

Master Thesis Presentation Future Electric Vehicle on Lego By Karan Savant

Guide: Dr. Kai Huang

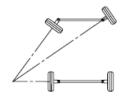
- Objective
- Lego Car
- Wifi Interface to Lego Car
- Lego Car FPGA System
- Android Application
- Conclusion

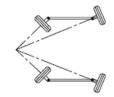
Objective of Thesis

- Interfacing the Lego car with an Wi-Fi Module and controlling it remotely via Smart-Phone/Tab
- Configure the Wi-Fi Module as an Access point
- Re-engineer the Lego Technic 9398 into 4-wheel independent steering/driving
- Develop an Android Application to Implement control based on the Android device inbuilt sensors
- Implement a closed loop control for Car speed measurement using BEMF

- Objective
- Lego Car
- Wifi Interface to Lego Car
- Lego Car FPGA System
- Android Application
- Conclusion

Lego Car


Currently Being Used It has one DC and one Servo Lego Motors


New Configuration It has Four DC and Four Servo Lego Motors

Driving Modes

(a) default mode

(c) parallel mode

(f) emergency mode

(b) slow mode

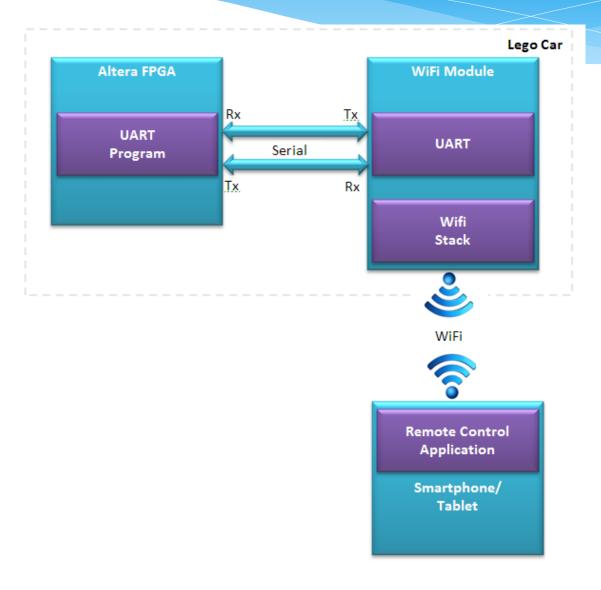
(d) rotational mode

(e) parking mode

- Objective
- Lego Car
- Wi-Fi Interface to Lego Car
- Lego Car FPGA System
- Android Application
- Conclusion

Why WiFi?

- Better range than most other wireless protocols
- More secure
- Easily available today
- Many hardware options available
- Wifi has higher bitrate so it is more suitable for transferring the camera video signal
- Some Smartphone OS like Apple iOS requires special chip to be put in the application circuit for it to be Bluetooth enabled


Wifi Module : RN134

Features:

- Hardware interface: UART and SPI slave
- Full onboard TCP/IP stack (no external drivers required)
- Supports Adhoc and infrastructure networking modes
- Real-time clock for time-stamping, auto-sleep, and auto-wakeup modes
- Runs directly from batteries or regulated power supply
- Configuration over serial or wireless ir commands
- Over the air firmware upgrade
- Secure Wi-Fi authentication schemes (WEP / WPA / WPA2)

Wi-Fi Module -FPGA Interface over UART

- Objective
- Lego Car
- Wi-Fi Interface to Lego Car
- Lego Car FPGA System
- Android Application
- Conclusion

FPGA Board Used

The key features of the board :

Featured device

Altera Cyclone[®] IV EP4CE22F17C6N FPGA

Altera serial configuration – EPCS16(16Mbits)

