
Robot Vision Course SS 2014 - Assignment 2

Robot Vision Course SS 2014
Philipp Heise, Brian Jensen

Assignment 2 - Due: 06.05.2014

Exercise 0 Prerequisites

We have provided some common message definitions and headers required to complete the
exercises into a utilities package available here: https://github.com/tum-robot-vision/rvc_
utils. For this assignment we will be using two different datasets: the affine covariant features
dataset (see http://www.robots.ox.ac.uk/~vgg/research/affine/) for visually evaluating
the overall performance of all components, and the local image desciptor dataset (http://www.
cs.ubc.ca/~mbrown/patchdata/patchdata.html) for the ROC challenge competition. Both
of these datasets have been repackaged into rosbag files for convenience and can be downloaded
at http://www6.in.tum.de/~jensen/rvc/match_data/.

Exercise 1 MOPS - Multi-Scale Oriented Patches Descriptor

In the previous assignment sheet you implemented a method for detecting key points in images
using the Harris corner detector, and you have likely tested other alternative key point detectors.
In this exercise you will take the next step and extract descriptors for each detected key point that
contain discriminative information about the image patch immediately around the key point in
order to match key points between different images of the same scene. The methods employed
in this exercise are based upon techniques described in ”Multi-Image Matching using Multi-
Scale Oriented Patches” by Brown, Szeliski, and Winder (see http://research.microsoft.

com/apps/pubs/default.aspx?id=70120).

1. (Simple Patches Feature Descriptor) To get started you are going to implement a simple
feature descriptor containing values sampled from a square image patch centered around
the key point. In its most basic form this feature descriptor is characterized by a single
parameter, patch size, that specifies the side length of the square patch. Image values
are taken directly from the grayscale image and stored in an array.

• For this exercise you should extend your <Group Name> features package from the
previous assignment sheet.

• Create a new ”MOPS” feature descriptor class in your package. This class should
implement the OpenCV interface: cv::DescriptorExtractor.

• Your MOPS feature descriptor implementation (in computeImpl(...)) should ini-
tially copy values straight from the image for each key point in the patch r =
[kx− l

2 , kx + l
2]× [ky − l

2 , ky + l
2] where kx, ky are the key point’s location and l the

patch size. The descriptor values di are then defined as di = I(xi, yi),∀ xi, yi ∈ r.
You can initially ignore the octave and angle key point parameters. The resulting
cv::Mat of feature descriptors should have one row for each input key point con-
taining the corresponding descriptor of size patch size2 and use the same element
datatype as the image.

1

https://github.com/tum-robot-vision/rvc_utils
https://github.com/tum-robot-vision/rvc_utils
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.cs.ubc.ca/~mbrown/patchdata/patchdata.html
http://www.cs.ubc.ca/~mbrown/patchdata/patchdata.html
http://www6.in.tum.de/~jensen/rvc/match_data/
http://research.microsoft.com/apps/pubs/default.aspx?id=70120
http://research.microsoft.com/apps/pubs/default.aspx?id=70120

Robot Vision Course SS 2014 - Assignment 2

• Create a new ros node class for controlling the feature descriptor extraction.

– This class should maintain a pointer to an instance of cv::DescriptorExtractor.

– It should have a public member function with signature similar to
cv::DescriptorExtractor::compute that simply calls its DescriptorExtractor
instance pointer with the provided parameters.

• The parameter patch size should be available via dynamic reconfigure. A good
default here is a patch size of 15.

2. (Simple Patches Feature Matching) Now that you have implemented your initial feature
descriptor you are ready to implement the next part of the processing pipeline: feature
descriptor matching. You are going to create a generic feature matching implementation
that should work for all types of feature descriptors under the condition that they have
the same length and data type.

• Create a new feature matcher class. This class can implement either the OpenCV
cv::DescriptorMatcher interface or simply a method with the signature:
void match(const Mat& srcDescriptors, const Mat& destDescriptors,

vector<DMatch>& matches) const

• The descriptor matcher implementation should use exhaustive search to find the
best matching descriptor in the destination descriptor array for each descriptor in
the source array. Since each descriptor can be thought of as a high dimensional
vector, the simplest way to define the best match between two descriptors is the
match with the shortest distance. There are several ways to define the distance
between vectors, for the this exercise you should implementing one or both of the
following:

– The `2 norm (sum of squared differences):
∑

i(si − di)2 where si and di are the
source and destination descriptor values respectively.

