

Introduction to Pulse Width Modulation (PWM)

What is PWM

- Output signal alternates between on and off within specified period.
- Control the power received by a device.
- The voltage seen by the load is directly proportional to the source voltage.

What is PWM?

 Depending on the requirement the width of the pulse is modulated (adjusted).

3

• Duty cycle = $t_{on} / (t_{on} + t_{off})$.

4/26/2016

Why PWM?

- Analog voltage control:
 - \odot Voltage can be changed to control the motor speed \odot Can NIOS change voltage ?

4/26/2016

Δ

Why PWM?

4/26/2016

Digital voltage control:

 Can only control '1' and '0'
 X% of maximum analog voltage = X% of duty cycle

How to generate PWM signal ?

- Software method
 - \circ Using counter
 - Count to 100 in a loop
 - Set the output value to 1 in the beginning of the loop
 - Set the output value to 0 as soon as the counter reaches the value of required duty cycle.
 - Continue the process
 - \circ Using interrupt
 - Home work
 - Think about the concept

Your tasks

- Create projects in a usual way using provided SOPCINFO file.
- Type the code in your application project.
- Change duty cycle variable and observe the effect on oscilloscope or LED.

7

- Using oscilloscope, verify the duty cycle.
 - \odot Is it precise?
 - \circ Is it efficient?

4/26/2016

Software PWM

Output pin:OGPIO_0[0]

- Using the manual find out the correct pin and observe the resulting PWM on the oscilloscope
- In C program, use the following instructions to change the output
 - IOWR(**PIO_0_BASE**, 0, 0); // set output 0
 - IOWR(**PIO_0_BASE**, 0, 1); // set output 1
- Control LED (optional):

4/26/2016

 \odot Apply the PWM signal to LED, observe the intensity

Questions

