7 Regelungstechnik

7.1 Einführung

 Die Führung technischer Prozesse kombiniert Planung, Steuerung und Regelung

* Steuerung

Einwirkung mittels Stellgrößen in eine gewünschte vorausgeplante Richtung. Beispiel: Heizung um 6:30 Uhr einschalten.

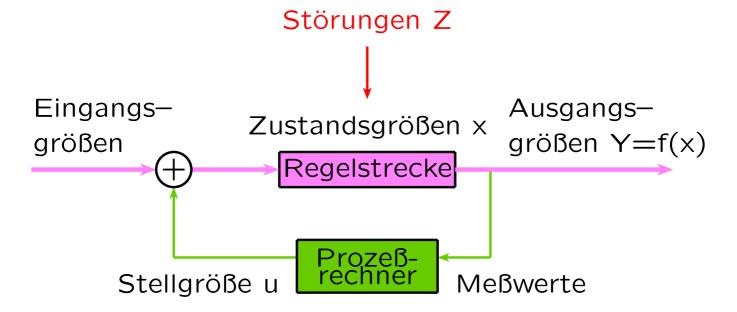
* Regelung

Überwachung und Minimierung der Abweichungen zwischen Ist- und Sollwerten nach gegebenen Kriterien.

Beispiel: Kesseltemperatur auf 43 Grad halten.

- System als Schachtelung von Regelschleifen abgestufter Reaktionsfähigkeit betrachtbar
 - * höhere Ebenen bzw. äußere Schleifen
 - Zeitanforderungen unkritisch (bis zu Tagen)
 - relativ große Abweichungen erlaubt

- Realisierung in Software
- Beispiel: Bestände in Materiallager
- * niedere Ebenen bzw. innere Schleifen
 - kritische Zeitanforderungen (z.B. msec)
 - nur geringe Abweichungen erlaubt
 - Realisierung in HW
 - Beispiel: Temperatur auf 0.1 Grad halten
- Beispiel: Der Prozeßrechner als Regler



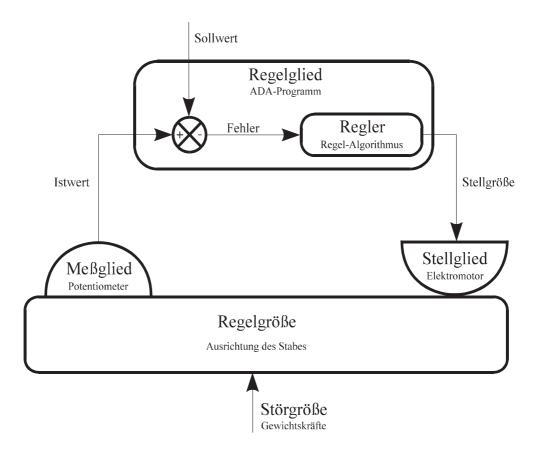
Ziele

- \star Stellgröße u so wählen, daß Istwerte Y mit den vorgegebenen Sollwerten möglichst gut übereinstimmen
- gezielte Nachführung bei Störungen und neuen Vorgaben

Mögliche Kriterien

- * Abweichung möglichst schnell gegen Null
- * Abweichung überschreitet nicht eine bestimmte Bandbreite
- * kein Schwingen
- * Integral über den Abweichungsbetrag wird über die Zeit minimiert
- * energiesparende Nachführung
- technisch gut realisierbar (z.B. bei Temperaturkonstanz keine überdimensionale Heiz- und Kühlleistung gegenüber im Mittel benötigte)

7.2 Einfache Regler

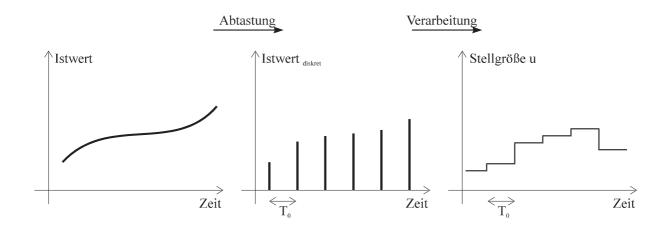


7.2.1 Der P-Regler

- einfachster Regler
- proportionales Verhalten
- Die Gleichung eines P-Reglers

$$u(t) = K * e(t)$$

- Diskretisierung: kontinuierliche Istwerte der Regelgröße abgetastet und digitalisiert.
- diskrete Istwerte, die nach der Amplitude und nach der Zeit quantisiert sind.
- Abtastung periodisch mit der Abtastzeit T_0
- ullet berechnete Stellgröße u ist über den Zeitraum T_0 konstant



$$u(k) = K * e(k)$$

mit u(k) Stellgröße zum Zeitpunkt k K Verstärkungsfaktor e(k) Fehler = (Sollwert-Istwert)
zum Zeitpunkt k

Vorteile:

- ullet Einfache Implentierung möglich, da der Algorithmus nur den momentanen Fehler e(k) benötigt und keine äquidistanten Zeitpunkte k erfordert
- Einfache Parameter-Bestimmung

Nachteil:

 Störgrößen werden nicht restlos ausgeregelt, es bleibt immer die sogenannte P-Abweichung

7.2.2 Der PI-Regler

- P-Regler mit überlagertem Integral-Anteil
- Gleichung eines PI-Reglers für kontinuierliche Signale:

$$u(t) = K * (e(t) + \frac{1}{T_I} \int_0^t e(\tau) d\tau)$$

nach DIN 19226 mit T_I Integrierzeit (Nachstellzeit)

- für digitale Regelung Gleichung diskretisieren
- ullet für kleine Abtastzeiten T_0 die kontinuierliche Integration durch Rechteck-Integration annähern
- diskretisierte PI-Gleichung:

$$u(k) = K * (e(k) + \frac{T_0}{T_I} \sum_{i=0}^{k-1} e(i))$$

Vorteil:

 Durch I-Anteil keine bleibende Regelabweichung

Nachteile:

- Zeitaufwendige Parameter-Bestimmung
- Einschwingen auf Sollwert
- zeitlich äquidistanten Abtastung notwendig (bei Feldbussen z.B. mit SERCOS, INTERBUS-S garantiert)

7.2.3 Der PID-Regler

- PI-Regler mit überlagertem Differential-Anteil
- Gleichung eines PI-Reglers für kontinuierliche Signale:

$$u(t) = K * (e(t) + \frac{1}{T_I} \int_0^t e(\tau) d\tau + T_D \frac{de(t)}{dt})$$

nach DIN 19226 mit T_D Differenzierzeit (Vorhaltzeit)

- Um den D-Anteil zu diskretisieren, ersetzt man den Differentialquotienten durch eine Differenz erster Ordnung.
- diskretisierte PID-Gleichung ("Stellungsform"):

$$u(k) = K*(e(k) + \frac{T_0}{T_I} \sum_{i=0}^{k-1} e(i) + \frac{T_D}{T_0} (e(k) - e(k-1)))$$

ullet Subtrahiert man von dieser Gleichung u(k-1) erhält man die "Geschwindigkeitsform"

$$u(k) = u(k-1) + K * (e(k) - e(k-1) + \frac{T_0}{T_I}e(k-1) + \frac{T_D}{T_0}(e(k) - 2e(k-1) + e(k-2)))$$

Vorteile:

- Durch I-Anteil keine bleibende Regelabweichung
- Schnellen Fehlerveränderungen wird durch den D-Anteil schnell entgegengewirkt

Nachteile:

- Sehr zeitaufwendige Parameter-Bestimmung
- Einschwingen auf Sollwert
- Neigung zur Instabilität

7.2.4 Auslegung der Parameter

Bei allen erwähnten Reglern ergibt sich das Problem, die Parameter der Regelgleichung (K, T_I) bzw. T_D) so zu bestimmen, daß

- keine kritischen Schwingungen (Instabilität) auftreten
- der Regelkreis auch nach jeder Störung stabil bleibt
- möglichst wenig Schwingungen beim Einregeln auf den Sollwert auftreten
- Totzeiten des Stellvorgangs, Rechenzeiten und Bandbreite der Stellgrößen berücksichtigt werden
- Auslegung mittels quantitativer Berechnung eines Modells des Systems (Impulsantwort, Laplace-Transformation)
- experimentelle Verfahren zur
 Parameter-Optimierung (Takahashi)

7.3 Explizites Rechenbeispiel für **PID-Regler**

- Erläuterungen
 - * Berechnung mit dem Algebra-System MapleV
 - * Eingaben entsprechen einer Programmiersprache, wobei Wertezuweisungen wie in Pascal mit := bezeichnet
 - * Eingabezeilen in roter Schrift mit > eingeleitet
 - * Ausgabe in blauer Schrift
 - * Kommentare in schwarzer Schrift
- DGL 2. Ordnung als Regelstrecke

Protokoll der MAPLE-Sitzung:

PID-Regler fuer ein System, das durch eine lineare DGL 2. Ordnung beschrieben wird eine zusätzlich benötigte Standardprozedur

