Real-Time Near-Optimal Control Strategies for Dynamical Systems, such as Autonomous Cars and Robotic Manipulators

Bastian Schürmann

Technische Universität München

January 21, 2016

Control of Dynamical Systems

- Dynamical systems can be modeled using differential equations with states (position, velocity, etc.) and inputs (steering, acceleration, breaking, etc.)
- **Task:** Find an input sequence such that the car/robotic arm moves from the initial position to a desired end position

Optimal Control

- Many possible input combinations. How to choose?
- Additional restrictions through
 - $\, \circ \,$ Costs (time, energy consumption, forces) \rightarrow should be minimized
 - \bullet Constraints (obstacles/other cars, maximum forces, maximum time) \rightarrow must not be violated
 - \Rightarrow Constrained optimization problem

Topic: Real-Time Near-Optimal Control Strategies for Dynamical Systems, such as Autonomous Cars and Robotic Manipulators

- Computing an optimal solution might take too long for real-time applications
- Often a faster, near-optimal solution is better than a much longer, optimal solution
- Goal: Compute a "good enough" solution in the time given
- Tasks:
 - Review literature/read papers about different real-time, near-optimal control approaches
 - Implement one or more for an example system
 - Compare the approaches

Questions?

Contact:

Bastian Schürmann MI 03.07.039 bastian.schuermann@in.tum.de