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Intention Recognition

What does the human want to do?

Authors’ Version of a paper presented at the 43rd Intl. Symp. Robotics (ISR), Taipei, Taiwan,
Aug 29-31, 2012. See http://www.reiszig.de/gunther/pubs/i12rHMM.html for a BibTeX entry.
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Fig. 2. Illustration of scenario 1.

1) Online generation of the safety-relevant regions using
a given probability threshold: The HMM identifying the
motion of the human hand is adapted online after capturing
the motion of the human operator with multiple motion
patterns from the start to the goal. The prediction of the
mean value of the state positions, which indicates the trend
of the motion is marked by the green stripe. It is computed
according to Eq. (13) in [6].
Based on the description in Sec. III-A.3, the safety-

relevant region F (t + r) with a given threshold δ = 0.9996
for the motion with the existing motion patterns can be
generated online, using the current observation O(t). Fig. 3
shows the predictions F (t+ r) for r ∈ {1, . . . , 8}. Different
colors according to the colorbar in Fig. 3 indicate the
corresponding probabilities in the cells computed by (6).
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Fig. 3. Predicted safety-relevant regions based on existing motion patterns.

2) Online generation of the safety-relevant regions using
a combination of a probabilistic model and reachability
analysis: As shown in Fig. 4, the prediction based only
on the HMM is not accurate enough with a new trajectory
that does not follow an existing motion pattern. The human
operator moves his arm towards Goal2, yet the mean value
of the state prediction (the green dot shown in Fig. 4(a))
follows the existing motion pattern towards Goal1.
We now additionally consider the reachability analysis

to enhance the quality of the prediction. The prediction
of the reachable set (uniform gray color) based on the
current observation O(t) is shown in Fig. 4(c). Only

the reachable set inside the workspace is considered here.
Dynamic limits such as bounds on velocity and acceleration
of human motion, and particularly, of the motion of the hand,
are taken from literature [9]. Here, we use the parameters
v± = ±60cm/s and a± = ±40cm/s2. In addition, we
use the bounds γ± = zi(t) ± 1cm and γ̇± = żi(t) ±
3cm/s as required in the application of Lemma III.3, where
zi(t) and żi(t) are the actual measurement and estimation,
respectively.
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Fig. 4. Prediction of a new trajectory towards Goal2, which does not
belong to existing motion patterns towards Goal1.

Fig. 5(a) shows the probability Pa of the real trajectories
O(t + r) lying in the corresponding F (t + r) for t ∈
{0, . . . , g} and r = 8, depending on the probability threshold
δ. For the case that an unforeseen motion pattern occurs, the
prediction quality is unsatisfactory if only the HMM is used.
The value of Pa corresponding to predictions solely based on
HMMs (red dashed line in Fig. 5(a)) is relatively small. Pa

drastically improves for the combination of the probabilistic
model with reachability analysis, as represented by the blue
solid line. Furthermore, the real trajectories lie always inside
the predicted reachable sets. Of course, the sets may be
rather large when the velocity and acceleration of the human
are large.
The graphical representation of the updated motion pat-

terns is finally shown in Fig. 5(b), which is obtained only
after the unforeseen motion patterns have been taken into
account.
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Fig. 5. Evaluation of the proposed method in scenario 1.

B. Scenario 2
In the second scenario, a different human operator is going

to accomplish the assembly task similar as in scenario 1.
Here he needs to pick up a workpiece only at Goal1 but
with two more motion patterns. The workspace is divided

Figure: Predicting human movement from Hidden Markov Models: Ding et. Al, Online Computation of Safety-Relevant

Regions for Human Robot Interaction 2012

We often want to know where a human is going or what it intends to do so that
we can move around it, assist it in its task, or otherwise adapt the behaviour of
the robot to be safer or more helpful to the human.
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What does the human want to do?

Anticipating Human Activities using Object
Affordances for Reactive Robotic Response

Hema S. Koppula and Ashutosh Saxena.
Department of Computer Science, Cornell University.

