[o] Output PIN_EZL 7 IAGOOE « [=
e 0HO0000
OODODB -
© %A VA «
pa K i ' .
5] telojclcle M
Report B8 x Xﬁ A
e SototicH
eportnot avaisble ferolelolole
3 \/, [ole}
O - =
fd O4 Wam
2 O @1,,
o it
7 X EEEEEEEEE
pin
x| Named: = - [éo) s | Fiter{Pins: all -
HT Direction Location IOBank VREFGrowp I/OStandard Reserved (CumentStength SewRate Differental Pai
%_ CLOCK_50 Input PIN_Y2 2 B2.ND 2.5V (defauit) 8mA (default)
24t LenGfo] Output PIN_E21 7 B7.NO 2.5V (defauit) 8mA (default) 2 (default)
244 1enal1] Output PIN_E22 7 B7.N0 2.5V (default) 8ma (default) 2 (default)
Output PIN_E25 7 B7N1 2.5V (defauit) BmA (default) 2 (default)
Qutput PIN_E24 7 B7N1 2.5V (default) 8mA (default) 2 (default)
Output PIN_H2L 7 B7_N2 2.5V (defauit) BmA (default) 2 (default)
Output PIN_G20 7 B7.N1 2.5V (defauit) amA (default) 2 (default)
Output PIN_G22 4 B7.N2 2.5V (default) 6mA (default) 2 (defould)
Output PIN_G21 7 B7N1 {ZEVdefal 8mA (default) 2 (default)
0% 00:00:00|

Figure 1.10: Pin Planner with locations assigned to pins

ware design (see section 1.1.4).

programming the FPGA chip

Now that you have created a hardware description for your FPGA and have successfully
generated /compiled it, you can proceed to program your design. Programming your
hardware design onto the FPGA can be done from the console or by using the Programmer
UL

Programming the FPGA chip will keep the hardware description in the chip until the next
programming or power loss. This means that the chip has to be programmed again each
time the development board is turned on. To avoid reprogramming upon each power
cycle, the FPGA chip can be set to an automatic programming mode. In this mode, the
FPGA will take the hardware description from a flash memory and program itself upon
start. But there is a restriction to this automatic programming mode: It can only be used,
if all the components used in the current hardware design are properly licensed (e.g., the
tse ethernet MAC component is not licensed in Quartus II Web Edition). See section 1.1.2
for a short summary of the differences between Quartus versions.

You can start the Programmer manually or even fire it up from your Quartus instance
(see figure 1.11 for a screenshot of the Programmer main window). To do so, open your
hardware design project and select Tools/Programmer from the menu bar. If you start
Programmer from Quartus, the hardware design you want to program should already be
preselected. Otherwise, you can use the Add File... button to add your .sof file. If your
FPGA chip is not selected yet, you can use the Add Device... button to select your FPGA
chip. Make sure to select the correct chip number, otherwise you risk damaging your hard-
ware.

If you are using a non-licensed component in your hardware design, you can still use that
component, but can only use it while your FPGA is connected to your Computer running

11

Glossary

-

w Programmer - C:.-"Users,-"martin.l’Drcif:_ibox.-"DcrkumentE.-"l\-'laster_'l'hesis,-'quarlus_stuf‘l',-’\t.'eb_sen-'er_imprcu\c'ed_rest...I = EI__S@
2 Search altera.com @
3' Hardware Setup...| SB-Blaster [USB-0] Mode: Progress: :]

[] Enable real-time ISP to allow background programming (for MAX II and MAX V devices)

W File Device Checksum Usercode Program/ Verify Blank-
T Contigure Check
DE2_115_WEE_SERVER_... EP4CE115F29 011FOF5C FFFFFFFF

& Stop

Delete

[Add File...

Y& Change File...

4 I 2

Al Save File

i up

m

40 Down

EP4CE115F29

Figure 1.11: the main window of Programmer

gg Quartus I &I

File

C: fUsers/martin/Dropbox/Dokumente Master_Thesis/quartus_stufffweb_server_improved_restored/DE2_115_WEB_SERVER _time_limited.sof
contains one or more time-imited megafunctions that support the OpenCore Plus feature that will not work after the hardware evaluation
time expires. Refer to the Messages window for evaluation tme details.

