Applied Computer Vision for Robotics 7.42014

PhippHese(hese@intumde)
Bran Jensen (iensen@initumide)

GitHub

* Find together in groups of 3 people
- Everyone needs to create a Git lub account http://github:com
- Write a mail to ensen@initumide containing:
- team name (be creative here)
- real name, Git Hub account name and e-mail address for each team member

Syllabus

* New sheet every 2 weeks
- Mandatory meeting every week
- Short presentation of the sheet resuits by the teams
- Everyone wil be registered to a RVG mailing list - ask questions here
- You can also ask us questions or write mails

ROS

- We are going to use ROS Robot Operating System (www.ros.org)
- We il introduce it on the fly and give hints which packages you might need
- Check out the tutorials and wiki on ros org for more details

Cameras

- If you don't have an own camera workng in ROS, you can borrow one fromus
- PSEye Gamera- 640×480 @ $60 H z$
- Deposit 10 E

Sheet 1

* Task: detect features in images
- Features are hopefuly distinctive regions in the mage e. g. corners or ines that can be found with high repeatability
- Very useful to find correspondences between images NY USA Springerverlag New York Inc 2010.

Harris corners

- We want to know how mich the mage changes around our current plxel
- Taylor expansion for inage

$$
I(\mathrm{x}, \mathrm{a}-\mathrm{n})) \div T(\mathrm{x})-\nabla I(\mathrm{x}) \cdot \Delta \mathrm{u}
$$

[1]. Chanis and M Stephens A combined corner and edge detector.," vol. 15, p. 50, 1988.

Harris corners
 8.. III

C(O) Col
[1] R. Szelisk Computer Vision Agorithms and Applications, 1 st ed. New York, NY USA Springer Verlag New York Inc 2010.

Harris corners

- With the matrix:
- We are only interested in the two eigenvalues of the matrix in oroer to find a certain type of patch
[1] R. Szelisk Computer Vison. Agoriths and Applications, 1st ed. New York, NY USA Springe Verlag New York Inc 2010

Harris

Harris corners

* The autocorrelation matrix is enough to know how much the intensity changes around our current pixel
- We can use the eigenvalues of the matrix to classify if the area is flat edgy or a corner
$*$ Harris and Stephens proposed $(\alpha \approx 0.06)$
$\operatorname{det}(\mathbf{A})=\alpha \operatorname{trace}(\mathbf{A})^{2}=\lambda_{0} \lambda_{1}-\alpha\left(\lambda_{0}+\lambda_{1}\right)^{2}$ to find regions where both eigenvalues are large

Harris corners

* Calculate structure tensor
- Be careful about the mage data types
- Use the eigenvalues, λ_{1}, λ_{2} to calculate the "corneress"
[1] R. Szeliski. Computer Vison. Agorithms and Applications, 1st ed. New York, NY USA Springer Verlag New York Inc 2010

Harris corners

0 $1-0$ 1
 IIII

- Use the Harris-Stephens formula to avoid the exact computation of the eigenvalues

$$
\begin{aligned}
& M_{c}=\lambda_{1} \lambda_{2}, k\left(\lambda_{1}+\lambda_{2}\right)^{2} \\
& \text { cet }(N), 4 \operatorname{trace}(M)
\end{aligned}
$$

- Kappa is a parameter and can be tuned to get reasonable results
- Threshold to get corners and perform non-maximum suppression
[1] R. Szelisk Computer Vison. Agonthms and Applications, 1st ed. New York, NY USA Springer Verlag New York Inc 2010

Scale Space

R. IIII

* Perform Harris corner detection on different scales to get scale invariance
- Greate an mage pyramid witha scale factor ((si) and a fixed number of octaves

- Detect the corners in each octave
[1] R. Szelisk Computer Vision. Agorithms and Applications, 1 st ed. New York, NY USA Springe Verlag New York Inc 2010

Orientation

* Find the orientation of each corner to get rotation invariance
- Compute the angle using

NMS and ANMS : IWI

* Very often neighbouring pixels are all classified as corners suppress the non maximumiesponses (NMS)
- Very often the detected features are also not well distributed over the mage
- Instead of using a fixed threshold ANMS uses only non
[1] M.Brown R:Szelisk and S. Winder Multimage matching using multi-scale oriented patches vol: pip:510-51.7:2005.
[2] R. Szeliski:Computer Vision: Algorithms and Applications, 1st ed. New York, NY USA: Springer Verlag New Yorkinc, 2010.

Visualization

* For the purpose of debugging tis highly recommended to draw the detected features (e.g. as circles)
- Represent the scale by the size of the radius
- Draw the orientation as an line inside the circle

