
Robot Vision Course SS 2014 - Assignment 4

Lab Course: Robot Vision SS 2014
Philipp Heise, Brian Jensen

Assignment 4 - Due: 12.06.2014

In this assignment sheet, you are again working with stereo data and this time you will gener-
ate dense disparity maps. On the previous sheet we used feature-matches between the stereo
images to triangulate the depth. Here we will try to triangulate the depth for every pixel using
algorithms belonging to the class of local stereo methods. These dense stereo algorithms are
referred to as local methods because each pixel in the source image picks the best match in
the destination image without consideration of its neighbours’ matches. Rectified stereo images
simplify the matching problem since the corresponding point in the other image must be on the
same horizontal scanline. Further the range of the disparity values d can be assumed to be in a
certain range [0, dmax]. In the following Il and Ir refer to the left and right images respectively.

Exercise 1 Dense Stereo Matching

The basic idea for stereo matching is that the optimal disparity value d∗ for a pixel p = [x, y]>

is given by

d∗(p) = arg min
d∈[0,dmax]

Φ(Il, Ir,p, d), (1)

where Φ is a function measuring the similarity between the pixel at position p in the left image
and p − [d, 0]> in the right image using the intensity information of Il and Ir. Two possible
functions for measuring the similarity are

ΦSD(Il, Ir,p, d) = (Il(p)− Ir(p− [d, 0]>))2 and

ΦAD(Il, Ir,p, d) = |Il(p)− Ir(p− [d, 0]>)|.
(2)

Both functions should return very high values when the tested position is out of the image
bounds. Comparing individual pixel intensities is not very robust, therefore it makes sense to
additionally compare small patches with side length 2 ∗ r + 1 centred on the pixel and sum of
the total difference. In the literature this is often referred to as aggregating support. The Φ
function for patch comparison are given by

ΦSSD(Il, Ir,p, d) =

r∑
x=−r

r∑
y=−r

(Il(p + [x, y]>)− Ir(p− [d, 0]> + [x, y]>))2 and

ΦSAD(Il, Ir,p, d) =

r∑
x=−r

r∑
y=−r

|Il(p + [x, y]>)− Ir(p− [d, 0]> + [x, y]>)|.

(3)

1

Robot Vision Course SS 2014 - Assignment 4

1. (Cost-Volume) The fist step for dense stereo matching is to implement a cost-volume
data structure CV that holds all the evaluations for the Φ function.

CV(p, d) = Φ(Il, Ir,p, d). (4)

Create a class StereoCV that can store a cost-volume. It makes sense to store the evalu-
ations in an array holding dmax cv::Mat* elements. Add the methods:

• createSD(const cv::Mat& left, const cv::Mat& right, int dmax)

• createAD(const cv::Mat& left, const cv::Mat& right, int dmax)

These methods should allocate the cost-volume and evaluate ΦSD and ΦAD for all pixels
and disparity values d ∈ [0, dmax].

2. (Winner Takes All)
In equation 1 the disparity value with the smallest Φ is assumed to be the correct the
disparity value. This strategy is called the winner takes all. Create a method WTA(

cv::Mat& disparityimage) that implements this strategy and returns the d∗ param-
eter with the smallest value in the cost-volume (d∗ = arg mindCV (p, d)) for every pixel
p in the image.

3. (Patches and Cost-Volume Filtering)
As already mentioned the pixel-wise comparsion is not roboust and patches should
be used. To simplify the implementation we can now just apply cv::boxFilter or
cv::GaussianBlur on every cv::Mat for the whole disparity range. Why is this equiva-
lent to patch comparison?

4. (ROS-Node)
Make a new ROS node that takes stereo images and outputs a disparity map. Make the
Φ function and the box- and gaussian-smoothing and their size accessible via dynamic
reconfigure.

5. (ROS/PCL Point Cloud)
The node should now use the disparity map and the left image to publish a colored point
cloud.

Exercise 2 Dense Stereo Refinement (Optional)

1. (Left/Right Consistency Checking)
Instead of matching from the left to the right image we could also evaluate everything
from the right to the left image. We should get the same matches but in reality e.g. due
to occlusions etc. this is not the case. To keep only the consistent matches we check for
consistency. Given both disparity maps Dl and Dr the result of pixel p should only differ
by a small amount Dr(p− [Dl(p), 0]>)−Dl(p) < threshold.
Instead of implementing right to left matching additionally we use a trick and flip the
images along the y axis using cv::flip and swap them to calculate the flipped disparity
map Dr. To compensate for the flipping we can use the function flip(x) = w−x given the
width w of the image. LR-Checking should also be accessible using dynamic reconfigure.

2. (Subpixel Disparity Estimation) The point cloud of the the previous task exhibit strong
layering artefacts. This is a direct result of the discrete evaluation of the possible disparity
values. Instead of evaluating Φ at even more positions we use one Newton step to get
subpixel disparity results. For a minimum the derivative should be zero. We perform one
Newton step to improve our current estimate for the minimum disparity value. Given the
current estimate for minimum value dc = arg mindCV (p, d) at the position p, we would

like to improve dc such that ∂CV (p,d)
∂d = 0. This results in the following Newton step to

2

Robot Vision Course SS 2014 - Assignment 4

get the subpixel precise disparity value d∗

d∗ = dc −
∂CV (p,d)

∂d
∂2CV (p,d)

∂d2

= dc −
∇CV (p, d)

∇2CV (p, d)
.

For the first and second order derivative we can use their discrete approximations

∇CV (p, d) = CV (p, d + 1)− CV (p, d− 1)

∇2CV (p, d) = CV (p, d + 1)− 2 · CV (p, d) + CV (p, d− 1).

3