> readlib(unassign);

```
proc() ... end
```

1. Differentialgleichung

u(t) ist die Stellgroesse des Reglers und k die Rueckfuehrkonstante (Einfluss der Stellgroesse auf den Prozess), xsoll ist der Sollwert

> dgl1:=diff(diff(x(t),t),t)+a*diff(x(t),t)+b*x(t)+c+k*u(t)=0;

$$dgl1 := \left(\frac{\partial^2}{\partial t^2} \times (t)\right) + a\left(\frac{\partial}{\partial t} \times (t)\right) + b \times (t)$$
$$+ c + k u(t) = 0$$

> u(t) := kp*(x(t)-xsoll)+kd*diff(x(t),t)+ki*int(x(z)-xsoll,z=0..t);

$$\mathbf{u}(t) := kp\left(\mathbf{x}(t) - xsoII\right) + kd\left(\frac{\partial}{\partial t}\mathbf{x}(t)\right) + ki\int_{0}^{t} \mathbf{x}(z) - xsoII \, dz$$

Als neue Variable wird die Groesse y(t) =x(t)-xsoll eingefuehrt

>
$$x(t):=y(t)+xsoll;$$

 $x(t):=y(t)+xsoll$

dann ergibt sich die DGL

> simplify(dgl1);

$$\left(\frac{\partial^{2}}{\partial t^{2}}y(t)\right) + a\left(\frac{\partial}{\partial t}y(t)\right) + by(t) + bxsoll$$

$$+ c + k kpy(t) + k kd\left(\frac{\partial}{\partial t}y(t)\right)$$

$$+ k ki \int_{0}^{t} x(z) - xsoll dz = 0$$

fasst man gleiche Terme zusammen und setzt

> abk:= A=a+k*kd, B=b+k*kp, C=c+b*xsoll, KI=k*ki;

$$abk := A = a + k kd, B = b + k kp,$$

 $C = c + b \times soll, KI = k ki$

dann ergibt sich die DGL

> dgl2:=diff(diff(y(t),t),t)+A*diff(y(t),t)+B*y(t)+C+KI*int(y(z),z=0..t)= 0;

$$dgI2 := \left(\frac{\partial^2}{\partial t^2} y(t)\right) + A\left(\frac{\partial}{\partial t} y(t)\right) + By(t)$$
$$+ C + KI \int_0^t y(z) dz = 0$$

Anmerkung: A und B koennen durch kd und kp beeinflusst werden, C ist durch den Prozess vorgegeben, KI ist nur bei einem Integralteil des Reglers ungleich Null

- 2. Loesung bei KI = 0
 - > KI:=0; KI:=0
 - > LOES1:= dsolve(dgl2,y(t));

LOES1 := y(t) =
$$-\frac{C}{B}$$

+ $_{-}C1 e^{\left(-\frac{1}{2}\left(A - \sqrt{A^{2} - 4B}\right)t\right)}$
+ $_{-}C2 e^{\left(-\frac{1}{2}\left(A + \sqrt{A^{2} - 4B}\right)t\right)}$

Eigenschaften: _C1 und _C2 sind freie Parameter, die z.B. aus den Anfangswerten bestimmt werden.

Fuer eine stationaere Loesung muss gelten: A positiv (je groesser A ist, desto schneller konvergiert die Loesung) B so waehlen, dass die

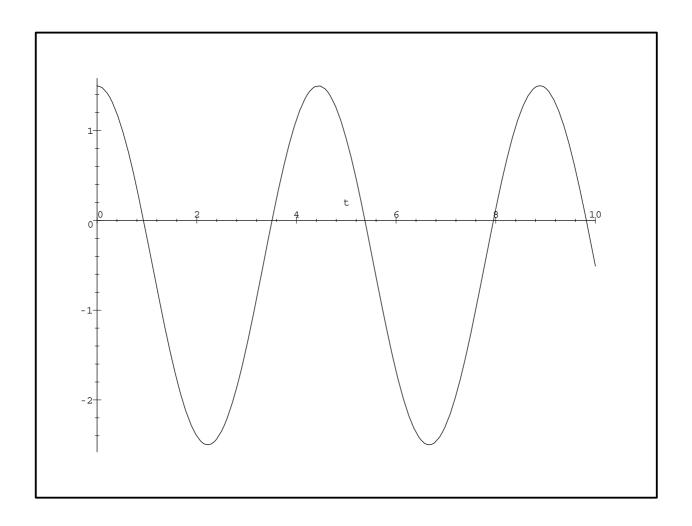
Wurzel nahe Null ist, jedenfalls deutlich kleiner als A (falls A*A-4*B negativ, dann wird die Wurzel imaginaer, es kommt zu Schwingungen)

Schlussfolgerung: Da zwei Werte eingestellt werden muessen, ist der gewuenschte Verlauf nur mit einem PD-Regler erreichbar. Ein P-Regler nimmt keinen Einfluss auf den A-Wert. Eine Regelung waere dann nur fuer die Prozesse moeglich, bei denen A schon einen geeigneten Wert hat

3. Beispiele fuer KI = 0

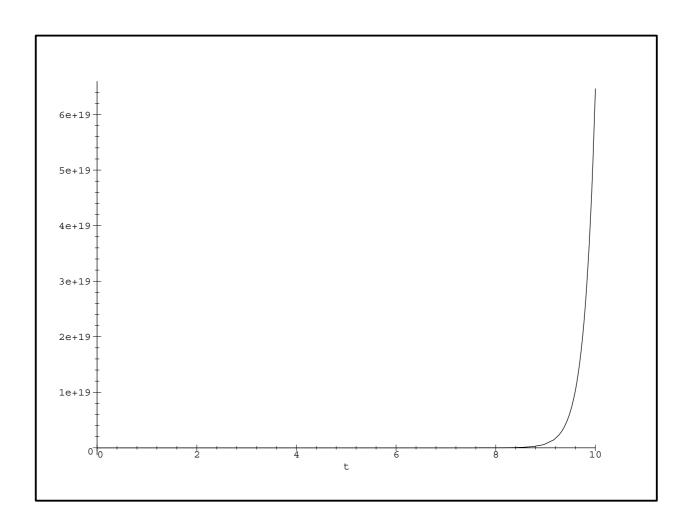
> A:=0;plot(op(2,LOES1),t=0..10);

$$A := 0$$



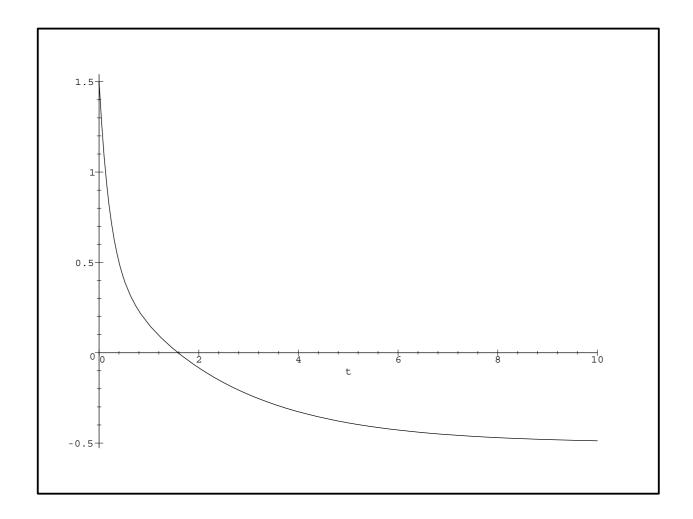
> A:=-5;plot(op(2,LOES1),t=0..10);

$$A := -5$$



> A:=5;plot(op(2,LOES1),t=0..10);

$$A := 5$$



in diesem Fall gibt es eine stationaere Loesung $y \rightarrow -C/B = -0.5$ die stationaere Loesung ist aber nicht der Sollwert!!

4. Gleichungen fuer KI ungleich Null

Die Differentialgleichung kann dann ebenfalls mit dem Ansatz y(t)=f(C)*exp(-lambda*t) geloest werden. Es ergibt sich:

> LOES2:= dsolve(dgl2,y(t),laplace);

LOES2 :=
$$y(t) = \sum_{r=\%1} (_r^2 y(0) + D(y)(0)_r + A_r y(0) - C)$$

 $+ (_r^2 y(0) - C)$
 $+ (_r^2 y(0) - C)$

Man sieht, dass eine Summe ueber e-Funktionen vorliegt, wobei _r die Wurzeln der folgenden Gleichung gl2 sind:

> gl2:=
$$z^3+A*z^2+B*z+KI=0$$
;
 $gl2:= z^3+Az^2+Bz+KI=0$

A, B und KI muessen so bestimmt werden, dass der Realteil dieser Wurzeln immer groesser Null ist, dann konvergiert die Loesung immer gegen Null, d.h. den Sollwert fuer den Prozess, da y(t)=x(t)-xsoll. In die Wurzeln geht die Konstante C nicht ein. Aus den gewuenschten Wurzeln lassen sich rueckwaerts kd, kp und ki berechnen.