{hema,asaxena}@cs.cornell.edu

Abstract—An important aspect of human perception is antici-
pation, which we use extensively in our day-to-day activities when
interacting with other humans as well as with our surroundings.
Anticipating which activities will a human do next (and how) can
enable an assistive robot to plan ahead for reactive responses
in human environments. Furthermore, anticipation can even
improve the detection accuracy of past activities. The challenge,
however, is two-fold: We need to capture the rich context for
modeling the activities and object affordances, and we need to
anticipate the distribution over a large space of future human
activities.

In this work, we represent each possible future using an
anticipatory temporal conditional random field (ATCRF) that
models the rich spatial-temporal relations through object af-
fordances. We then consider each ATCRF as a particle and
represent the distribution over the potential futures using a set
of particles. In extensive evaluation on CAD-120 human activity
RGB-D dataset, we first show that anticipation improves the
state-of-the-art detection results. For new subjects (not seen in the
training set), we obtain an activity anticipation accuracy (defined
as whether one of top three predictions actually happened) of
75.4%, 69.2% and 58.1% for an anticipation time of 1, 3 and
10 seconds respectively. Finally, we also use our algorithm on a
robot for performing a few reactive responses.

I. INTRODUCTION

For a personal robot to be able to assist humans, it is impor-
tant for it to be able to detect what a human in currently doing
as well as anticipate what she is going to do next and how.
The former ability is useful for applications such as monitoring
and surveillance, but we need the latter for applications that
require reactive responses (e.g., see Figure 1). In this paper,
our goal is to use anticipation for predicting future activities
as well as improving detection (of past activities).

There has been a significant amount of work in detecting
human activities from 2D RGB videos [37, 31, 29], from
inertial/location sensors [23], and more recently from RGB-D
videos [21, 36, 27]. The primary approach in these works is
to first convert the input sensor stream into a spatio-temporal
representation, and then to infer labels over the inputs. These
works use different types of information, such as human
pose, interaction with objects, object shape and appearance
features. However, these methods can be used only to predict
the labeling of an observed activity and cannot be used to
anticipate what can happen next and how.

Our goal is to enable robots to predict the future activities
as well as the details of how a human is going to perform them
in short-term (e.g., 1-10 seconds). For example, if a robot has
seen a person move his hand to a coffee mug, it is possible

(a) Robot’s RGB-D view. (b) Heatmap of object affordances.

(c) Heatmap of trajectories. (d) Robot opening the door.
Fig. 1: Reactive robot response through anticipation: Robot
observes a person holding an object and walking towards a fridge
(a). It uses our ATCRF to anticipate the object affordances (b), and
trajectories (c). It then performs an anticipatory action of opening the
door (d).

he would move the coffee mug to a few potential places such
as his mouth, to a kitchen sink or just move it to a different
location on the table. If a robot can anticipate this, then it
would rather not start pouring milk into the coffee when the
person is moving his hand towards the mug, thus avoiding
a spill. Such scenarios happen in several other settings, for
example, manufacturing scenarios in future co-robotic settings
(e.g., [8, 28]).

There are three aspects of activities that we need to model.
First, we need to model the activities through a hierarchical
structure in time where an activity is composed of a sequence
of sub-activities [21]. Second, we need to model their inter-
dependencies with objects and their affordances. We model
the object affordances in terms of the relative position of the
object with respect to the human and the environment.1 Third,
we need to anticipate the motion trajectory of the objects and
humans, which tells us how the activity can be performed.
Modeling trajectories not only helps in discriminating the
activities,2 but is also useful for the robot to reactively plan

1For example, a drinkable object is found near the mouth of the person
performing the drinking activity and a placeable object is near a stable surface
in the environment where it is being placed.

2For example, in stirring activity, the target position of the stirrer is
immaterial but the circular trajectory motion is.

Figure: Heatmap of object affordances: Koppula & Saxena, Anticipating Human Activities using Object Affordances for

Reactive Robotic Response 2013

What is the human reaching for? - avoidance/assistance

Where is the human going? - mobile robotics

Is a collision intentional or unintentional? - industrial robots
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Social robotics in HRI

Understanding and emulating human-human interactions and behaviour can make
robots more intuitive, more versatile and safer. This topic may touch on aspects
of artificial intelligence, linguistics and ethics.