Memory devices

32MB SDRAM

2Kb I2C EEPROM

General user input/output

8 green LEDs

- 2 debounced pushbuttons
- 4-position DIP switch

A/D Converter

NS ADC128S022, 8-Channel, 12-bit A/D Converter

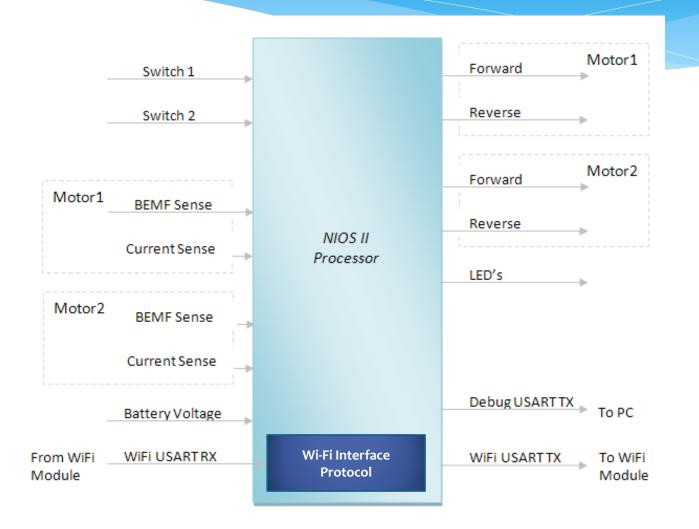
FPGA Hardware Configuration

clk_50		
reset_n		
adc_dout_to_the_de0_nano_adc	adc_cs_n_from_the_de0_nano_add	
	adc_din_from_the_de0_nano_add	
	adc_sclk_from_the_de0_nano_add	
data0_to_the_epcs_flash_controller	dclk_from_the_epcs_flash_controller	
	sce_from_the_epcs_flash_controller	
	sdo_from_the_epcs_flash_controller	
	out_port_from_the_pio_led[70]	
coe_O_pwm1_from_the_pwm_gen_dc		
coe_O_pwm2_from_the_pwm_gen_dc		
coe_O_pwm1_from_the_pwm_gen_servo		
	coe_O_pwm2_from_the_pwm_gen_serve	
	zs_addr_from_the_sdram_0[120]	
	zs_ba_from_the_sdram_0[10]	
	zs_cas_n_from_the_sdram_0	
	zs_cke_from_the_sdram_0	
	zs_cs_n_from_the_sdram_0	
	zs_dq_to_and_from_the_sdram_0[150]	
	zs_dqm_from_the_sdram_0[10]	
	zs_ras_n_from_the_sdram_0	
	zs_we_n_from_the_sdram_0	
rxd_to_the_uart_wifi	txd_from_the_uart_wif	

Nios II Core Processor CPU

ADC Controller controls the NS ADC128S022, 8-Channel, 12-bit ADC

EPCS Flash Controller


PIO LEDs

Motor Control IP Controls the Motor Speed according to the PWM Duty Cycle

SDRAM Controller Controls the 32Mb SDRAM

UART Module sets the UART to run at Baud rate: 115200 bps 8 Data bits, No Parity, 1 Stop bit.

FPGA Software- NIOS II

Wi-Fi Interface Protocol

In order to make the communication secure the following message structure is used

Message Structure

Message ID||Vehicle id||MAC ID||COMMAND||Data||

- * Start of message
- * end of message
- || Delimiter

Vehicle ID

AGxxxxxx: Vehicle ID is made using the ip assigned to the Wifi module

eg: ip 192.168.5.5 has Vehicle ID AG005005 So ip 192.168.xxx.xxx has Vehicle ID AGxxxxxx

Message Exchange

Startup and Authentication

Mxxx||AGxxxxxx||MAC ID||PASSWORD||Data||

Mxxx||AGxxxxxx||MAC ID||ACK||Data||

Speed Control

Mxxx||AGxxxxxx||MAC ID||START||Data||

Mxxx||AGxxxxxx||MAC ID||ACK||Data||

Smartphone

Mxxx||AGxxxxxx||MAC ID||ROL||Data||

Mxxx||AGxxxxxx||MAC ID||ACK||Data||

Above messages continue cyclically until Quit message is send

Mxxx||AGxxxxxx||MAC ID||QUIT||Data||

Mxxx||AGxxxxxx||MAC ID||ACK||Data||

If Acknowledgement is not received the Message is resend

FPGA Board

- Objective
- Lego Car
- Wi-Fi Interface to Lego Car
- Lego Car FPGA System
- Android Application
- Conclusion

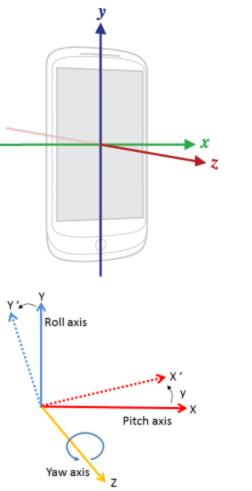
Sensors In Android

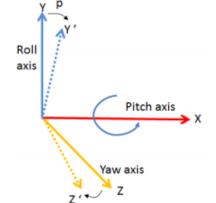
The Android platform supports three broad categories of sensors:

Motion sensors

These sensors measure acceleration forces and rotational forces along three axes. This category includes accelerometers, gravity sensors, gyroscopes, and rotational vector sensors. **Environmental sensors**

These sensors measure various er

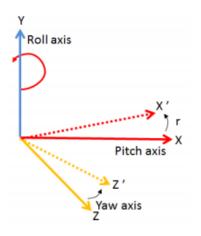

These sensors measure various environmental parameters, such as ambient air temperature and pressure, illumination, and humidity. This category includes barometers, photometers, and thermometers.