> solve(gl2,z);

$$\%1^{1/3} - \%2 - \frac{1}{3}A, -\frac{1}{2}\%1^{1/3} + \frac{1}{2}\%2 - \frac{1}{3}A$$

$$+ \frac{1}{2}I\sqrt{3}(\%1^{1/3} + \%2), -\frac{1}{2}\%1^{1/3}$$

$$+ \frac{1}{2}\%2 - \frac{1}{3}A$$

$$- \frac{1}{2}I\sqrt{3}(\%1^{1/3} + \%2)$$

$$\%1 := \frac{1}{6}BA - \frac{1}{2}KI - \frac{1}{27}A^3 + \frac{1}{18}(12B^3)$$

$$- 3B^2A^2 - 54BAKI + 81KI^2$$

$$+ 12KIA^3)^{1/2}$$

$$\%2 := \frac{\frac{1}{3}B - \frac{1}{9}A^2}{\%1^{1/3}}$$

Die Wurzeln haben also die Form rw0, rw±I*iw

Man kann die drei Werte rw0, rw und iw vorgeben, daraus A, B und KI bestimmen und daraus wiederum kd, kp und ki.

5. Beispiele fuer KI ungleich Null

wir setzen (ohne prinzipielle Einschraenkungen der Loesungen)

>
$$y(0):=0$$
; $D(y)(0):=0$; $C:=1$; $y(0):=0$
$$D(y)(0):=0$$

$$C:=1$$

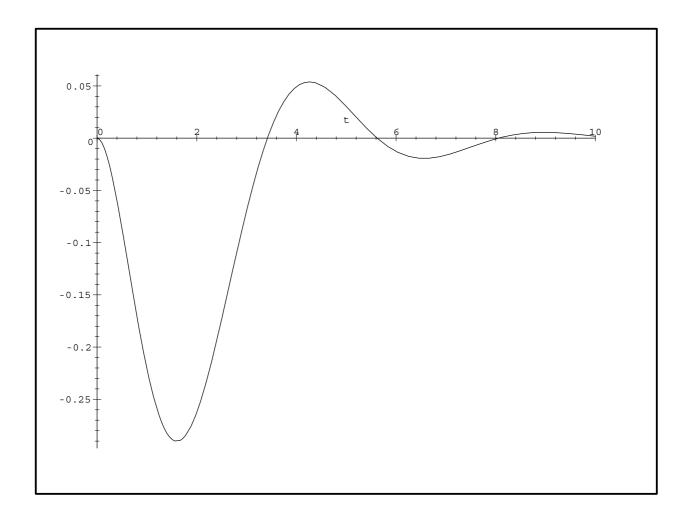
> A:=2; B:= 3; KI:=2; evalf(solve(gl2,z));
$$A := 2$$

$$B := 3$$

$$KI := 2$$

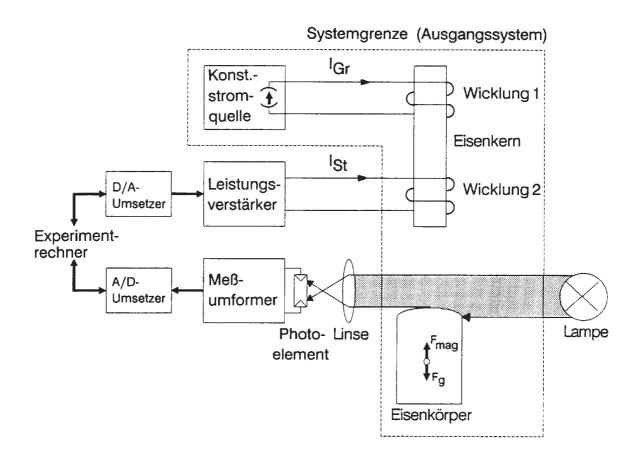
$$-1., -.50000000000 + 1.322875656 I, -.50000000000 - 1.322875656 I$$

> plot(op(2,LOES2),t=0..10);



Dies ist also ein Satz von Parametern mit stationaerer Loesung

7.3.1 Beispiel: Magnetisch aufgehängter Schwebekörper



Systemgleichung:

$$m \cdot \ddot{x} = F_{mag} - F_g;$$

Entwicklung um den Betriebspunkt:

$$m \cdot \ddot{x} = f_0 I_{Gr} + I_{St} + f_2 x - mg;$$

$$m \cdot \ddot{x} + p_1 \cdot \dot{x} + p_2 \cdot x = kI_{St}$$

Explizite Berechnung der Lösung mit Maple V

7.4 Lineare Rückführregelung

- zu regelnder Prozeß durch gekoppeltes System linearer zeitinvarianter homogener Differentialgleichungen beschrieben
 - * ohne Regelkreis

$$dx/dt = A * x$$

wobei

x: (n)-Vektor der Zustandsvariablen

A: $(n \times n)$ -Matrix (konstant)

* mit Regelkreis

$$dx/dt = A * x + B * u$$

wobei

B: $(n \times m)$ -Matrix der Stellkoeffizienten (gegeben durch techn. Prozeß)

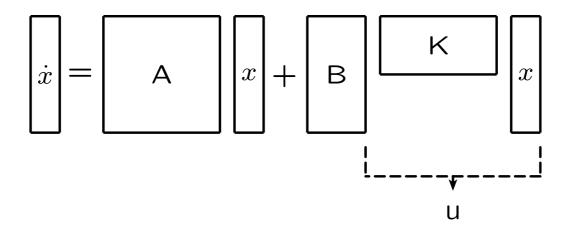
(m)-Vektor der Stellgrößen

* Lineare Rückführregelung

$$u = -K * x$$

wobei

K: $(m \times n)$ -Matrix von zu bestimmenden Koeffizienten



- Matrix K so bestimmen, daß Regelungsziel und Nebenbedingungen erfüllt
- Durch Regelung ergibt sich die DGL

$$dx/dt = Ax + B(-Kx) = (A - BK)x$$

- Differentialgleichung hat also durch Einfluß des Reglers neue Eigenwerte
- Lösungsansatz bei linearen DGL

$$x(t) = x0 * e^{\lambda * t}$$

x0 ist ein konstanter Vektor, der von den Anfangswerten abhängt

 λ ist aus der obigen DGL durch Einsetzen des Lösungsansatzes zu bestimmen

Lösungsschritte

* eingesetzt

$$\lambda * x0 * e^{\lambda t} = (A - BK) * x0 * e^{\lambda t}$$

* daraus lineares Gleichungssystem für x0

$$(A - BK - \lambda I) * x0 = 0$$

Lösungen für $x0 \neq 0$ nur, falls Determinante des Gleichungssystems Null, also Forderung:

$$|(A - BK - \lambda I)| = 0$$

- \star Daraus Bestimmung der Eigenwerte λ_i , mit $i = 1, \ldots, n$
- \star λ_i i.a. komplexe Zahl, bestehend aus Realund Imaginärteil

Lösung

* Durch Addition der verschiedenen Teil-Lösungen

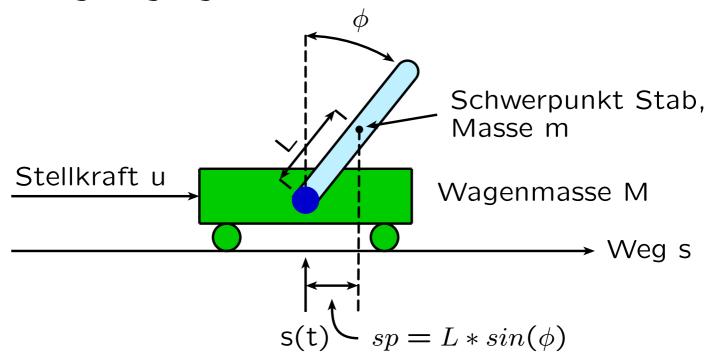
$$x(t) = \sum_{i=1}^{n} x O_i * e^{\lambda_i * t}$$

 $\star x0_i$ aus den Anfangswerten

- \star Fall 1: $\exists i : \Re(\lambda_i) > 0$ keine stabile (stationäre) Lösung
- \star Fall 2: $\forall i: \Re(\lambda_i) < 0$: stabil, stationäre Lösung
- \star Fall 3: $\forall i$: $\Re(\lambda_i) = 0$: periodische Schwingungen
- * Spezialfall: $\forall i: \Re(\lambda_i) < 0 \land \Im(\lambda_i) = 0$: stabil, asymptotische Näherung an den stationären Zustand
- Forderungen an Regler
 - * K so bestimmen, daß Fall 2 vorliegt
 - $\star |\Re(\lambda_i)|$ sollte möglichst groß sein
 - $\star |\Im(\lambda_i)|$ sollte möglichst klein sein
 - * die Lösung sollte auch noch bei kleinen Störgrößen Z stabil bleiben

7.5 Anwendungsbeispiel: **Balancierter Stab**

 Klassisches Beispiel zur Demonstration von Regelungsalgorithmen



Ausgangsgleichungen

$$(M+m)*\ddot{s} = \langle Kr\ddot{a}fte \rangle$$

$$\theta * \ddot{\phi} = \langle \text{Drehmomente} \rangle$$

wobei $\theta = m * L^2/3$ das Trägheitsmoment des Stabes ist

Es ergeben sich 4 Gleichungen (nach Ackermann)

