

Lecture Notes on

Model-based Visual Tracking

Dr.–Ing. Giorgio Panin

TUM – Informatik VI (Robotics and Embedded Systems)

January 2009

 2

PART I - MODELS AND BASIC TOOLS FOR 3D TRACKING... 5
LECTURE 2 – WORLD AND CAMERA GEOMETRY REPRESENTATION.. 5

The World-camera model ... 5
Representation of the extrinsic transformation (body-to-camera).. 9
Intrinsic camera model ... 18
Camera calibration and object pose estimation ... 20

LECTURE 3 – 3D POSE ESTIMATION FROM POINT CORRESPONDENCES .. 23
3D pose estimation problem ... 23
Least-squares estimation .. 25
Linear LSE optimization ... 27
Nonlinear LSE: Gauss-Newton and Levenberg-Marquardt ... 31
Robust LSE ... 39

M-estimators ..40
RANSAC ...43

LECTURE 4 – BAYESIAN TRACKING (I) .. 48
Object state model .. 49
Dynamic model ... 50
Measurement model: the Likelihood function... 54
General Bayesian tracking scheme: prediction-correction .. 61

Correction step: Bayes’rule ..63
Prediction step..64
Bayesian tracking equation...65

Possible models for the posterior pdf ... 67
LECTURE 5 – BAYESIAN TRACKING (II)... 72

Possible implementations of the tracking scheme... 72
Linear+Gaussian case: the Kalman Filter ... 74

Multi-variate Gaussian distribution ..74
Motion and measurement models...75
Predition-correction equations..76

Nonlinear+Gaussian case: the Extended Kalman Filter.. 80
Non-gaussian situation: a multiple-hypothesis measurement model .. 82

First approach to the multi-modal case: mixture of Gaussians ...83
Most general case: Monte-Carlo sampling scheme (Particle Filters).. 84

Factored sampling: discrete implementation of Bayes’rule..84
Prediction step: Monte-Carlo sampling from the prior distribution..86
The complete Particle Filter scheme for tracking...89

PART II – VISUAL MODALITIES FOR OBJECT TRACKING .. 90
LECTURE 6 – COLOR-BASED OBJECT TRACKING .. 90

Color-space representations... 93
Modeling color distributions .. 102
The Mean-Shift Algorithm: I – Definition... 112
The Mean-shift algorithm: II – Color segmentation ... 119
The Mean-shift algorithm: III – Object tracking .. 124
Bayesian tracking for a color-based modality .. 131

LECTURE 7 – THE KANADE-LUCAS-TOMASI FEATURES TRACKER.. 135
Local keypoint-based tracking.. 135

Definition: local features ..136
Keypoint descriptors database..138
On-line features detection vs. tracking ...140
Invariance properties for features detection..142

The KLT feature tracking algorithm... 144
Optical flow conditions ..145
Solution for the translational model ...147
KLT: good features selection ...150
KLT: on-line quality check ..152
Solution for the 6dof affine model ...153
KLT: the full algorithm ..155

LECTURE 8 – FEATURE DETECTION METHODS: THE SIFT APPROACH... 156
Features detection .. 156
Invariance properties.. 158
The Harris-Stephens feature detector... 159

Detection with the auto-correlation matrix...161

 3

Harris “cornerness” measure ..163
Invariance properties of Harris’ detector ..169

Scale-space representation ... 172
Gaussian image filtering...173
Scale-space example ..175
The NLoG kernel and the scale-space theorem ..177

SIFT: Scale-Invariant Features Transform .. 179
Computing the DoG scale-space ..179
Detecting invariant features..181
Subsampling the Gaussian pyramid (Octaves) ...183
Refine features detection ..186
Building an invariant descriptor ...187
Examples..194
Matching features...197
SIFT - Resume ...201

LECTURE 9 – CONTOUR TRACKING USING THE IMAGE EDGE MAP .. 205
Definition and motivations.. 205
Modeling the Object Contour ... 209
Obtaining the image edge map for tracking ... 211
Using the edge map for 3D pose estimation ... 212

Contour-based pose estimation in real-time: the RAPiD Algorithm ..214
Using explicit features extracted from the edge map.. 217

Problem formulation ..217
Extract image segments..218
Define the segment projection (Warp) ...219

The segment-based pose estimation procedure .. 220
Define the LSE error to be optimized: segment distances ..221
The Gauss-Newton step for LSE optimization ...225
Comparison between segment and edge map for tracking..227
Bayesian estimation with dynamic models...228

LECTURE 10 – CONTOUR TRACKING USING LIKELIHOOD FUNCTIONS .. 229
Representation of curvilinear shapes with B-Splines.. 229