– The `1 norm (sum of absolute differences):
∑

i |si − di| where si and di are the
source and destination descriptor values respectively.

• Use the type cv::DMatch for representing matches.

• Create a drawMatches function for visualizing the feature matches. It should com-
bine the source and destination images side by side into a new image and draw lines
between the matching locations in the source and destination images.
Note: the OpenCV ROI extraction function cv::Mat::operator() and the copy
function cv::Mat::copyTo() may be helpful here.

3. (Feature Matching Node) With your first feature descriptor and feature matching imple-
mentations complete its time to put them to the test.

• Create a new executable in your package named feature matcher. It will use your
implementation files from the previous assignment sheet plus the newly created
descriptor extractor and matcher.

• Create a new ROS node for controlling your feature matching implementation.

– This new node should subscribe to two input image message topics, source and
destination, and publish an output image topic visualizing the matched key
points between the source and destination images.

– In order to ease internal sychnronization all corresponding messages published
in the bag files for this assignment are time synchronized. You can use the
message filters::TimeSynchronizer ROS class for subscribing to sychro-
nized message topics and receiving a single combined call back.

– The new node should be initialized with instances of your feature detector and
feature descriptor nodes.

2

Robot Vision Course SS 2014 - Assignment 2

• Upon receiving an incomcing image message pair, the node should:

– detect key points from both images using your feature detector node instance

– extract descriptors from both images using your descriptor extractor node.

– match the source image descriptors to the destination image descriptors.

– visualize the matches using your drawing function drawMatches and output the
result

• Test your implementation using the provided evaluation datasets: bikes, boats and
graffiti. The first image pair (index 1) in the bag files always contains the same
image in both the source and destination image messages for debugging purposes.
Your implementation should therefore extract the exact same keypoints in this image
pair and match the exact same key point locations in both images with zero distance
between matching descriptors.

4. (Robust matching) One key weakness of the matching function implemented in the pre-
vious task is that it always returns a match for each descriptor in the source array. One
simple way to improve this is to compute a match confidence for each source descriptor
by comparing the distance to the nearest neighbor d1−NN with the distance to the second
nearest neighbor d2−NN in the destination descriptor array and only accepting matches
below a certain ratio threshold tm:

d1−NN

d2−NN
< tm where tm < 1

and thus only accepting matches whose distance is significantly lower than the next best
candidate.

• Modify your matching implementation to only accept matches below a ratio thresh-
old tm. A good default value for tm is 0.75.

• Add a dynamically reconfigurable parameter to your matching node: ratio threshold

the ratio threshold for accepting matches.

5. (Multi-Scale Patches Feature Descriptor) One thing you will quickly notice is that the
simple patch based descriptor is not particularly robust against different views of the
scene. To remedy this you will be adding different invariances to your MOPS feature
descriptor. To start with you will add scale invariance to your MOPS descriptor.

• Build an image pyramid with the same number of octaves as your key point detection.

• Extract the descriptor at the image octave indicated the key point’s octave.

6. (Multi-Scale Oriented Patches Feature Descriptor) Using the dominant orientation esti-
mated during key point detection it is also possible to make the MOPS descriptor robust
against in place rotations of the scene. Instead of sampling along the grid aligned with
image axes, the image patch coordinates are first rotated by the key point’s orientation
before sampling:

p′ = Rp+ k, R =

(
cos θ − sin θ
sin θ cos θ

)
where p′ are the oriented patch coordinates, p the original orthogonal coordinates, k the
key point location, and θ the orientation angle.

• Add a dynamically reconfigurable parameter to your feature descriptor node, ori-
entation, that determines if oriented descriptors should be extracted.

• Modify your implementation to optionally extract oriented image patches. Use the
formula above to obtain the rotated patch coordinates. Initially perform nearest
neighbor interpolation, so that di = I(bxi + 0.5c, byi + 0.5c).

