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Key Frame based 
SLAM

Key Frame matching strategies for improved performance  

Create a feature map of the environment 

Kinect/Stereo/Mono 

Motionmodel, Filtering, 3D-3D, 3D-2D, Global Optimization



Object detection and 
pose estimation using Features and PnP

Extract features from known 
object and their 3D position 
(e.g. box and 2D offset) 

Detect features and use 
3D-2D correspondences with 
RANSAC to estimate object 
pose 

Int J Comput Vis

Fig. 8 Real images. Top. Left: Calibrated reference image. Right: Re-
projection of the model of the box on three video frames. The camera
pose has been computed using the set of correspondences depicted by

the thin blue lines. Bottom. Left: Calibrated reference image. Right: Re-
projection of the building model on three video frames. The registration
remains accurate even when the target object is partially occluded

As in the non-planar case, the EPnP solution proposed
here is much faster than the others. For example for n = 10
and a tilt of 30◦, our solution is about 200 times faster than
AD, 30 times faster than LHM, even though the MATLAB
code for the latter is not optimized.

5.2 Real Images

We tested our algorithm on noisy correspondences, that may
include erroneous ones, obtained on real images with our
implementation of the keypoint recognition method of (Lep-
etit and Fua 2006). Some frames of two video sequences are
shown in Fig. 8. For each case, we trained the method on
a calibrated reference image of the object to be detected,
for which the 3D model was known. These reference im-
ages are depicted in Fig. 8-left. At run time, the method
generates about 200 correspondences per image. To filter
out the erroneous ones, we use RANSAC on small sub-
sets made of 7 correspondences from which we estimate the
pose using our PnP method. This is effective because, even
though our algorithm is designed to work with a large num-
ber of correspondences, it is also faster than other algorithms
for small numbers of points, as discussed above. Further-
more, once the set of inliers has been selected, we use all
of them to refine the camera pose. This gives a new set of
inliers and the estimation is iterated until no additional in-
liers are found. Figure 8-right shows different frames of the
sequences, where the 3D model has been reprojected using
the retrieved pose.

6 Conclusion

We have proposed an O(n) non-iterative solution to the PnP
problem that is faster and more accurate than the best cur-
rent techniques. It is only slightly less accurate than one the
most recent iterative ones (Lu et al. 2000) but much faster
and more stable. Furthermore, when the output of our al-
gorithm is used to initialize a Gauss-Newton optimization,
the precision is highly improved with a negligible amount
of additional time.

Our central idea—expressing the 3D points as a weighted
sum of four virtual control points and solving in terms of
their coordinates—is very generic. We demonstrated it in
the context of the PnP problem but it is potentially applica-
ble to problems ranging from the estimation of the Essential
matrix from a large number of points for Structure-from-
Motion applications (Stewènius et al. 2006) to shape recov-
ery of deformable surfaces. The latter is particularly promis-
ing because there have been many approaches to parame-
terizing such surfaces using control points (Sederberg and
Parry 1986; Chang and Rockwood 1994), which would fit
perfectly into our framework and allow us to recover not
only pose but also shape. This is what we will focus on in
future research.
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Binary Descriptors

Try more complex 
binary features 

Experiment with 
different schemes and 
perform an in detail 
evaluation
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Locally Sensitive Hashing

Instead of performing a quadratic search to perform 
feature matching we can also apply hashing 

Evaluate and/or try Locally Sensitive hashing for different 
scenarios 

Try different hashing strategies for binary descriptors



Freespace, 
Ground-plane estimation and IPM

Use stereo setup to 
estimate freespace 

Estimate ground plane 

Perform inverse 
perspective mapping of 
the ground plane
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(a) Free space (b) Membership values

(c) Membership cost image (d) Height segmentation

Fig. 3. Stixels computation: Fig. (a) shows the result obtained from free space com-
putation with dynamic programming. The assigned membership values for the height
segmentation are shown in Fig. (b), while the cost image is shown in Fig. (c) (the grey
values are negatively scaled). Fig. (d) shows the resulting height segmentation.

2.5 Stixel Extraction

Once the free space and the height for every column has been computed, the
extraction of the stixel is straightforward. If the predefined width of the stixel
is more than one column, the heights obtained in the previous step are fused
resulting in the height of the stixel. The parameters base and top point vB and
vT as well as the width of the stixel span a frame where the stixel is located.