B-Spline basis functions...231
Properties of B-Splines...233

Multi-modal contour Likelihood... 235
Multiple-hypothesis edge measurement ...237
The complete contour Likelihood...240
Particle Filters for contour tracking – the CONDENSATION approach..242

Contour tracking using color region statistics ... 246
Motivation of the main idea ...246
Color Likelihood definition and the CCD algorithm..250
Modeling the two-sided color statistics ..251
Color separation criterion...254
Maximum Likelihood pose hypothesis...257
Refining the cost function ..259
1 – Split the optimization in two steps..259
2 – Blurring the statistics..260
3 – Using local statistics for multi-modal distributions ..262
Optimizing the Likelihood with Gauss-Newton ...264
Adding prior knowledge for MAP estimation ..268
The overall CCD pose estimation algorithm ..269

LECTURE 11 – ACTIVE APPEARANCE MODELS .. 273
Template modeling and tracking .. 273
Active Appearance Models ... 278
The Warp function .. 281
Training the AAM ... 283

Principal Component Analysis ...284
Shape model training with PCA ...289
Appearance model training...290

Tracking an AAM.. 291
State definition ...292
Optimization of similarity measures...294

LECTURE 12 – THE LUCAS-KANADE ALGORITHM FOR TEMPLATE TRACKING ... 295
Piece-wise affine Warp for deformable templates .. 295
Two steps: estimating pose and appearance parameters ... 298
The Lucas-Kanade algorithm for pose estimation .. 300
First speed improvement: the forwards-compositional approach .. 305

 4

Second improvement: the inverse-compositional approach ... 310
Appearance estimation: the appearance subspace decomposition... 314
Modified Lucas-Kanade for pose+appearance estimation... 318

Improving convergence with multi-resolution ...320
Estimating 3D pose parameters with a combined (2D+3D) approach..321

LECTURE 13 – ROBUST TEMPLATE SIMILARITY FUNCTIONS... 322
Robustness issues in template tracking... 323
Improving robustness of the similarity function ... 325
Mutual Information for template tracking .. 328

Introduction: information theory ..328
Entropy and coding ..331
Image entropy computation with histograms..335
Joint image entropy as similarity measure..339
Mutual Information as similarity measure..341
Matching templates with MI ..344
Comparison with SSD..346
Optimizing Mutual Information with a Levenberg-Marquardt approach ...347
The full MI optimization algorithm..349

SELECTED BIBLIOGRAPHIC REFERENCES ... 350

 5

Part I - Models and basic tools for 3D Tracking

Lecture 2 – World and camera geometry representation

When talking about 3D visual tracking,, we must define the representation of the geometry of world and the
image formation models.

The World-camera model

 6

The world items for 3D tracking consist in our sensor (i.e. the camera), the object model and the coordinate
systems for both.

We use two main coordinate systems, that we call camera and body (or world) reference frames. These
systems are represented by the origin and 3 orthogonal axes:

Camera frame = ()CCCC zyxO ,,,
Body frame = ()BBBB zyxO ,,,

The two reference frames are used to represent the 3-dimensional coordinates of a point in space p.

The body reference frame is used to describe positions of points that belong to the object; if theobject is
rigid, these points have fixed coordinates with respect to the body frame.
Therefore, the body frame is used to describe the structure of the object to be tracked.
March 3, 2009
The camera reference frame is attached to the camera, with the origin coincident with the camera lens, and z
axis oriented along the optical axis (depth direction).
In order to keep right-handed frames, we need to orient the y-axis downwards. This is necessary because for
3D space transformation all quantities (rotations etc.) are usually referred to right-handed coordinate
systems.

The camera frame is used to project points from space to screen (3D/2D), by using the intrinsic
transformation model.

 7

Therefore, we need to define the transformation that maps body coordinates to camera coordinates. This is
called Extrinsic Transformation TE(p,s) of a point p, with parameters s.

The parameter vector s is called state or pose parameters, and it says how the object frame is positioned in
space with respect to the camera frame. It contains information about the orientation and translation between
the two frames.

By indicating with Cp, Bp the coordinates of p with respect to the two frames, we can write

),(spp B
E

C T=

 8

The other main transformation maps points from camera to screen coordinates: this is called intrinsic
transformation model TI(p,k) of a point in camera coordinates Cp to the screen pixel position q, with intrinsic
parameters k.

The intrinsic parameters are related to the internal structure of our digital camera (focal length, pixel
resolution, etc.) and the intrinsic transformation is also called image acquisition model; it says how our
camera “sees” the world, by mapping space points in its own coordinate system to image pixels.