3

Robot Vision Course SS 2014 - Assignment 2

• optional: Extend your implementation to use linear interpolation when sampling
the rotated patch coordinates.

7. (Normalization) To compensate for changes to the scenes brightness you should normalize
your descriptor by demeaning its values. Modify your descriptor extractor implementa-
tion to normalize the descriptors as a post processing step.

Exercise 2 BRIEF - Binary Robust Independent Efficient Features Descriptor

So far this assignment has dealt with extracting and matching descriptors that are based
upon densely or uniformly sampling image values around the key point. An alternative both
in terms of implementation speed and discriminability are the class of binary descriptors that
are based upon statistical properties of image region around the key point. In this exercise we
will implement the approach described in ”BRIEF: Binary Robust Independent Features” by
Calonder et al. (see http://cvlab.epfl.ch/research/detect/brief).

1. (Binary Feature Descriptor Extraction) The general idea behind BRIEF is to compare
points p1, p2 selected at random in the region around the key point with a test τ(p1, p2)
defined as:

τ(p1, p2) :=

{
1, if I(p1) < I(p2)

0, otherwise

The BRIEF descriptor dn is then defined as the n-dimensional bit string, for n ∈ {128, 256, 512},
resulting from the ordered aggregation of n such tests τ(p1, p2):

dn :=

n∑
i=1

2i−1τ(pi1, p
i
2)

The resulting descriptor is then 16, 32 or 64 bytes respectively, hence the name BRIEF-
16, BRIEF-32 and BRIEF-64. Before the tests are performed the image patch is usually
smoothed to robustly against noise.

• Add a new class for extracting BRIEF descriptors. Add a dynamically reconfig-
urable parameter to your feature descriptor node for optionally extraction BRIEF
descriptors and selecting between 16, 32 and 64 byte descriptors.

• The first step in implementing your BRIEF descriptor is to define the n tests and
their order. To simply things we have provided you with a sample test pattern in
BRIEFPattern.h contained in the rvc utils package suitable for all BRIEF pattern
sizes, but feel free to try out your own pattern.

• Perform smoothing using a gaussian or box filter prior to computing the descriptor.
Your smoothing parameter should be dynamically reconfigurable. A good default
here is a filter size of 3x3.

2. (Binary Descriptor Matching)

• Modify your descriptor matching implementation so that the hamming distance is
calculated for BRIEF descriptors instead of the `1 or `2 norm. The hamming distance
for bit strings is defined as

∑n
i=1 si ⊕ di where si, di are corresponding source and

destination bit values and ⊕ the binary xor operation and in short is the number
positions where two bit strings differ.

Exercise 3 ORB - Oriented Brief Descriptor

The vanilla BRIEF descriptor is not invariant to in-plane rotations. Simply rotating the set
of randomly selected test points by the key point’s domination orientation has been shown to
lead to a net decrease in descriptor performance. An improvement in descriptor performance

4

http://cvlab.epfl.ch/research/detect/brief

Robot Vision Course SS 2014 - Assignment 2

has been demonstrated with a specific set of test points that are only available at 30 evenly
distributed orientations (every 12◦) instead of the key point’s exact orientation. A fixed de-
scriptor length of 32 bytes was also chosen. This idea was proposed in ”ORB: an efficient
alternative to SIFT or SURF” by Rublee et al. (see http://www.willowgarage.com/papers/

orb-efficient-alternative-sift-or-surf).

1. (ORB Descriptor Extraction and Matching)

• Add a new class for extracting ORB descriptors and modify your feature descriptor
node to also optionally extract ORB descriptors at run time.

• The ORB tests are not random in contrast with BRIEF so we have provided you with
a file containing the ORB test patterns ORBPattern.h in the rvc utils package.
Choose the test pattern orientation closest to the key point’s orientation.

• Just as with BRIEF use the hamming distance metric for matching ORB descriptors.