(1) Horizontalbewegung des Stabschwerpunktes

$$m * \frac{d^2}{dt^2}(s + L * sin\phi) = H$$

(2) Vertikalbewegung des Stabschwerpunktes

$$m * \frac{d^2}{dt^2}(L * cos\phi) = V - m * g$$

(3) Drehbewegung des Stabs um seinen Schwerpunkt

$$\theta * \frac{d^2\phi}{dt^2} = V * L * \sin\phi - H * L * \cos\phi$$

(4) Horizontalbewegung des Wagens

$$M * \frac{d^2s}{dt^2} = u - H$$

für die 4 Unbekannten

- * Horizonalkraft H des Wagens auf den Stab
- * Vertikalkraft V des Wagens auf den Stab
- \star Beschleunigung \ddot{s}
- \star Winkelbeschleunigung $\ddot{\phi}$

• Durch Linearisierung der Winkelfunktionen (kleine ϕ bzw. $\dot{\phi}$) erhält man ein lineares DGL-System. Die Koeffizienten a_{21} , a_{41} , b_2 und b_4 sind Funktionen von L, M und m.

$$\frac{d}{dt} \begin{pmatrix} \phi \\ \dot{\phi} \\ s \\ \dot{s} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ a_{21} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ a_{41} & 0 & 0 & 0 \end{pmatrix} * \begin{pmatrix} \phi \\ \dot{\phi} \\ s \\ \dot{s} \end{pmatrix} + \begin{pmatrix} 0 \\ b_2 \\ 0 \\ b_4 \end{pmatrix} * u$$

- Regelungsziel ϕ , $\dot{\phi}$ möglichst schnell oder mit kleiner Kraft/Arbeit gegen Null führen
- ullet gemessen wird nur s und ϕ ; \dot{s} und $\dot{\phi}$ werden berechnet (sog. "Beobachter")
- Zahlenwerte für die Beispiele

M: 0.981 kg

m: 0.08 kg

L: 0.312 m

• Ergebnis ohne Regler, d.h. $\dot{x} = A * x + Z$

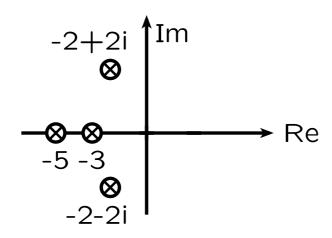
*
$$\lambda_1 = 0$$
, $\lambda_2 = 0$, $\lambda_3 = -5$, $\lambda_4 = +5$

- ★ Stab bleibt bei Z=0 senkrecht, falls dies Ausgangslage
- * bei Störungen ($Z \neq 0$) kippt Stab (ϕ wächst unbegrenzt wegen Linearisierung)

- Ergebnis mit PD-Regler
 - \star Anmerkung: K hat im Beispiel vier Komponenten, da es eine PD-Regelung realisiert und sowohl den Winkel als auch den Ort korrigiert, also

$$u = K1 * \phi + K2 * \dot{\phi} + K3 * s + K4 * \dot{s}$$

- $\star~K$ so bestimmen, daß
 - \circ Prozeß stabil, d.h. daß die λ_i die gewünschten Werte haben
 - o u technisch sinnvoll machbar ist
- \star gewünschte Lage der λ_i im Beispiel



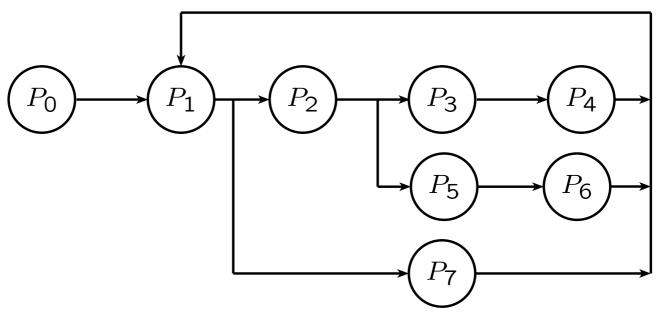
* dann ergibt sich

$$K = (35, 39; 7, 174; 5, 088; 5, 258)$$

 $\star~K$ so wählen, daß auch bei kleinen Störungen Z die λ (ungefähr) im gewünschten Bereich liegen

- Prozesse zur Regelung des balancierten Stabs
 - * P0: System initialisieren; neue Vorgaben vom Leitstand
 - \star P1: Meßwerte (s und ϕ) einlesen; zyklische Aktivierung (Zykluszeit t_m)
 - \star P2: Beobachterprozeß; berechnet \dot{s} und $\dot{\phi}$)
 - * P3: Stellgröße u berechnen
 - * P4: u ausgeben
 - \star P5: ϕ und $\dot{\phi}$ für Bildschirm (Prozeßwarte) aufbereiten
 - * P6: Bildschirmausgabe
 - * P7: Regelungsprotokoll führen
 - * Präzedenzgraph

zyklisch aktiviert



7.6 Maple-Sheet für balancierten Stab

Maple: Inverses Pendel (balancierter Stab) nach Ackermann

1. Die DGL

Horizontalbewegung des Stabschwerpunktes

> gl01:= m*diff(diff(s(t)+L*Sphi(t),t),t) =H;

$$gl01 := m\left(\left(\frac{\partial^2}{\partial t^2}\mathsf{s}(t)\right) + L\left(\frac{\partial^2}{\partial t^2}\mathsf{Sphi}(t)\right)\right) = H$$

Vertikalbewegung des Stabschwerpunktes

> gl02:=m*diff(diff(L*Cphi(t),t),t) = V - m*g; $gl02:=mL\left(\frac{\partial^2}{\partial t^2}\operatorname{Cphi}(t)\right)=V-mg$

Drehbewegung des Stabs um seinen Schwerpunkt

> gl03:=theta*diff(diff(phi(t),t),t) -V*L*Sphi(t)+ H*L*Cphi(t)=0;

$$gI03 := \theta \left(\frac{\partial^2}{\partial t^2} \phi(t) \right) - V L \operatorname{Sphi}(t) + H L \operatorname{Cphi}(t)$$
$$= 0$$

Horizontalbewegung des Wagens

> gl04:=M*diff(diff(s(t),t),t) - u+H=0;

$$gIO4 := M\left(\frac{\partial^2}{\partial t^2}s(t)\right) - u + H = 0$$

Traegheitsmoment

> theta:=m*L*L/3;

$$\theta := \frac{1}{3} m L^2$$

> Cphi(t) := cos(phi(t)); $Cphi(t) := cos(\phi(t))$

> Sphi(t):=sin(phi(t)); $Sphi(t) := sin(\phi(t))$

gegeben: m (Masse Stab), M (Masse Wagen), L (Laenge Stab) unbekannt: s(t), phi(t), H, V

2. Vereinfachte Differentialgleichungen

Naeherung

> Cphi(t):=1;Cphi(t) := 1

> Sphi(t):= phi(t); Sphi(t):=
$$\phi(t)$$

damit wird:

> gl01;

$$m\left(\left(\frac{\partial^2}{\partial t^2}\mathsf{s}(t)\right) + L\left(\frac{\partial^2}{\partial t^2}\phi(t)\right)\right) = H$$

> gl02;

$$0 = V - mg$$

> gl03;

$$\frac{1}{3}mL^{2}\left(\frac{\partial^{2}}{\partial t^{2}}\phi(t)\right) - VL\phi(t) + HL = 0$$

> gl04;

$$M\left(\frac{\partial^2}{\partial t^2}\mathsf{s}(t)\right) - u + H = 0$$

wir loesen jetzt gl01 nach H und gl02 nach V auf:

> H:=solve(gl01,H);

$$H := m \left(\frac{\partial^2}{\partial t^2} s(t) \right) + m L \left(\frac{\partial^2}{\partial t^2} \phi(t) \right)$$

> V:=solve(gl02,V);

$$V := m g$$

eingesetzt in gl03 und gl04 ergibt sich:

> gl031:=simplify(gl03);

$$gI031 := \frac{4}{3} m L^2 \left(\frac{\partial^2}{\partial t^2} \phi(t) \right) - m g L \phi(t)$$
$$+ L m \left(\frac{\partial^2}{\partial t^2} s(t) \right) = 0$$

> gl041:=simplify(gl04);

$$gI041 := M\left(\frac{\partial^2}{\partial t^2}s(t)\right) - u + m\left(\frac{\partial^2}{\partial t^2}s(t)\right) + mL\left(\frac{\partial^2}{\partial t^2}\phi(t)\right) = 0$$

gl031 und gl041 sind die beiden DGL fuer die beiden Unbekannten s(t) und phi(t)

3. Reglergleichung

> u:= KP*phi(t)+KD*diff(phi(t),t);

$$u := \mathsf{KP}\,\phi(\,t\,) + \mathsf{KD}\,\left(\frac{\partial}{\partial t}\,\phi(\,t\,)\right)$$

damit wird:

> gl032:=simplify(gl031);

$$gI032 := \frac{4}{3} m L^2 \left(\frac{\partial^2}{\partial t^2} \phi(t) \right) - m g L \phi(t)$$
$$+ L m \left(\frac{\partial^2}{\partial t^2} s(t) \right) = 0$$