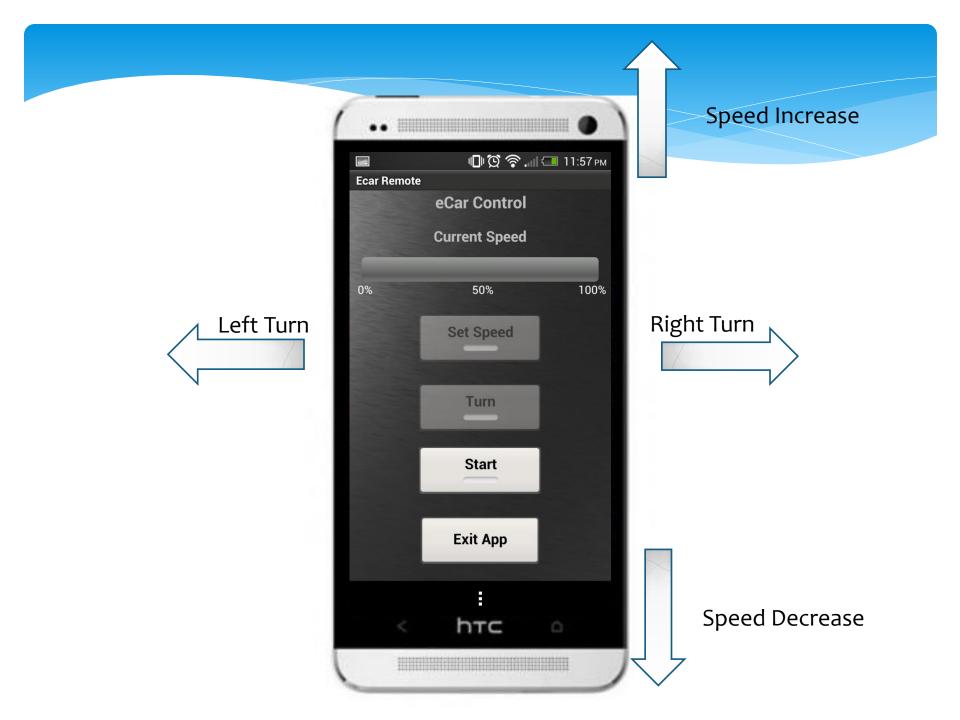

Position sensors

These sensors measure the physical position of a device. This category includes orientation sensors and magnetometers.

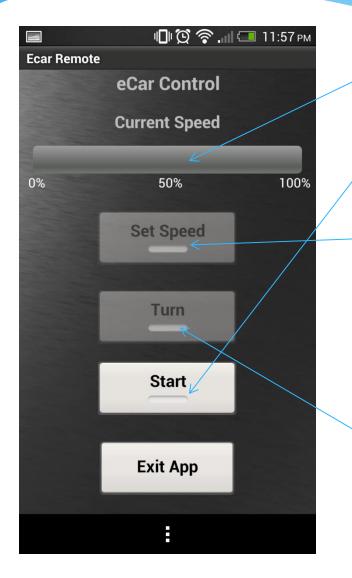
Android Orientation Sensor

Definition of the coordinate system used The orientation sensor is software-based and by the Sensor Event API.





derives its data from the accelerometer and the geomagnetic field sensor.


The orientation sensor lets you monitor the position of a device relative to the earth's frame of reference (specifically, magnetic north)

The orientation sensor provides azimuth (yaw), pitch, and roll values

Android Ecar Remote Application

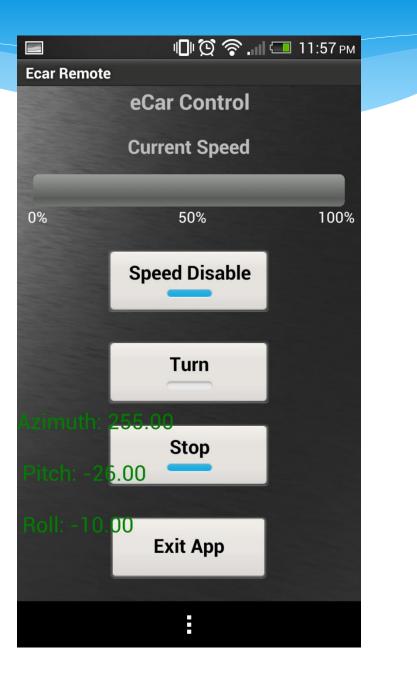
Displays the Current Speed

At Start button Press

Record the Device Coordinates as the Reference Coordinates

At Set Speed button Press

Record the Pitch Value Keep Calculating the Difference: Pitch = Reference Pitch – Current Pitch PWM Duty= Constant * Pitch PWM is used to control the Ecar Speed


At Turn button Press

Record the Roll Value Keep Calculating the Difference: Turn = Reference Roll – Current Roll

	🕕 🖸 🛜 . II 💷 11:51 рм
Ecar Remote	
Language	English 🚽
First Name	Karan
Last Name	Savant
Email ID	aransavant@gmail.com
	AG219001 -
eCar ID	
Password	••••
	Register

	D°Q €	🗔 11:57 рм
Ecar Remote	eCar Control	
	Current Speed	
0%	50%	100%
	Set Speed	
	Turn	
	Start	
	Exit App	
	:	

Andriod Programming Links

Here is the link i found which gives a step by step tutorial for setting up the android tools.

If you do not have Eclipse IDE or JRE(Java Runtime Environment) installed please follow this tutorial first.

http://www.vogella.com/articles/Eclipse/article.html

Then you have to install the ADT. The following link describes how to install and configure

the ADT(Android Development tools). Please only follow the steps mentioned under "Updating an existing Eclipse installation"

http://www.vogella.com/articles/AndroidInstallation/article.html

There are also tutorials for android development and common problems you can find on this link. http://www.vogella.com/android.html