Exercise 4 ROC Challenge

In order to evaluate the performance of feature descriptors, ROC (Receiver operating charac-
teristics) curves are often used to compare different descriptor implementations. These curves
show the true positive rate (TPR) against the false positive rate (FPR) evaluated for increasing
descriptor distance thresholds. The more descriminitive a feature descriptor is, the steeper the
climb in the curve and the larger the area und the curve will be.
The goal of the ROC challenge is to experiment with your descriptor implementation from the
previous exercises or to come up with an entirely new descriptor approach for achieving the best
descriptor performance on the provided benchmark datasets. We will be using a single metric
to judge descriptor performance, area under the ROC curve (AUC).

1. (Dataset) We provide two bagfiles that contain ground truth information for benchmark-
ing descriptor performance: liberty and notredame. A third bagfile, challenge, has the
patch correspondence information withheld and will be used to compare the teams. These
datasets contain sequences of image pairs of corresponding image patches. Each image
contains a 24 x 24 grid of image patches, where each image patch is 64 x 64 pixels. There
is a bijective correspondence between an image patch in the source image and in the
destination image. Since the focus is on descriptor performance, we provide you with
the key point locations for each image in the image pair, as well as other necessary meta
data, packed in a DataSetMessage (defined in the rvc utils package). This message
defines the following fields:

• dataset name: The name of the dataset. This information will need to be passed
on the roc challenge server.

• dataset idx: The index of the image pair in the sequence. This information will
need to be passed on to the roc challenge server.

• source points: The key point locations in the source image. The x and y compo-
nents encode the position in the image. The z component is unused.

• dest points: The key point locations in the destination image, defined same as
above.

Note: The key points do not have orientation information associated with them. For
best performance you will likely need to estimate the orientation for each key point. One
way to accomplish this would be to reuse the key point orientation estimation from the
previous sheet. Scale space estimation is unnecessary as all corresponding patches are
sampled from the same image scale.
You should create a new node, or expand your existing feature matcher so that it uses
a message filters::TimeSynchronizer to subscribe to three topics: a pair of input

5

http://www.willowgarage.com/papers/orb-efficient-alternative-sift-or-surf
http://www.willowgarage.com/papers/orb-efficient-alternative-sift-or-surf

Robot Vision Course SS 2014 - Assignment 2

image topics, source and destination, and a DataSetMessage topic. Use the key point
locations provided in the DataSetMessage to extract descriptors from both images using
your chosen descriptor implementation. The node should then publish its results as a
ROCCurveMessage as is described in the next section.

2. (ROC Challenge Server)
Inside the rvc utils repository, you will find a node, roc challenge server, which takes
as input corresponding descriptors from the provided challenge datasets and calculates
the resulting ROC curve, publishing the results as an image. This node subscribes to the
topic roc result and publishes the ROC curve image as roc curve.
After you have processed an image pair from one of the data sets, you need to publish a
ROCCurveMessage for the roc challenge server. The message contains the following fields:

• team name: The name of your team.

• dataset name: The data set name. This should be taken the corresponding DataSetMessage.

• dataset idx: The index of the current image pair inside that dataset. This should
also be taken from the corresponding DataSetMessage.

• descriptor name: The name of the descriptor for publishing the results.

• descriptor len: The length of your descriptor in bytes.

• descriptor elem type: The OpenCV element type of your descriptor matrix.

• norm type: The OpenCV norm type that should be used for matching your descrip-
tors

• source descriptors: A serialized array of your descriptors for the source image,
in the same order as the key points from the corresponding DataSetMessage.

• dest descriptors: A serialized array of your descriptors for the destination image,
in the same order as the key points from the corresponding DataSetMessage.

Upon receiving a valid ROCCurveMessage, the roc challenge server node will perfom
brute force matching on the received descriptors using the parameters from the message.
It will then calculate a ROC Curve over all the cumulative data it has received. For each
data set index it receives (dataset idx), it stores only the most recent result. Switching
between datasets causes the roc challenge server to reset the received data and start
fresh.
You can run this node locally on your machine with the liberty and notredame datasets
for testing and improving your descriptor performance. When you feel your descriptors
have good performance you can use evaluate your descriptor using the challenge dataset.
Once the ROC challenge server reports all pairs have been processed, use the included
submit.py script to extract the raw results and prepare the submission email, make sure
to attach the results yaml file before sending. In two weeks, we’ll compare the results of
each time.

→ LET THE GAMES BEGIN!!

6