> gl042:=simplify(gl041);

$$gI042 := M\left(\frac{\partial^{2}}{\partial t^{2}}\mathsf{s}(t)\right) - KP\phi(t) - KD\left(\frac{\partial}{\partial t}\phi(t)\right) + m\left(\frac{\partial^{2}}{\partial t^{2}}\mathsf{s}(t)\right) + mL\left(\frac{\partial^{2}}{\partial t^{2}}\phi(t)\right) = 0$$

4. Loesung

Loesungsansatz

> phi(t):=cp*exp(lambda*t);
$$\phi(t) := cp e^{(\lambda t)}$$

>
$$s(t):=cs*exp(lambda*t);$$

 $s(t):=cse^{(\lambda t)}$

eingesetzt in die beiden Gleichungen und dividiert durch exp(lambda*t) ergibt sich ein homogenes Gleichungssystem fuer die Unbekannten cp und cs

> gl033:=simplify(op(1,gl032)/exp(lambda*t))=0;
gl033:=
$$\frac{1}{3}Lm\left(4Lcp\lambda^2 - 3gcp + 3cs\lambda^2\right) = 0$$

$$> gl043:=simplify(op(1,gl042)/exp(lambda*t))=0;$$

$$gI043 := M \operatorname{cs} \lambda^{2} - KP \operatorname{cp} - KD \operatorname{cp} \lambda + m \operatorname{cs} \lambda^{2} + L m \operatorname{cp} \lambda^{2} = 0$$

homogene Gleichung fuer cp und cs, nur Loesung, falls Determinante 0 in diesem Fall sind die Loesungen voneinander abhaengig

> solve(gl033,cp);

$$-3\frac{cs \lambda^2}{4L\lambda^2-3q}$$

Prozedur dafuer

- > Cp:=proc(lam,cs) global L,g;
- > -3*cs*lam*lam/(4*L*lam*lam-3*g);
- > end;

```
Cp := proc(lam,cs)
global L,g;
-3*cs*lam^2/(4*L*lam^2-3*g)
end
```

die Matrixelemente der Gleichungen lauten

> a11:= L*m/3*(4*L*lambda*lambda-3*g);
$$a11 := \frac{1}{3} L m \left(4 L \lambda^2 - 3 g\right)$$

> a12:=L*m/3*3*lambda*lambda;
a12:=
$$Lm\lambda^2$$

> a21:=-KP-KD*lambda+L*m*lambda*lambda;
$$a21:=-KP-KD\,\lambda+L\,m\,\lambda^2$$

> a22:=M*lambda*lambda+m*lambda*lambda;
$$a22:=M\,\lambda^2+m\,\lambda^2$$

damit ergibt sich die Determinante

> detgl:=collect(a11*a22-a12*a21=0,lambda);

$$detgI := \left(\frac{4}{3}mL^{2}(M+m) - L^{2}m^{2}\right)\lambda^{4} + Lm KD \lambda^{3} + (-m g L(M+m) + Lm KP)\lambda^{2} = 0$$

Loesungen sind

> lam:=solve(detgl,lambda);

$$lam := 0, 0, \frac{1}{2} \left(-Lm \, KD + \frac{1}{3} (9 \, L^2 \, m^2 \, KD^2 \right) \\ + 48 \, m^2 \, L^3 \, M^2 \, g + 60 \, m^3 \, L^3 \, M \, g \\ - 48 \, m^2 \, L^3 \, M \, KP + 12 \, L^3 \, m^4 \, g \\ - 12 \, L^3 \, m^3 \, KP)^{1/2} \right) \left/ \left(\frac{4}{3} \, m \, L^2 \, M + \frac{1}{3} \, L^2 \, m^2 \right), \right. \\ \frac{1}{2} \left(-Lm \, KD - \frac{1}{3} (9 \, L^2 \, m^2 \, KD^2 \right) \\ + 48 \, m^2 \, L^3 \, M^2 \, g + 60 \, m^3 \, L^3 \, M \, g \\ - 48 \, m^2 \, L^3 \, M \, KP + 12 \, L^3 \, m^4 \, g \\ - 12 \, L^3 \, m^3 \, KP)^{1/2} \right) \left/ \left(\frac{4}{3} \, m \, L^2 \, M + \frac{1}{3} \, L^2 \, m^2 \right) \right.$$

> lambda1:=lam[1];

$$\lambda 1 := 0$$

> lambda2:=lam[2];

$$\lambda 2 := 0$$

> lambda3:=simplify(lam[3]);

$$\lambda 3 := -\frac{1}{2} \left(3 L m \, KD - \sqrt{3} (L^2 m^2 (3 \, KD^2 + 16 \, L \, M^2 \, g + 20 \, m \, g \, L \, M - 16 \, L \, M \, KP + 4 \, m^2 \, g \, L - 4 \, L \, m \, KP))^{1/2} \right) / (m \, L^2 + 4 \, M + m))$$

> lambda4:=simplify(lam[4]);

$$\lambda 4 := -\frac{1}{2} \left(3 L m KD + \sqrt{3} (L^2 m^2 (3 KD^2 + 16 L M^2 g + 20 m g L M - 16 L M KP + 4 m^2 g L - 4 L m KP) \right)^{1/2} / (m L^2 (4 M + m))$$

die Gesamtloesung setzt sich aus den Teilloesungen zusammen winkel berechnet phi(t), abhaengig von weiteren frei waehlbaren Parametern

```
> winkel:=proc(t,Cs1,Cs2,Cs3,kp,kd)
   global KP, KD, tit;
    local wu,rwu,iwu;
> KP:=kp:
> KD:=kd;
> wu:=evalf(lambda3);
> rwu:=Re(wu);
> iwu:=Im(wu);
> tit:=cat('phi(t) fuer KP=',convert(KP,string),
   'KD=',convert(KD,string),
   'rwu=',convert(rwu,string),
   ' iwu=',convert(iwu,string));
> Re(evalf(Cp(lambda1,Cs1)*exp(lambda1*t)+
   Cp(lambda2,Cs2)*exp(lambda2*t)+
   Cp(lambda3,Cs3)*exp(lambda3*t)+
   Cp(lambda4,Cs1)*exp(lambda4*t)));
> end:
```

```
winkel :=
proc(t,Cs1,Cs2,Cs3,kp,kd)
local wu,rwu,iwu;
global KP, KD, tit;
    KP := kp;
    KD := kd;
    wu := evalf(lambda3);
    rwu := Re(wu);
    iwu := Im(wu);
    tit := ...
    Re(evalf(Cp(lambda1,Cs1)*
     exp(lambda1*t)+ ...
end
```

- 5. Berechnung der Werte KP und KD fuer vorgegebene Wurzeln rw \pm I*iw
 - > lambda3;

$$-\frac{1}{2} \left(3 L m KD - \sqrt{3} (L^2 m^2 (3 KD^2 + 16 L M^2 g) + 20 m g L M - 16 L M KP + 4 m^2 g L - 4 L m KP) \right)^{1/2} / (m L^2 (4 M + m))$$

> realteil:=rw=-1/2*3*L*m*KD/
(m*L*L*(4*M+m));
realteil:=
$$rw = -\frac{3}{2} \frac{KD}{L(4M+m)}$$

> kd:=solve(realteil,KD);

$$kd := -\frac{2}{3} rw L (4M + m)$$

> imteil:= iw*iw=-1/4*3*L*L*m*m*(
 3*KD*KD+16*L*M*M*g+20*m*g*L*M 16*L*M*KP+4*m*m*g*L-4*L*m*KP)/
 (m*L*L*(4*M+m))^2;

imteil :=
$$iw^2 = -\frac{3}{4}(3 \, \text{KD}^2 + 16 \, L \, M^2 \, g$$

+ $20 \, m \, g \, L \, M - 16 \, L \, M \, \text{KP} + 4 \, m^2 \, g \, L$
- $4 \, L \, m \, \text{KP}) \, / (L^2 \, (4 \, M + m \,)^2)$

> kp:=solve(imteil,KP);

$$kp := -\left(iw^{2} + \frac{9}{4} \frac{KD^{2}}{L^{2} (4M + m)^{2}} + 12 \frac{M^{2} g}{L (4M + m)^{2}} + 15 \frac{m g M}{L (4M + m)^{2}} + 3 \frac{m^{2} g}{L (4M + m)^{2}}\right) / \left(12 \frac{M}{L (4M + m)^{2}} - 3 \frac{m}{L (4M + m)^{2}}\right)$$

6. Beispiele

zunaechst eine Berechnung von phi(t) bei verschiedenen Parametern, u.a. dem Realteil und dem Imaginaerteil der Wurzeln (lambda)

```
> winkel2:=proc(t,Cs1,Cs2,Cs3,rwi,iwi)
    global rw,iw,KP,KD; local lkp,lkd;
> rw:=rwi;
> iw:=iwi;
> lkd:=kd;
> KD:=lkd;
> lkp:=kp;
> winkel(t,Cs1,Cs2,Cs3,lkp,lkd);
> end;
```

```
winkel2 := proc(t,Cs1,Cs2,Cs3,rwi,iwi)
         local lkp,lkd;
         global rw,iw,KP,KD;
            rw := rwi;
            iw := iwi;
            lkd := kd;
            KD := Ikd;
            lkp := kp;
            winkel(t,Cs1,Cs2,Cs3,lkp,lkd)
         end
```