 9

Representation of the extrinsic transformation (body-to-camera)

Pose parameters s are used in order to define the extrinsic transformation, which our case corresponds to a
rigid roto-translation (or rigid body tranformation). This transformation maps from 3D to 3D coordinates of a
point p, from body reference frame to camera frame.

The rigid body transformation operates as a roto-translation: first, we rotate the coordinates of point p, and
afterwards we add a translation term t.

 10

tpp +=)(BC R

This corresponds, geometrically speaking, to the introduction of an intermediate coordinate frame C’
between C and B, which has axes parallel to C but origin coincident with B. Therefore, we can say that the
coordinates of P are mapped first from B to C’ (3D rotation), and then add the translation vector t = C’-C.

A pure 3D rotation is a function that maps 3D coordinates of points or vectors in space between cartesian
frames, when the origin of the coordinate frames is the same (no translation).

The next question is: how can we perform (and represent) a rotation in space?
First, we define the function in the most general way, through the rotation matrix R.

pRp BC =

This is a generic linear transformation, through a (3x3) matrix R whose columns contain the 3 axes of the
body frame (xB,yB,zB), written in terms of the camera frame:

Of course, if the two frames are coincident (xB=xC, yB=yC, zB=zC) then R=I.

We consider always orthogonal right-handed frames, which geometrically means that:

• the axes are always orthogonal one another: 0=⋅=⋅=⋅ zxzyyx
• they have unit length: 1=== zyx

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==

3,3,3,

2,2,2,

1,1,1,

B
C

B
C

B
C

B
C

B
C

B
C

B
C

B
C

B
C

B
C

B
C

B
C

zyx
zyx
zyx

zyxR

 11

• their ordering (x,y,z) follows the rule yxz ×= , where × is the cross product between vectors (right-
hand rule)

Because of the first two conditions, in a transformation of coordinates between orthogonal frames, the matrix
R has always the property:

IRRT =

while the third condition ensures that 1+=R .
NOTE: the third condition is true also if both frames are left-handed; but not if one is left-handed and the
other one right-handed! This is also called constant polarity condition.

Equation (…) correspond to the set of 6 constraints above mentioned, and therefore it reduced the number of
free parameters inside R from 9 to 3=9-6.
This means that a rigid rotation in space has always 3 degrees of freedom = number of free parameters
necessary to specify the transformation.

Therefore, we can use more compact ways to represent rigid rotations, instead of the full (3x3) elements of
R.

The first, and more intuitive, way to represent 3D rotations is given by elementary rotation matrices, or Euler
angles.

We can obtain any 3D rotation with a proper sequence of 3 rotations around elementary (x,y,z) axes.

For this purpose, we first define the sequence of axes use to perform the rotation: for example, first x, then y
and finally z.
These rotations are obtained in cascade (one after the other), with 3 angles (α,β,γ).
Note that the (x,y,z) axes are the respective axes of each frame: x is the x-axis of frame C, y is the y-axis of
frame C1, and z the z-axis of frame C2.

 12

In this way, we can say that the rotation matrix is obtained as a multiplication of elementary matrices, each
one function of the respective angle:

This representation has the advantage of being easy to understand and to compute; but has also some
disadvantages.
First, if we wish to solve the inverse problem (given R, find the 3 angles (α,β,γ)), there is always a 2-fold
ambiguity: that is, there are always two different triplets (α1,β1,γ1), (α2,β2,γ2) in the range [-180°,+180°]
give the same R.
And moreover, there are cases where infinite triplets (α,β,γ) give the same R: these are called representation
singularities.

For example, in robotics often the Euler (z-x-z) angles are used for the robot wrist, that are also the real
mechanical axes of the structure. In this case, the singularity is exactly when R=I, that correspond to infinite
possible triplets (α,0,−α).

Whatever the choice of axes, for Euler angles there is always a singular configuration, corresponding to a
single R and infinite triplets.

In the gyroscopes terminology, this is also called gymbal lock problem, and for many measurement
instruments it can be a serious problem; for our visual tracking applications, it can produce a bad behavior in
algorithms that try to estimate the 3D pose of an object from any kind of measurement (points, edges, etc.),
when the real rotation R is close to a singular one.

On the other hand, if for a particular problem we are sure that the object will never rotate close to a singular
configuration, we can safely use Euler angles, because of their computational simplicity and clear geometric
representation. For example, if we track a vehicle driving on a road, we are sure that it will never flip
“upside-down”, so we can define the axes in a way that the singularity occurs only in this non-realistic
situation.