Turn Taking for Human-Robot Interaction

Crystal Chao and Andrea L. Thomaz
School of Interactive Computing
Georgia Institute of Technology
Atlanta, Georgia 30332, USA

cchao@gatech.edu, athomaz@cc.gatech.edu

Introduction
Applications in Human-Robot Interaction (HRI) in the not-
so-distant future include robots that collaborate with factory
workers or serve us as caregivers or waitstaff. When of-
fering customized functionality in these dynamic environ-
ments, robots need to engage in real-time exchanges with
humans. Robots thus need to be capable of participating in
smooth turn-taking interactions.

The research goal in HRI of unstructured dialogic inter-
action would allow communication with robots that is as
natural as communication with other humans. Turn-taking
is the framework that provides structure for human commu-
nication. Consciously or subconsciously, humans are able
to communicate their understanding and control of the turn
structure to a conversation partner by using syntax, seman-
tics, paralinguistic cues, eye gaze, and body language in a
socially intelligent way. Our research aims to show that by
implementing these turn-taking cues within a interaction ar-
chitecture that is designed fundamentally for turn-taking, a
robot becomes easier and more efficient for a human to in-
teract with. This paper outlines our approach and initial pilot
study into this line of research.

Approach
Turn-taking is the fundamental way that humans organize
interactions with each other. Turn-taking routines, espe-
cially in mother-infant gaze systems, have been studied ex-
tensively in cognitive science (Trevarthen 1979). Deviations
from the expected turn-taking process have been found to
cause anxiety in infants, leading to the conclusion that turn-
taking is natural and fundamental behavior. Thus it seems
logical that socially situated, embodied machines, meant to
interact with humans, should use the same deeply rooted
turn-taking principles of human social behavior.

Extensive treatment of turn-taking can be found in the lin-
guistics literature as well. Some work focuses on the struc-
ture of syntax and semantics, and other work additionally
analyze the contribution of paralinguistic cues, gaze shift,
and gesticulation (Orestrom 1983). Researchers state that
turn-taking is a dynamic and fluid process, including the var-
ious complexity levels of floors, turns, and backchannels.

Copyright c⃝ 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Simon engaging in a turn-taking interaction with
a human subject.

In HRI, work on turn-taking needs to be approached from
two directions. The first is awareness of the human’s cue
usage. This is a perception problem closely related to recog-
nizing contingency and engagement, as in (Rich et al. 2010).
The second is executing turn-taking cues in a socially intel-
ligent manner. For example, (Mutlu et al. 2009) showed
robots using gaze cues to control speaker-listener roles .

The piecewise work eventually needs to be integrated into
a broader turn-taking architecture. Using a naive reactive ar-
chitecture is insufficient in an HRI setting, as missed cues
can result in awkward and inefficient timing. Using simple
finite state machines leads to confusion when the machine
state is not transparent to the human, resulting in repeated
commands or pauses. An architecture specifically designed
for turn-taking should be able to sit on top of the robot’s
existing functionality and handle turn timeouts, cue man-
agement, and timing of continuous seamless feedback to the
human about internal machine state.

Pilot Study
This pilot study focuses on one aspect of turn-taking: effec-
tive robot to human turn passing.

Platform
The robotic platform for this research is “Simon,” an 38-
DOF upper-torso humanoid social robot. Simon’s behavior
is controlled using the C6 software system. Simon uses vi-
sion from one eye camera to identify objects. While an ob-
ject is directly in front of the camera, Simon moves it and a

132

Dialog with Robots: Papers from the AAAI Fall Symposium (FS-10-05)

Figure: Human engaging in turn-taking interaction with robot: Chao & Thomaz, Turn Taking for Human-Robot Interaction

2010
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Social robotics in HRI

What is the state-of-the-art in understanding and modelling social behaviour
in human-human interactions? (theoretical side)

Modelling conversation
Body-language cues
Human expectations of robots

How has it been / can it be applied in human-robot collaboration scenarios?
(practical side)

HRI in industrial settings
Elderly care (Paro)
James the bartender
Alice/Eliza (chatbots)
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Your task

The semester project can take one of three forms:

A pure literature review

Focussing on one paper and implementing it/parts of it

A mixture of the above

Bear in mind: while a pure literature review looks easier, the latter two offer more
opportunities for originality (and are probably more fun!)
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Interested?

Or do you have another idea for a topic in Human-Robot Interaction?

Contact me!

aaron.pereira@tum.de
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