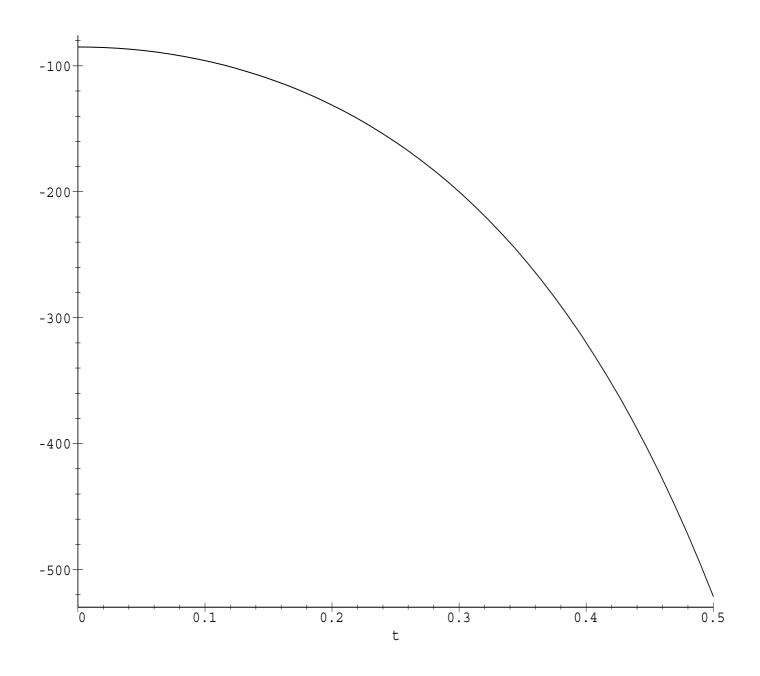
jetzt feste Zahlenwerte

```
> M:=0.981;
                 M := .981
> m:=0.08;
                 m := .08
```

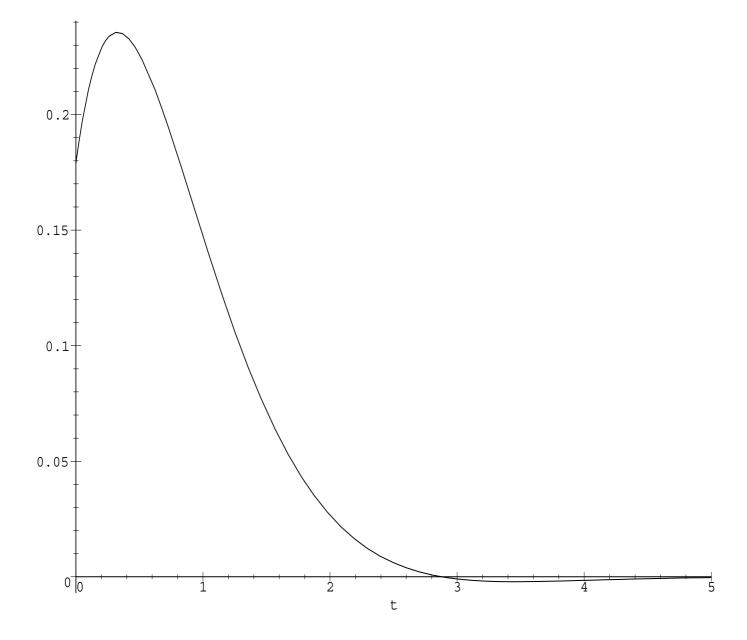
```
> L:=0.312;
                   L := .312
> q:=9.81;
                   q := 9.81
Ausgabeprozedur
> aus:=proc(ta,te,cs1,cs2,cs3,lrw,liw);
> print(plot(winkel2(t,cs1,cs2,cs3,lrw,liw),
    t=ta..te,title=tit,axes=NORMAL));
> end;
    aus :=
    proc(ta,te,cs1,cs2,cs3,lrw,liw)
       print(
       plot(winkel2(t,cs1,cs2,cs3,lrw,liw),
           t = ta ... te, title = tit,
           axes = NORMAL)
    end
```

Ausgaben fuer ausgewaehlte Faelle

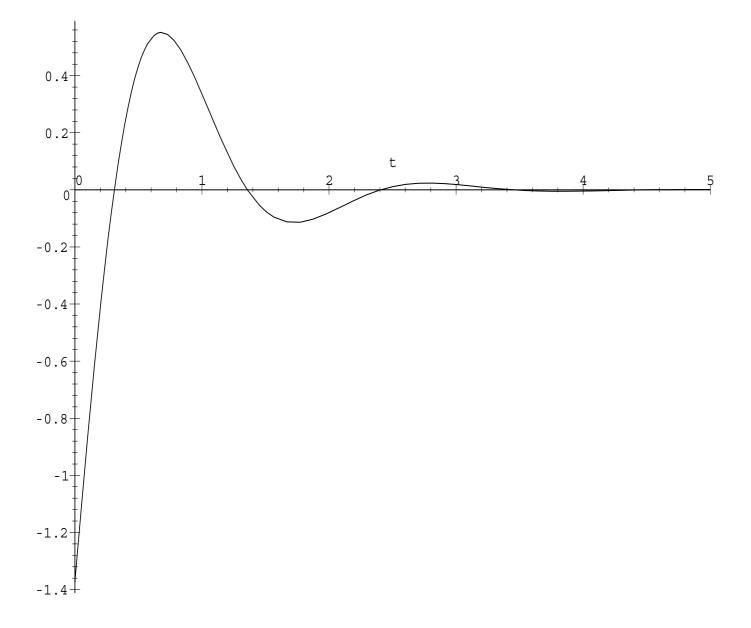
- > plot(winkel(t,1,1,1,0,0),t=0..1,title=tit,
 axes=NORMAL);
- > aus(0, 5, 1, 1, 1, -1.5, 1.0);
- > aus(0, 5, 1, 1, 1, -1.5, 2.0);
- > aus(0, 5, 1, 1, 1, -1.5, 3.0);
- > aus(0, 5, 1, 1, 1, -3.0, 1.0);
- > aus(0, 5, 1, 1, 1, -3.0, 20.0);



- ullet $\phi(t)$ für ungeregelten balancierten Stab
 - * nicht stabil
 - \star wegen Linearisierung ist ϕ nicht begrenzt



- $\phi(t)$ für geregelten balancierten Stab
 - \star wurzeln: 0, -1.5 \pm 1*I
 - * stabil, Überschwingen
 - * wegen kleinem Imaginärteil der Wurzel lange Schwingungsperiode



- $\phi(t)$ für geregelten balancierten Stab
 - \star wurzeln: 0, -1.5 \pm 3*I
 - * stabil, Überschwingen
 - * wegen größerem Imaginärteil der Wurzel kürzere Schwingungsperiode

7.7 Einführung in die Fuzzy-Logik

Definition

Eine unscharfe Menge (fuzzy set) \widetilde{A} über der scharfen (crisp) Menge X wird durch eine Zugehörigkeitsfunktion $\mu(x,X,\widetilde{A})$ charakterisiert, die jedem $x\in X$ eine reelle Zahl aus [0,1] zuordnet: die Wahrscheinlichkeit, mit der das Element der unscharfen Menge angehört

Unscharfe Menge

$$\widetilde{A} = \left\{ \left(x_1, \mu(x_1, X, \widetilde{A}) \right), \dots, \left(x_n, \mu(x_n, X, \widetilde{A}) \right) \right\}$$

ullet Scharfe Menge \widetilde{X}

$$\mu(x, X, \widetilde{X}) = 1 \quad \forall x \in X$$

ullet Trägermenge (support) von \widetilde{A}

$$supp(\widetilde{A}) \equiv \left\{ x \in X \mid \mu(x, X, \widetilde{A}) > 0 \right\}$$

• α -Schnitt(α -level-set, α -cut)

$$\widetilde{A}_{\alpha} = \left\{ \left(x, \mu(x, X, \widetilde{A}) \right) \mid x \in X \land \mu(x, X, \widetilde{A}) \ge \alpha \right\}$$

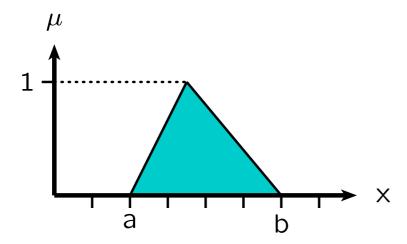
• gekappte unscharfe Menge $\widetilde{A}\uparrow\alpha$ Sei \widetilde{A} über der Scharfen Menge X definiert durch $\mu(x,X,\widetilde{A})$, dann gilt für alle $x\in X$

$$\mu(x, X, \widetilde{A} \uparrow \alpha) =$$

$$\begin{cases} \mu(x, X, \widetilde{A}), & falls \quad \mu(x, X, \widetilde{A}) \leq \alpha \\ \alpha, & falls \quad \mu(x, X, \widetilde{A}) > \alpha \end{cases}$$