)()()(),,(γβαγβα ZYX RRRR ⋅⋅=

 13

Another way of representing 3D rotation uses the equivalent angle-axis pair.
Any 3D rotation can be also obtained with a single rotation through an axis v (with unit length) of an angle θ.
This correspond to the following formula:

which is also called Rodrigues’ formula.
NOTE: A property of the rotation axis v is that it has the same projection (coordinates) with respect to both
frames, so there is no ambiguity in the formula.
This representation (v,θ) has also 3 degrees of freedom, because v has norm 1. Generally speaking, we have
always two axis-angle pairs (v,θ) and (-v,-θ) for the same rotation R, apart from the case R=I, where we still
have a singularity.
In fact, any pair (v,0) gives R=I; but this singularity can be now better solved, by using the more compact
rotation vector w=vθ.

[] () [] ()()

[]

1

0
0

0

cos1sin),(2

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=×

−×+×+=

v

v

vvIvR

xy

xz

yz

vv
vv

vv

θθθ

 14

With the rotation vector w, we can write

which is always good, because for w~0 we can approximate

An advantage of this representation is that avoids singularities, but at a price of more complex computations
and derivatives.
This representation still has 3 degrees of freedom, that correspond to the 3 components of the rotation vector
w (with respect of any of the two frames).

[] () [] ()
w

w
w

w
w

wIwR
cos1sin

)(2 −
×+×+=

[]
w

vw

=

==

θ

θ T
zyx www

[]×+≈ wIR

 15

Quaternions are another way of representing 3D rotations, this time in a redundant way: we have 4 instead of
3 numbers, plus 1 constraint (equation) to be satisfied by the 4 numbers.

The redundancy is introduced in order to completely remove singularity from the representaiton of 3D
rotations.

A quaternion represents 3D rotations in a very similar way as complex numbers represent rotations on the
plane.

 16

We remember that complex numbers are given by c = a + jb with the rule (definition) j2=-1.

If we represent a planar rotation of an angle q, this correspond to a (2x2) matrix R

that is also represented by a complex number c = cosθ + jsinθ, with ||c||2 = 1.

In 3 dimensions, we have “hyper-complex” numbers with 4 parameters:

q = a + ib + jc + kd

obeying the rules: i2 = j2 = k2 = -1 and ijk = -1 (Hamilton axioms).
These numbers are called quaternions; we can also write a quaternion as

q = (a,v), where a is the scalar part and v = (b,c,d) is the vector part of the quaternion.

Multiplication between quaternions, observing Hamilton rules, is done in the following way:

If we also impose the constraint ||q||2 = (a2+b2+c2+d2) = 1, then we have unit quaternions, and they are used
to represent 3D rotations.

Mathematically, rotations are performed in the following way: we first write a 3D vector p as a quaternion
with null scalar part: (0,p), and then we compute the product:

qpqp BC ⋅⋅=),0(),0(

where),(vaq −= is the conjugate of q.
If we write q = (cos θ/2, w sin θ/2) with a = cos θ/2, (b,c,d) = w sin θ/2, then (w,θ) is exactly the axis-angle
pair for the rotation.

An advantage of this representation is that there are no singularities, because every possible rotation matrix
correspond to exactly two quaternions: R (q, -q).
The formula that converts quaternions to rotation matrices and vice-versa is also very compact, and without
sin(), cos() functions (only 2nd degree polynomials), therefore very good for computing derivatives, cost
functions etc.

A disadvantage is that now we have 4 parameters, plus the constraint ||q||=1, so this is a redundant
representation like R. But of course, this single contraint is much easier to deal with, with respect to the
orthogonality constraint R’R=I.

The unit norm constraint for q has to be ensured (or at least enforced), whenever a quaternion is updated (for
example in a pose estimation problem); this can be obtained for example by dividing q/||q|| after each
modification, or by adding a penalty term K(||q||-1)2 to the cost function to be optimized, with K a high
coefficient.

⎥
⎦

⎤
⎢
⎣

⎡
−

=
θθ
θθ

cos
cos
sin

sin
R

() () ()2112212121221121 ,,, vvvvvvvv ×++⋅−=⋅=⋅ aaaaaaqq

 17

The extrinsic roto-translation function is then obtained by adding the translation vector t = C’-C to the
rotated coordinates

Cp = R Bp + t

this relationship can be more compactly written by introducing the homogeneous coordinates representation:

Tpp]1[=

and the overall Transformation matrix

so that

where s = (α,β,γ,tx,ty,tz) is the state (or pose) vector of the object with 6 degrees of freedom.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000

),,(),,,,,(
z

y

x

zyx
t
t
t

ttt γβαγβα RT

() psTp
BC

 =

 18

Intrinsic camera model

The intrinsic transformation maps 3D points from camera space to 2D image coordinates (pixels).
This transformation is related to the acquisition system (camera lens, CCD device, etc.) and can be modeled
in different ways, more or less precise with respect to the real physical system.
We consider here a simple and well-known model, the pinhole camera model, that is realistic and at the same
time simple enough for our tracking algorithms.