Due to discretization effects of the free space computation, which are caused
by the finite resolution of the occupancy grid, the free space vector is condemned
to a limited accuracy in depth. Further spatial integration over disparities within
this frame grant an additional gain in depth accuracy. The disparities found
within the stixel area are registered in a histogram while regarding the depth
uncertainty known from SGM. A parabolic fit around the maximum delivers the
new depth information. This approach offers outlier rejection and noise suppres-
sion, which is illustrated by Fig. 4, where the SGM stereo data of the rear of
a truck are displayed. Assuming a disparity noise of 0.2 px, a stereo baseline of
0.35 m and a focal length of 830 px, as in our experiments, the expected standard
deviation for the truck at 28 meters is approx. 0.54 m. Since an average stixel
covers hundreds of disparity values, the integration significantly improves the

[1]	 H. Badino, U. Franke, and D. Pfeiffer, “The Stixel World A Compact Medium 
Level Representation of the 3D-World,” in Pattern Recognition, Springer, 2009, pp. 
51–60.



SGM (+Plane Sweep)

Well known and good 
dense stereo algorithm 

CVPR2014 paper with 
several extensions and 
nice ideas (feature 
matching initalization, 
planes, local tiles)

[1]	 H. Hirschmuller, “Stereo Processing by Semiglobal Matching and Mutual 
Information,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 2, pp. 328–341, 
2008.
[2]	 S. N. Sinha, D. Scharstein, and R. Szeliski, “Efficient High-Resolution Stereo 
Matching using Local Plane Sweeps,” CVPR 2014, pp. 1–8, Apr. 2014.
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Figure 6. (a) Runtime and accuracy as a function of disparity range on the 19 MP Disney Mansion sequence. (b) Accuracy vs. runtime of
our method on the Midd9 images as the number of rounds nR is varied from 1 to 10. We use nR=3 for all results reported.

Left image Ground truth SGM-HH Libelas LPS (ours)

Figure 7. Results on a subset of the MiddNew7 test images with ground truth (Piano, Motorcycle, Adirondack, Playtable, and Recycle).

tween accuracy and runtime, Figure 5 plots the average er-
rors of all five methods against log runtimes for each of the
three test groups. The same trend is observed in all cases:
Libelas is the fastest, our method LPS is the most accurate,
and SGM-HH is the second most accurate. SGM-base is of-
ten comparable to SGM-HH in accuracy, but slower, while
PatchMatch is neither competitive in speed nor accuracy.

A qualitative analysis of the disparity maps (Figure 7) re-
veals that our method excels at recovering slanted surfaces
even with weak texture, which are difficult for SGM (for

instance the Adirondack chair). Libelas, on the other hand,
often makes gross errors if the initial triangulation of feature
points fails to include parts of the scene. LPS also can com-
pensate for vertical misalignment which causes problems
especially in areas with high-frequency texture (such as the
floor in Playtable). Completely untextured regions, such as
the ceiling in Piano, are problematic for all techniques.

To evaluate performance on larger disparity ranges, we
selected ten pairs with increasing baseline from the 19 MP
Mansion dataset [12], yielding disparity ranges from 100 to
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often makes gross errors if the initial triangulation of feature
points fails to include parts of the scene. LPS also can com-
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Ferns for traffic sign detection

Keypoint recognition with 
learning phase - train special 
descriptors for certain 
templates 

Use learned descriptor for e.g. 
traffic sign detection, template 
detection

[1]	 M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint recognition using 
random ferns,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 3, pp. 448–461, 
2010.
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Fig. 1. Matching a mouse pad in a 1074-frame sequence against a reference image. The reference image appears at the top and

the input image from the video sequence at the bottom. : Top row. Matches obtained using ferns in a few frames. Middle row.

Matches obtained using SIFT in the same frames. Bottom row. Scatter plot showing the number of inliers for each frame. The

values on the x and y axes give the number of inliers for Ferns and SIFT, respectively. Most of the time, the Ferns match at

least as many points as SIFT and often even more, as can be seen from the fact that most of the points lay below the diagonal.

November 7, 2008 DRAFT



Overview
Topic Assigned Team

Key Frame based SLAM

Object Detection and Pose Estimation Lenna

Optimized Binary Descriptors

Locality Sensitive Hashing

Freespace, Ground Plane estimation and IPM Bug Busters

Semi Global Matching + Plane Sweeping

Ferns for Traffic Sign Detection Triforce