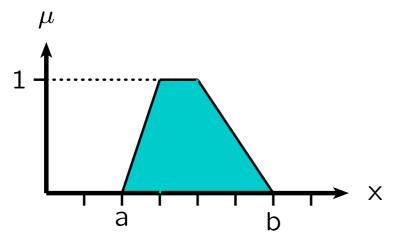
• Ein wesentlicher Teil des Entwurfsprozesses liegt in der Festlegung der Form und Werte der Zugehörigkeitsfunktionen μ

- Programme bieten einfache Formen an, z.B.
 - * Dreieck



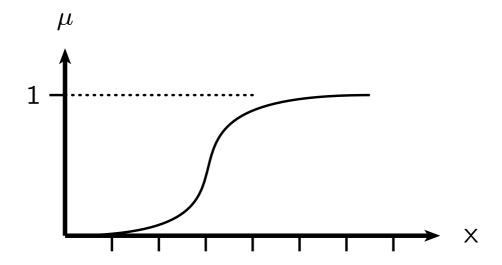
häufig gleichschenklig

* Trapez

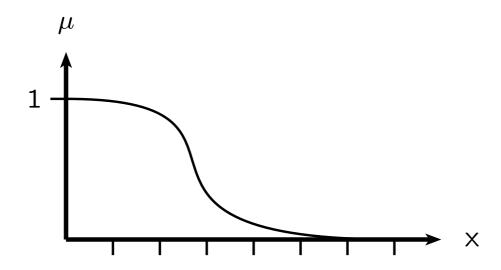


meist symmetrisch

* "S"-Funktion



* "Z"-Funktion



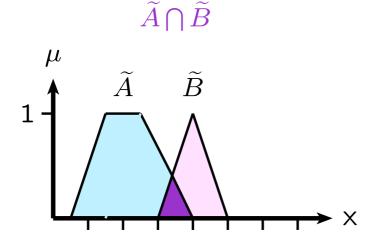
* Üblich sind auch Polygonzug, Glockenkurve, \sin^2 usw.

- Operationen
 - * Benötigt werden Durchschnitt, Vereinigung, Komplement der unscharfen Mengen
 - \star Definition dieser Operationen frei an Anwendung anpaßbar, solange für $\mu=0$ und $\mu=1$ die üblichen Logikoperationen gelten bzw. allgemeiner bestimmte Normen (t-Norm, s-Norm) erfüllt sind
- Übliche Operationen für die Regelungstechnik
 - * Durchschnitt

$$\widetilde{C} = \widetilde{A} \cap \widetilde{B}$$

wobei

$$\mu(x, X, \tilde{C}) = \min \left(\mu(x, X, \tilde{A}), \mu(x, X, \tilde{B}) \right)$$

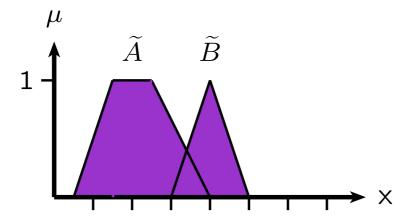


* Vereinigung

$$\tilde{C} = \tilde{A} \cup \tilde{B}$$

wobei

$$\mu(x, X, \tilde{C}) = \max \left(\mu(x, X, \tilde{A}), \mu(x, X, \tilde{B}) \right)$$



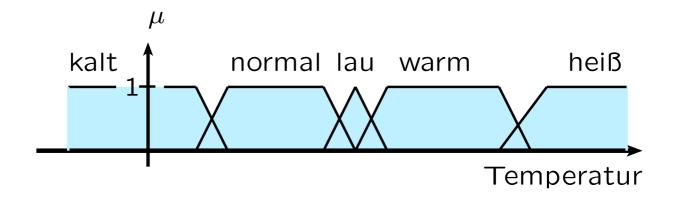
* Komplement

$$\tilde{C} = \overline{\tilde{A}}$$

wobei

$$\mu(x, X, \tilde{C}) = (1 - \mu(x, X, \tilde{A})) \quad \forall x \in X$$

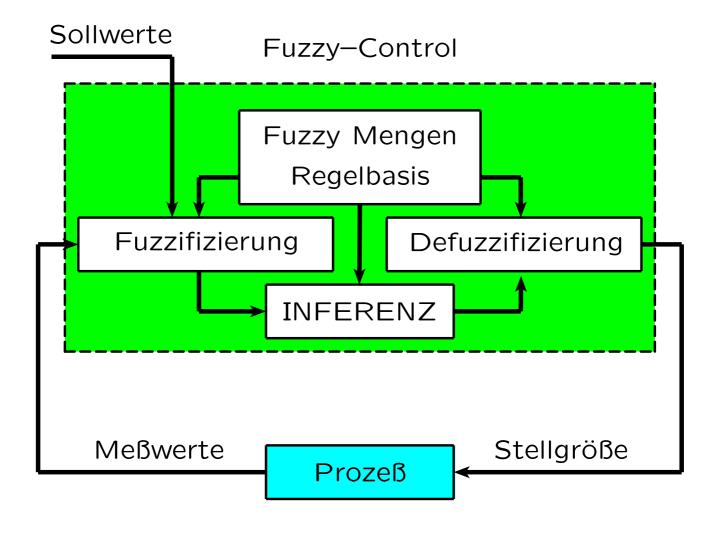
- Linguistische Variable
 - Eine linguistische Variable (L.V.) ist charakterisiert durch ihren Namen v und ihre Werte (Ausprägungen)
 - * der L.V. ist eine scharfe Menge X zugeordnet
 - * Menge der Werte (linguistische Terme, L.T.) von v ist Termset $\mathcal{T}(v)$
 - jeder linguistische Term ist eine unscharfe
 Menge definiert über der scharfen Menge X
 - * Beispiel Temperatur
 - L.V. ist Temperatur
 - zugehörige scharfe Menge ist Menge der Temperaturwerte
 - zugehörige L.T. sind: kalt, normal, lau, warm, heiß
 - Zugehörigkeitsfunktionen



7.8 Fuzzy–Regelung

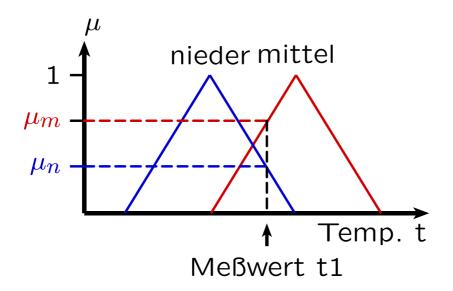
- weit verbreitet
 - * insbesondere in Konsumgütern, wie
 - * Waschmaschinen
 - * Fotoapparate
- Warum?
 - * mathematisches Modell für Prozeß nicht vorhanden, zu schwierig
 - * Fuzzy-Regelung stellt nur geringe mathematische Anforderungen
- Der dem Menschen (aus Erfahrung) bekannte Regelungsvorgang wird in WENN-DANN-Regeln mit linguistischen Variablen formuliert
- Prämissen und Konklusion werden "unscharf" ausgewertet

- Entwurfschritte
 - (1) Fuzzifizierung der Meßwerte: Festlegung der linguistischen Variablen und ihrer Terme mit entsprechenden Zugehörigkeitsfunktionen
 - (2) Erstellen der Regelbasis (Expertenwissen)
 - (3) Auswahl geeigneter Inferenzoperationen
 - (4) Defuzzifizierung: Berechnung der scharfen Stellgrößen
- Struktur Fuzzy-Regler



- Die einzelnen Entwurfsschritte am Beispiel erklärt
 - * nach H.-H. Bothe: Fuzzy-Logic. Springer 1993
 - * Aufgabe: Kühlventilstellung regeln
 - * Meßwert: Temperatur t1
 - \star Stellwert: Stellung k_s des Kühlventils
- zu (1): Prinzip Fuzzifizierung
 - jeder Meßwert stammt aus einer scharfen Menge (L.V.)
 - zu allen linguistischen Variablen sind unscharfe Mengen (L.T.) definiert (menschliche Erfahrung, "trial and error")
 - für jeden Meßwert werden die
 Zugehörigkeitswahrscheinlichkeiten zu den
 L.T. ermittelt
- zu (1): Beispiel Fuzzifizierung
 - * Temperatur t1 gemessen
 - * es gibt zwei scharfe Mengen (L.V.)
 - Temperatur T
 - Stellung K des Kühlventils

* unscharfe Mengen der L.V. Temperatur T (unvollständig)

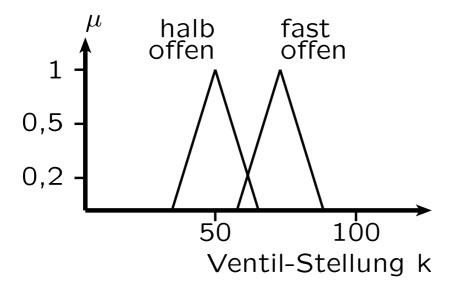


wobei

$$\mu_n = \mu(t1, T, nieder)$$

 $\mu_m = \mu(t1, T, mittel)$

* unscharfe Mengen der L.V. Ventil-Stellung K (unvollständig)



