Digital Signal Processing - SS15 Theory Tutorial 1

Complex Numbers

PROBLEM ONE Try the following exercises to practice calculation with complex numbers.
(a) Compute

$$
\frac{1+j}{\sqrt{3}+j}
$$

using both rectangular arithmetic and by converting the problem first into polar form. Which method was less painful?
(b) Compute the magnitude and angle of $e^{j}+e^{3 j}$
(c) Simplify $(\sqrt{3}-j)^{8}$
(d) Compute

$$
\int_{0}^{\infty} \mathrm{e}^{-2 \mathrm{t}} \cos (\pi t) d t
$$

(e) Write the real part of:

$$
\frac{1-z^{n}}{1-z}
$$

in terms of the magnitude and phase of z, where n is a positive integer.

Key
(a) Rectangular: $\frac{(\sqrt{3}+1)+j(\sqrt{3}-1)}{4}$

Polar: $\quad \frac{1}{\sqrt{2}} \mathrm{e}^{j \pi / 12}$
(b) Phase: 2; Magnitude: 2cos1
(c) $-128+j 128 \sqrt{3}$
(d) $\frac{2}{4+\pi^{2}}$
(e) $\sum_{k=0}^{n-1} r^{k} \cos (k \theta)$