 19

The pinhole camera model consists in 3 parameters: focal length, horizontal and vertical resolution of the
screen. These are called intrinsic camera parameters k=(f,rx,ry).
The focal length f is the distance between the camera frame origin (also called projection center) and the
virtual screen, which is the plane where space points are projected. A point is then projected by casting a ray
from the projeciton center to the point, and looking for the intersection with the screen. In this model, pixel
units are equal to screen positions, so that points at depth f have x and y coordinates equal to pixel
coordinates. Since image coordinates are usually expressed with respect to the lower left corner of the
screen, we must also add half the resolutions to the projected coordinates.

The final transformation, from p=(px,py,pz) to q=(qx,qy) is therefore

2

2

x

z

y
y

x

z

x
x

r
f

p
p

q

r
f

p
p

q

+=

+=

which, in homogeneous coordinates, can also be written as

where K is the intrinsic matrix; real pixel cordinates are then given by)/,/(zyzx qqqqq = .

The simple pinhole model does not take into account nonlinear distortion, which often is present in camera
systems.

pkq CK)(=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
20
20

y

x

rf
rf

K

 20

Nonlinear distortion effects can be noticed by looking a straight lines, that in the image may get some
curvature. In wide-angle lenses this effect is very strong, while for small focal length (e.g. 1000mm) it is
usually less noticeable.
Distortion can be included into the projection model, but this results in a complex computation with
nonlinear terms, which is not recommended for real-time tracking purposes.
Instead, if the distortion parameters are known in advanced (by performing a standard camera calibration
procedure) another possibility is to remove distortion effects from the image, by inverting the distortion
phenomenon: this pre-processing is called image rectification, and it is a fast procedure that can be done
before using the image for our tracking tasks. Afterwards, we can reliably use a pinhole model. The price to
pay is that rectification, which is an image (pixel-based) processing, can introduce artifacts, that is, spurious
pixel patterns in small areas, that can a little bit reduce the image quality, and disturb a non-robust tracker.
But usually, this disturbance is very low, and no more than the normal image noise level, therefore this is the
preferred solution for our purposes.

Camera calibration and object pose estimation

Intrinsic and extrinsic transformations can be combined together in the global transformation, from body to
screen coordinates, by introducing the (4x3) Projection matrix P.

This matrix is used often in camera calibration problems, when both intrinsic and extrinsic (pose) parameters
have to be estimated at the same time; for example, in the Direct Linear Transform algorithm – DLT, where
P is directly estimated form 3D/2D point correspondences.

[] pptKq
BB

PR | ==

 21

We distinguish here between two fundamental problems in computer vision: pose estimation and camera
calibration.
In particular, if we have a set of correspondences between 3D body points and 2D image coordinates (for
example after performing feature points matching), we can consider two situations.

If we already know the intrinsic camera parameters, we can estimate the extrinsic pose parameters of the
object in space (roto-translation): this is a pose estimation problem, and we use it for 3D tracking.
If we do not know any information both abou object pose and camera parameters, then we have a camera
calibration problem; for this task we usually need more than one image, that is multiple view
correspondences I between 3D points and 2D coordinates. In order to solve this problem, usually one
estimates first the global Projection matrix (for example using the DLT algorithm) and afterwards extract
from P the intrinsic parameters k and extrinsic (multiple) pose parameters s1,…sI.
Camera calibration is computationally expensive, and usually performed off-line, in order to estimate the k
parameters for subsequent tracking.

 22

A calibration pattern is used in order to perform this task almost automatically; in particular, often 3D
calibration patterns are used because of a good distribution of points in space, which facilitates the
optimization from a numerical point of view, also when the pattern is shown from different points of view.
Another very popular calibration pattern is a chessboard with known size [mm] and number of squares. This
is also employed in standard open-source libraries, for example the Matlab Calibration Toolbox or the
equivalent OpenCv calibration functions.
In these cases, the user has to show the chessboard a number of times (for example 5) and the algorithm
should do everything in an automatic way, with minimal user assistance required only to monitor the
chessboard detection result (for example, to detect false matchings).

Camera calibration requires more precision in the identification of point correspondences, and need to be
done only once for a given camera; that is the reason fo using special objects (patterns) where given points
can be reliably identfied in the image.