Figure 1.12: the time limitation warning of Programmer

Programmer. A message will appear, which reminds you of that situation (the message
might look like figure 1.12).

Now you need to set your USB Blaster connection to the FPGA chip. Simply click the
Hardware Setup... button and window like 1.13 will show up. If you are using USB Blaster
for programming (on DE2-115 boards, you are using USB Blaster), your USB Blaster will
show up in the list of Available hardware items. Select if from the Currently selected hard-
ware dropdown list, close the Hardware Setup window and you sould be ready to start
programming. The Start button should be enabled, if you have added a .sof file, if you
have selected a FPGA device and if your USB Blaster is selected. Start programming the
clicking that button. The progress bar should show Success after programming finished
successfully. This means that your hardware design was programmed onto the FPGA
chip. If you are using non-licensed (time-limited) components, a popup window will ap-
pear after successful programming (TODO: link to screenshot here). Leave this window
open and keep the FPGA chip connected to your computer until you have finished using
your hardware design.

12

Glossary

‘% Hardware Setup £

Hardware Settings JTAG Settings

Select a programming hardware setup to use when programming devices. This programming

hardware setup applies only to the current programmer windaw.

Currently selected hardware: ’USB-BIaster [UsE-0] -]

Available hardware items
Hardware Server Port Add Hardware. ..
USE-Elaster Local LISB-0
Remove Hardware
L A

Figure 1.13: The hardware setup window of Programmer

Sometimes you could have issues with your USB Blaster hardware detection. If your USB
Blaster is not selected (from your previous programming), try to select it again in the Hard-
ware Setup... window. If it does not show up in the list of Available hardware items, check
your physical connection to your development board. Make sure the USB cable is con-
nected properly to your computer and the FPGA hardware. Also make sure, that your
FPGA hardware is connected to a power source and the power switch is turned on. If
the USB programmer is still not shown in the list, close the hardware selection window
and open it again (you may need to repeat this procedure several times). In fact, simply
retrying the failed operation helps in many cases for the Programmer (not only the issues,
which are listed here). Another way to get the Programmer working is to select Auto Detect
or turning your development board off and on again. If your USB Blaster did never show
up in the list of available hardware components, there might be a driver issue on your sys-
tem. This could be, because you ran the installation process as a non-privileged user. Also
make sure, that your USB Blaster is enlisted in Device Manager (on Windows machines).

setting up the BSP

After finishing all hardware related aspects of this introduction into the DE2-115 FPGA,
we are ready to start working on the software. Typically, NioslI applications are devel-
oped using the Nios2SBT (NioslI Software Build Tools), a modified version of the eclipse
Integrated Development Environment (IDE). NioslI applications usually consist of two
parts:

13

Glossary

¢ the Niosll Board Support Package (BSP), a software library and runtime environ-
ment, which is customized to a Central Processing Unit (CPU) in a hardware design.

¢ the Niosll application, which is the program implementing the functionality required
by the user and relying on functions provided by the BSP

= Nios Il Board Support Package B 3K

Nios II Board Support Package
Create a new Mios I Software Build Tools board support package project

Project name: quartus_demo_bsp

SOPC Information File name: Ch\Users\martin\Decumentsiquartus_nios_demo\gsys_nios_system.sopcinfo B

Use default location

Location: | Ch\Users\martin\Documentsiquartus_nies_deme\software\quartus_demo_bsp

CPU: ’niosZ_qsys_O vl
BSP type: | Altera HAL -|
BSP type version: [default V]

Additional arguments:

Command:

3

nios2-bsp hal . ./../gsys_nios_system.sopcinfo --cpu-name nios2_gsys_0

Use relative path

@:‘ [Einish l ’ Cancel

Figure 1.14: the BSP creation wizard

Start the Nios2SBT and select your workspace if you have not done so yet. To create a
new NioslI BSP, select ”“File/New /Nios II Board Support Package”’, which will open the
BSP creation wizard (see figure 1.14). Choose a name for your BSP project and select the
path to the .sopcinfo file, which has been generated for your Niosll system. The .sopcfile
should be located in your QuartuslI project folder. You can change the location of the BSP
(be default, it is saved in a subfolder of your Quartusll project folder). Select the CPU you
want to create the BSP for (in case you have more than one CPU in your NioslI system). A
BSP can only be generated for one CPU at once. If you have more CPUs in one hardware
design, you have to create a BSP for each processor. Confirm your selection by pressing
the Finish button of the BSP creation wizard. Your BSP project will appear in the Project
Explorer of the Nios2SBT. Now we are creating the actual NioslI application project, which
uses the BSP, that we just created. Choose ”“File/New /Nios II Application”” to open the

14

Glossary

= Mios I Application Gl &

Nios II Application
Create a new Mios II Software Build Tools application project

Project name: quartus_demo

B5P location: ChUsers\martin\Documentshquartus_nios_demo'\software\quartus_de E]

Uze default location

Location: | ChUsers\martin\Documentshquartus_nios_demohsoftwarelquartus_i

Additional arguments:

Command:
nios2-app-generate-makefile --app-dir . --bsp-dir ../quartus_demo_bsp --elf-name

Lse relative path

@:l Finish l [Cancel

Figure 1.15: the application creation wizard

Nios II Application wizard (see figure 1.15). Enter a name for your application project and
select the BSP for your project (the BSP that you created in section 1.1.4). Create the project
by selecting the Finish button. The project appears in the Project Explorer.

To add a new source file to the application project, right-click on the application project
and select ”’New /Source File”’. In the New Source File window (see figure 1.16), enter a
name for the Source File and click Finish to create your file. Every project has to contain a
main function, which is the entry point to your application. Start by creating this function
and adding code to it. Listing 1.1 shows how a basic main function could look like. It
demonstrates the output of text to the console by using

1 printf("Hello from Nios II!\n");

and controls the LEDs, that we connected via a Parallel I/O (PIO) component by using

1 IOWR_ALTERA_AVALON_PIO_DATA (PIO_LED_BASE, count & 0x01);

. You created your first NioslI software application.

15

Glossary

F Yy
= Mew Source File E@ﬂ

Source File ;
Create a new source file, =
Source folder: quartus_demo
Source file: main.|
Template: [Default C source template A] [Configure...]

@ [Finish || Cancel

Figure 1.16: the BSP creation wizard

O N N U o W N e

e s
® N Uk W N~ O

#include <stdio.h>
#include <system.h>
#include "altera_avalon_pio_regs.h"

int main() {
printf ("Hello from Nios II!\n");
int count = 0;
int delay;
while (1) {
IOWR_ALTERA_AVALON_PIO_DATA (LED_PIO_BASE, count & 0x01);
delay = 0;
while (delay < 2000000) {
delay++;
}
count++;
}

return 0;

Listing 1.1: example implementation of a main function

16

Glossary

executing NioslI projects on the target hardware

You can execute your NiosllI project from the Nios2SBT. To execute the application, right-
click on the application project in the Project Explorer and choose ”’Run As/Nios II Hard-
ware”’. This will compile your application, create a downloadable image, download the
software image and execute it on the target hardware. Before executing, please make sure
that you programmed the target hardware with the correct Hardware Design (see section
1.1.4).

Another option is to debug your application. To start debugging, right-click the project
and select ""Debug As/Nios II Hardware”’. This will execute the same steps as running
the software and additionally start Nios2SBT’s debugger.

if a window similar to figure 1.17 appears, your Target Connection setup may be incorrect.

