Comparison of Different Numerical Solvers for Optimal Control Problems on the Example of an Autonomous Car

Bastian Schürmann

Technische Universität München

January 21, 2016

Control of Dynamical Systems

- Dynamical systems can be modeled using differential equations with states (position, velocity, etc.) and inputs (steering, acceleration, breaking, etc.)
- **Task:** Find an input sequence such that the car/robotic arm moves from the initial position to a desired end position

Optimal Control

- Many possible input combinations. How to choose?
- Additional restrictions through
 - $\, \circ \,$ Costs (time, energy consumption, forces) \rightarrow should be minimized
 - \bullet Constraints (obstacles/other cars, maximum forces, maximum time) \rightarrow must not be violated
 - \Rightarrow Constrained optimization problem

Topic: Comparison of Different Numerical Solvers for Optimal Control Problems on the Example of an Autonomous Car

- Different possible methods to solve these optimization problems
- For each method, many different solvers exist
- Tasks:
 - Obtain an overview of existing optimization tools
 - Implement an optimal control problem for an autonomous car and solve it with different solvers
 - Compare the performance and accuracy of different solvers

Questions?

Contact:

Bastian Schürmann MI 03.07.039 bastian.schuermann@in.tum.de