Pose estimation and tracking is instead a simpler problem that can be eventually solved in real-time,
provided of course good point correspondences for more generic objects.

 23

Lecture 3 – 3D Pose estimation from Point Correspondences

3D pose estimation problem

The pose estimation problem can be formulated as follows: given a set of M correspondences

(Bp1 q1)
(Bp2 q2)
...
(BpM qM)

between 3D and 2D points at unknown pose parameter s with given intrinsic parameters k, find s so that the
following equalities are satisfied „as well as possible“

),(spfq i
B

i ≅

where f(p,s) is the projection from body to screen (in homogeneous coordinates):

[] pstsRKq B)()(=

and this can be solved as a non-linear least-squares optimization.
In particular, we can observe that the non-linearity of this problem comes from two sources: the rotation
matrix is nonlinear in s (whatever representation we use), and the mapping from body to screen (3D/2D)
requires finally a division: qx/qz and qy/qz (using homogeneous coordinates).

 24

In a camera calibration or pose estimation problem, we first use an image processing algorithm able to detect
and localize feature points like, for example, the corners of a chessboard, with pixel (or subpixel) precision.
These positions, qi, are also called measurements, because extracted from the physical observation
instrument, that is, our digital camera.

For a given pose hypothesis s, the respective 3D points pi project onto another, expected position
fi(s)=f(s,pi).
The distance between expected projection of a 3D point p and the observed value q is called re-projection of
feature i:

iii qsfe −=)(

and they are zero only in the ideal case: ei=0 if the pose s is the real one, and the measurements onto the
image are perfect (no noise, no distortion effects).

 25

Least-squares estimation

The sum of squared errors is the overall re-projection error (or cost function). This is called sum of squared
differences (SSD) error, and it is a very general form of cost function, used for many diferent estimation
problems (edge-based, template-based, color-based, etc.)
This error is zero only in the ideal case, but because of residual imaging distortions, noise, etc. the identified
points q have some random errors, even when the pose hypothesis s is the “real” one.
The goal of pose estimation is then to minimize this function with respect to s:

This notation means: s* is the minimizer of C with respect to s, that is, the value that gives the minimum re-
projection error. This should not be confused with min C(s), which is the minimum value of C (that is, the
value of C in s*)!
The subscript s is useful, especially when the function has more than one argument (for example C(s,t),
where t is the time).

)(minarg* ss
s

C=

 26

The problem of minimizing an SSD cost function belongs to the general class of Least-Squares Estimation
(LSE) problems.
We can make a first gross distinction between linear and non-linear LSE.
Linear LSE are problems where the fi(s) terms in C are linear functions of the state variable: fi(s) = As+b.
This is a simpler problem, and has been solved by Gauss around 1800, in the context of computing orbital
parameters of some planets from several observations (measurements).
Nonlinear LSE are more general, and they arise in many contexts, in particular in our case of 3D pose
estimation from point correspondences. This happens whenever the fi(s) are nonlinear functions of s.
Nonlinear LSE need a more sophisticated algorithm, which is called Gauss-Newton, or the improved version
of Levenberg-Marquardt (1963). These algorithms decompose the optimization problem in several steps,
each one using a linearized version of the function fi(s) around a different point s1,s2,… until the result is
stable enough (convergence).

 27

Linear LSE optimization

A typical example in statistics of linear LSE estimation is the linear regression problem. We consider the
problem when the observation space q is mono-dimensional, but of course it can be generalized
In this problem, we have a set of 1D observations yi and a linear model (a straight line in the x,y plane) that
must fit the data as well as possible.
Therefore, here both model points x and observations are 1D, and a model pose (or state) hypothesis s is
given by the line coefficients y=ax+b, s=[a,b].

 28

A linear LSE problem can be written in a more compact form, by grouping all observations and linear
relationships into large matrices and vectors, therefore getting rid of the sum:

and this formulation allows to solve the problem (Gauss) using the formula:

where A+ is called pseudo-inverse of A. Since A is (mxn), where m are the observations and n the state
variables (2), we always have a rectangular matrix (more equations than unknown) and the pseudo-inverse is
a left-inverse but not a right inverse of A.
NOTE: generally speaking, for every LSE problem it is recommended to have as many observations as
possible, much more than state variables. This gives numerical stability in presence of errors, apart from
large unpredicted errors (outliers), that we will see in the following.