= Debug Configurations]
Create, manage, and run configurations) A
@ [Target Connection]: No Nios Il target connection paths were located. Check connections and that a Nios Il sof is downloaded. J
T = 2o " "
EIEES Name: blah Nios I Hardware configuration
type filter text [£] Project 5 Target Connection| %5 Debugger| % Source| = Common

[E] C/C++ Application =
[E] C/C++ Attach to Ay
[E] C/C++ Postmorterr ProjectELF fle name: | C:\Users\martin\plahbiah.elf M
[E] C/C++ Remote Apg
= Launch Group Enable browse for file system ELF file

4) Nios T Hardware

P blah Nios I Har File system ELF file name:
P blinky_s_la_Kai |
4 blinky_dual_cpu -
4 blinky_dual cpu Advanced...
P Blinky-manual-|
B de2-115 Nios T H
P hello_sd_3july_r.
P hello_sd_july02 |
B hello_sd_july09_
B hello_warld 0 N
P hello_world_sdr:
P wiIP_NIOS_I_Bx
B wIP_NIOS_I_Ex
B myfirst_niosll_aj
¥ RTOSDemo_nio
P RTOSDemo_SBT
P sdram_gang_10j -

« [b

Filker matched 32 of 32 items PP LS

Project name: blah -

@
£

Figure 1.17: the window indicating an error with the target connection path

To setup the target connection, open the Target Connection tab and click the Refresh Connec-
tions button. Select a Processor to execute your target on and a Byte Stream Device, through
which text output will be transferred (see 1.18). Confirm your selection with Apply and
start Debugging your software with Debug. This finishes the tutorial on how to run your
first Nios II Application.

17

Glossary

= Debug Configurations ‘

&

Create, manage, and run configurations

@ Select one of the available target connection paths.

< [B - - .
EEEIEED Name: blah Nios Il Hardware configuration
type filter text Project il Target Connection .35 Debugger| & Source| = Common|
[E] C/C++ Application » Connections
[E] C/C++ Attach to Ay Processars:
[£] C/Ce+ Postmarter Cable Device Device ID Instance D Name Architecture Refresh Connections
[E] ¢/C++ Remote Apg USB-Blaster on localhost [‘EPSCIZU\. 1 |1 lniosz_1 Nics2:3
B Launch Group USB-Blaster on localhost [...|EP3C120]...[1 o Inios2 0 Mios2:3
P Nios T Hardware System ID Properties...
4 blah Nios I Hare yte Stream Devices:
P blinky_a_la_Kai | Cable Device Device ID Instance D Name Version
i blinky_dual_cpu| = USB-Blaster on localhost [.. ‘uacum. 1 |1 jtaguart 1 |1
P blinky_dual_cpu USB-Blaster on localhost [...|EP3C120]...[1 o itaguart 0 [1
] Blinky-manual-1 [] Disable 'Nios II Console' view
PN de2-115 Nios 1} tus Project Fil | < Using default fo &.jdi files extracted from ELF
B hello_sd_3july.: Quartus Project File name: < Using default .sopdnfo & .jdi fles extrat om ELF >
B hello_sd july02 | System ID checks
P hello_sd_july09_
Ignore mismatched system D
P hello_world_0 N [
B hello_world_sdr. [Ignore mismatched system timestamp
P wiIP_NIOS I_Ex F—
4 hwiIP_NIOS I Exc ownioa
P myfirst_niosllay Download ELF to selected target system
F¥ RTOSDemo_nio Start processor
4 RTOSDemo _SET [] Reset the selected target system
P sdram_gang 10
« v
Apply Revert
Filter matched 32 of 32 items

®

Figure 1.18: choosing the target connection

18

Bibliography
[1] Altera. My First Nios II Software Tutorial. Altera Corporation, 101 Philip Drive,

Assinippi Park, Norwell, Massachusetts 02061 USA, January 2010.

[2] Altera. Nios II Hardware Development Tutorial. Altera Corporation, 101 Innovation
Drive, San Jose, CA 95134, May 2011.

[3] Terasic Technologies Inc. DE2-115 User Manual. Terasic, 2010.

[4] terasIC. My First Nios II for Altera DE2-115 Board. Terasic Technologies, Gongdao 5th
Rd, East Dist, Hsinchu City, 30070. Taiwan.

19

	1 Tutorial
	Glossary
	1.1 Initial setup of the development environment
	1.1.1 components
	1.1.2 installation
	1.1.3 verification of successful installation
	1.1.4 first steps with the xme-software for nios

	Bibliography