- zu (2): Prinzip Regelbasis
 - \star Elementarbedingung der Form $(V = \tilde{A})$, wobei V eine L.V. (Gleichheitszeichen ist als "ist" zu lesen)
 - * Verknüpfung der Elementarbedingungen mit AND, OR, NOT
 - \star Aktion der Form $(W = \tilde{B})$, wobei W eine L.V.
 - * Form der Regel j z.B:

IF
$$(V_1 = \widetilde{A}_{1j})$$
 AND $(V_2 = \widetilde{A}_{2j})$ OR $(V_3 = \widetilde{A}_{3j})$ THEN $W = \widetilde{B}_j$

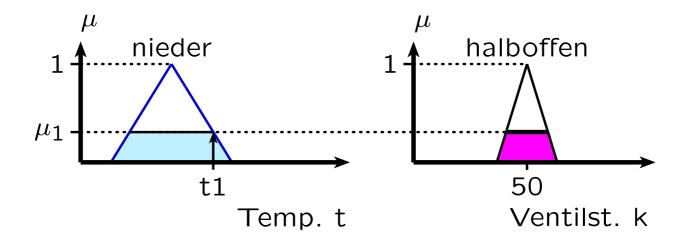
- * V_1 , V_2 , V_3 , W sind L.V.
- \star \widetilde{A}_{1j} , \widetilde{A}_{2j} , \widetilde{A}_{3j} , \widetilde{B}_{j} sind L.T. der entsprechenden L.V.
- zu (2): Beispiel Regelbasis
 - \star R1: if (T=nieder) THEN K = halboffen
 - * R2: if (T=mittel) THEN K = fastoffen

- zu (3): Prinzip Inferenz
 - \star für jede Elementarbedingung $(X = \tilde{A})$ wird bei gemessenem Wert $x \in X$ berechnet $\mu(x, X, \widetilde{A})$
 - * Verknüpfung Elementarbedingungen durch spezifische Strategien
 - * Verknüpfung in Regelungstechnik nach Mamdami:

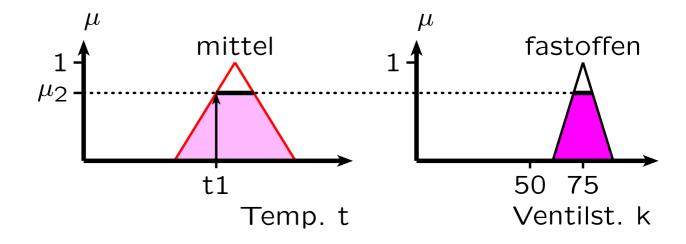
AND als Durchschnitt (Minimum μ -Werte) OR als Vereinigung (Maximum μ -Werte) NOT als Komplement $(1 - \mu)$

- \star damit μ_j für Regel j aus Bedingungsteil berechenbar
- \star μ_i beschränkt den μ -Wert der Konklusions–Variablen \widetilde{B}_i der rechten Seite; es wird berechnet die gekappte unscharfe Menge $B_j \uparrow \mu_j$

- zu (3): Beispiel Inferenz
 - \star R1 liefert $\mu_1 = \mu(t1, T, nieder)$ und daraus $halboffen \uparrow \mu_1$



* R2 liefert $\mu_2 = \mu(t1, T, mittel)$ und daraus $fastoffen \uparrow \mu_2$



- zu (4): Prinzip Defuzzifizierung
 - aus den gekappten unscharfen Mengen bezüglich einer linguistischen Variablen wird die Vereinigungsmenge gebildet
 - mehrere Verfahren zur Berechnung scharfer
 Stellwerte aus gekappten unscharfen Mengen aus Konklusionen in Schritt 3
 - Mittelwertbildung (mean of maxima)
 - Mittelwert der Maximalwerte
 - Schwerpunktbildung der Fläche (center of area/gravity)
 - gewichtete Schwerpunktbildung der
 Fläche, falls die Regeln gewichtet werden

- zu (4): Formeln
 - * Bezeichnungen:

ein Wert des Ausgabebereichs (Stellwert) \boldsymbol{x}

 $\mu(x)$ Zugehörigkeitfunktion zu der oben genannten Vereinigungsmenge

Gewicht der Regel j g_j

 μ_j Ergebnis der linken Seite der Regel j

 $F(\widetilde{A})$ Fläche der Zugehörigkeitsfunktion der unscharfen Menge

 \star x-Koordinate x_s des Schwerpunkts

$$x_s = \int x \, \mu(x) \, dx / \int \mu(x) \, dx$$

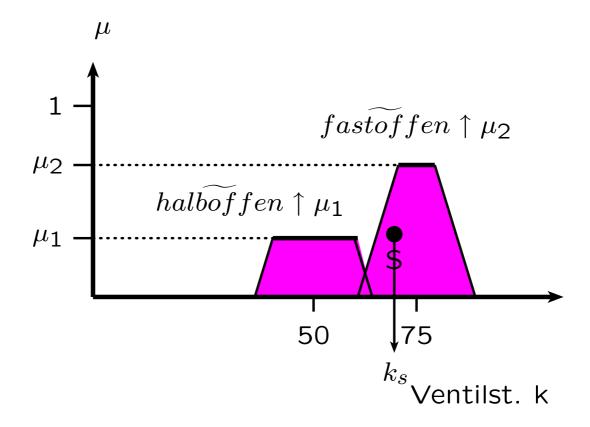
* Schwerpunkt bei Massenpunkten i mit Fläche F_i und x-Koordinate x_{s_i} des Schwerpunkts

$$x_s = \sum_i x_{s_i} F_i / \sum_i F_i$$

 \star x-Koordinate x_s^* des Schwerpunkts bei gewichteten Regeln j = 1, 2, ..., n

$$x_s^* = \sum_{j=1}^n x_{s_j} F(\widetilde{B_j} \uparrow \mu_j) \mu_j g_j / \sum_{j=1}^n F(\widetilde{B_j} \uparrow \mu_j) \mu_j g_j$$

- zu (4): Beispiel Defuzzifizierung
 - \star Schwerpunktbildung der gekappten unscharfen Mengen $halb\widetilde{offen}\uparrow\mu_1$ und $fast\widetilde{offen}\uparrow\mu_2$
 - * Schwerpunkt sei $S = (k_s, \mu_s)$
 - \star Ventil ist auf k_s einzustellen



- Hinweis: Es gibt adaptive Fuzzy-Regelungen
 - * Adaption der Gewichte der Regeln
 - Veränderung der Neigung der Zugehörigkeitsfunktionen der linguistischen Terme innerhalb vorgegebener Grenzen

7.9 Fuzzy–Regelung eines aufrechten (inversen) Pendels (balancierter Stab)

- klassische schwierige Regelungsaufgabe
- in der Literatur mehrere Beschreibungen mittels Fuzzy-Regelung
- Linguistische Variable
 - \star Winkel ϕ mit L.T.: neg, zero, pos
 - \star Winkelbeschleunigung $\dot{\phi}$ mit L.T.: neg, zero, pos
 - * Stellkraft U mit L.T.: grossneg, neg, zero, pos, grosspos

ullet 9 Regeln durch AND-Verknüpfung von ϕ und $\dot{\phi}$ z.B.

IF (
$$\phi = \text{neg}$$
) AND ($\dot{\phi} = \text{pos}$) THEN U = pos

• Satz von Regeln durch Matrixdarstellung übersichtlicher

$\dot{\phi}$	neg	zero	pos
neg	grosspos	pos	neg/zero
zero	pos	zero	neg
pos	pos/zero	neg	grossneg

7.10 Fuzzy–Regler als Chips

- Übliche Aufgaben benötigen oft nur Regler mit 2 Eingängen (x und dx/dt) und einer Ausgangsgröße (2 bis 4 msec)
- Hierfür spezielle Chips am Markt (1989-1995)
- zeitkritische Fuzzy-Regelungen benötigen Hochleistungschips als Co-Prozessoren
 - Hochleistung durch interne parallele
 Regelauswertung
 - * bis zu je 8 Ein- und Ausgangsgrößen
 - bis zu 16 Punkten pro
 Zugehörigkeitsfunktion (max. 7
 Zugehörigkeits-Funktionen pro Variable)
 - * 25 bis zu 256 Regeln
 - * Auswertungszeiten im Bereich von 0,1 bis 50 msec

- Vorreiter 1989: Togai FC-110
- Hochleistungs-Fuzzychips, z.B. OMRON FP-3000, SIEMENS SAE 81C99
- OMRON FP-3000
 - * 8 Eingänge
 - * 8 Ausgänge
 - * maximal 96 Regeln
 - * 3 msec für Auswertung von 96 Regeln
- SAE 81C99
 - * 256 Eingänge
 - * 64 Ausgänge
 - * maximal 16384 Regeln
 - * 7,9 Mio Regeln je Sekunde etwa 1,3 μ sec je Regel