2* minarg qss
s

−= A

TT AAAA
A

1

*

)(−+

+

=

= qs

 29

If we know in advance (“a priori”) that for some reason some measurements are more reliable than others
(for example, they correspond to feature points that are less ambiguous to identify in an image), then we can
include this knowledge into the SSD cost function by using weights:

where we give a higher coefficient to reliable measurements, and lower to the others: in this way,
measurement that we expect to have higher errors will influence less the solution; in the ideal case (no
errors) the optimal solution s* remains of course the same.

This problem is called weighted LSE, and it can be applied to linear or nonlinear functions fi(s) as well.
For the linear case, the solution is

where (A+W) is the weighted pseudo-inverse of A, and W is the diagonal weight matrix
W=diag(w1,…,wN).
NOTE: W is usually chosen to be diagonal, beacuse we consider measurements to be independent one
another; an off-diagonal element wij would mean that measurement i depends on measurement j. For nost
cases, and in particular for image features extraction techniques, this independence assumption can be
considered correct, since features points are independently identified and extracted from an image. In the
case of a chessboard, this is actually not 100% true, because positional relationships influence also the image
processing and search algorithm; in this case, however, the approximation of independence and equal
weights is still good and simple enough to be used for the camera calibration procedure.

∑
=

−=
M

i
iii Aw

1

2* minarg qss
s

WAWAAA

A
TT

W

W
1

*

)(−+

+

=

= qs

 30

Linear LSE are problems with a well-defined and unique solution, that can be always computed in one-step.
Level sets of the cost function are ellipses (hyperellipsoids, in more dimensions), because the function is
quadratic in s: it contains only 2nd order polynomial terms (x2, y2, z2, xy, xz, etc.).
Moreover, we do not need for any initial “guess” s0 to find the solution s*, because of the one-step Gauss’
formula.

These properties are unfortunately not true for nonlinear problems, as we will see in the following.

 31

Nonlinear LSE: Gauss-Newton and Levenberg-Marquardt

Nonlinear LSE problems can always be written in the general form

where q is the set of real measurements (for example, detected feature points) and f(s) is a vector-valued
function, that maps from a state-space vector s to a vector of expected measurements f(s); as for the linear
case, the dimension of measurement vector should be much greater than state space, in order to have a
reliable and stable estimation s*.

2*)(minarg qsfs
s

−=

 32

This problem is generally much more difficult than the linear one, since the behavior of the cost function
C(s) presents several local optima, besides the global one s*. Local optima are ponts where the function has
an optimum value (in our case, minimum) but only restricted to a neighborhood s around the point.

Moreover, even in cases where there is only one optimum s*, we do not have anymore a one-step solution,
since the function is not a quadratic form.

 33

But still, we can say that around a local optimum the behavior is nearly quadratic, and this approximation is
at best if we take a very small neighborhod of s*.
Therefore, methods for solving nonlinear LSE problems perform a linearization of C(s) around points near
s*, that leads to a multiple-step optimization procedure.

Generally speaking, nonlinear optimization needs two main things more: an initial guess s0, which should be
close enough to s* (that means, in the basin of attraction of s*); and multiple linearized optimizations, that
find increments Ds and refine the solution; and a convergence criterion, that says when the algorithm should
stop (for example, when the increment becomes small enough).

Linearizing a function means using the first (linear) term of the Taylor’series expansion of f(s).

The Taylor series is used in order to write f(s) as an infinite sum (series) of polynomials of increasing degree,
and uses a reference point s0, which can be arbitrary:

Since we have a vector-valued function (from N- to M-vectors), the first Taylor coefficient is an (NxM)
matrix, that contains the first derivatives of f in s0. This is called Jacobian matrix of f in s0.

If we stop the expansion to the first order, and ignore the higher order terms, that contain higher powers of
Ds, we obtain an approximation of f(s) around s0, which is linear in Ds.

sssfssssfssf Δ+≅Δ+Δ+=Δ+
−

)()()()()()(00
2

000 JOJ
orderhighlinear
32144 344 21

 34

By using this approximation in C(s), we have a linear LSE, that can be solved with the Gauss method.

The linear approximation of f is good only in a small neighborhood of s0, therefore the solution to the
linearized LSE will be only an approximate solution to the real nonlinear problem, and then we will need to
repeat the process (iterate): compute Jacobian matrix, and update the solution.
This is the Gauss-Newton algorithm for nonlinear LSE problems. The algorithm can be terminated when
||Ds|| is small enough.

*
0

**)(sssfqs Δ+=−⋅=Δ +J

 35

The matrix (J’J) is also called Gauss-Newton matrix, while the other term J(q-f) is also the neg-gradient of
the cost function C(s) (it can be verified).
This is similar to the more general (but also more complex) Newton optimization method for nonlinear
functions:

CCH gs ⋅=Δ −1*

 36

where HC is the Hessian matrix, and gC the gradient of C in s0; the Hessian matrix is the matrix of second
derivatives of C.
NOTE: remember that C is a scalar-valued function, from N to 1 dimension; therefore the first derivatives
matrix (Jacobian) of C is also called gradient, and is a Nx1 vector; while second derivatives are NxN, and
constitute a symmetric matrix H, called Hessian.
This is not to be confused with the Jacobian of f, Jf, which is a MxN matrix of a vector-valued function!

The Gauss-Newton matrix of C is obviously defined only if C is an SSD cost function C = ||f-q||2, while H is
a more general definition (also for other nonlinear functions C). But in the case of SSD functions, Gauss-
Newton (Jf’Jf) is actually an approximation of H, and it is good around the optimal point s*.
This is why this method is called Gauss-Newton: solve a sequence of linear LSE problems (Gauss) by using
an update rule that approximates Newton optimization step.

If the problem were linear, the Gauss, Newton and Gauss-Newton update steps are the same, and the solution
is found in one-step.
The simple neg-gradient -g direction, is also called steepest-descent direction (the direction where the slope
of the function is maximal) at point s0. This direction is not optimal, and requires many descent steps, when
level sets are ellipsoids with high eccentricity, that is very different axes length.

Generally speaking, for nonlinear LSE Gauss-Newton approximates the Newton direction, but has some
important advantages: first it does not need to compute second derivatives; second, it gives a matrix J’J
which is always positive-semidefinite (i.e. the eigenvalues are always >=0), whereas H can be also indefinite
(with eigenvalues of different signs), and give bad problems when starting far from the optimum s*.

 37

Of course, also G can become singular (with some null eigenvalues) far from the optimum, and therefore an
improved algorithm has been developed by Levenberg and Marquardt (1963).

The LM correction to the Gauss-Newton matrix is given by adding a term lI, with l>0, so that the Gauss-
Newton matrix becomes positive definite, and can be safely inverted.
The choice of l influences our optimization procedure: if l is high, so that the second term predominates over
the first, the optimization step goes more in the direction of the steepest-descent (i.e. the gradient of C(s))

while a low value for l means going more in the GN direction.

)()(1* fJIJJ TT −+=Δ − qs λ

gs
λ
1* ≅Δ

 38

Therefore, Levenberg-Marquardt specifies also the rules for choosing l, and modifying it during the
optimization (so that we have a kind of “adaptation” rule). This makes the algorithm robust and flexible for
many situations.
The idea is to keep a high, safe value for l when the GN matrix is close to singular, or (which is analogous)
when the update step gives not a good result (no descent of C), while decreasing l when the behavior of GN
is better, that is when we can “trust” more GN, which converges faster and better than the steepest descent.

These two situations happen, roughly, when we are far from the optimum (GN is badly defined), and when
we are near (GN is ok, and the cost function C behaves more in a “quadratic” way, with almost ellipsoidal
level sets).

Finally, the LM rule is: compute the Ds update with the current value of l, and, before applying it, test:

• If the updated value of C(si+Ds) is not decreasing w.r.t. C(si), then reject the update and increase l*10
• If the new value is ok (descreasing), then accept the update si+Ds and reduce l/10.

It can be experimentally observed, for most functions, that l will be kept high in the first optimization steps
(if we start with s0 far from the optimum s*), while it will decrease near to the optimum.

 39

Robust LSE

Outliers are defined in statistics as sample points that fall outside the expected sample distribution.

This defnition, however, assumes one fundamental thing: to define first a model of sample distribution.

 40

In fact, if we model our data with a linear relationship + noise (for example, Gaussian), then we can say that
the point qi is an outlier: its error with respect tot the underlying line model is too big with respect to the
other points of the set.
But of course, if our model is different (a parabola, for example), we could call different points of the same
set “outliers”.

Once we define the underlying model (linear or not), we can consider the problem: how much the LSE
estimation is influenced by outliers?
This is the problem of robust statistics: standard (linear and nonlinear) LSE are not robust to outliers: even
one single outlier can heavily modify the state estimate.

M-estimators

We have two main approaches to perform robust LSE estimation.
One solution is to consider still all points into the sum C(s), but to modify the function in order to reduce the
influence of outliers: this amounts to substitute the SSD (squared error) terms with a different function, that
behaves like SSD only for small error values, while reducing the value for high errors, above a pre-defined
theshold (outlier threshold).

 41

These functions are called M-estimators.
Two well-known examples, used in computer vision, are the Tukey and Huber functions.
The Huber function becomes linear beyond the threshold, which is reduced with respect to the quadratic SSD
function. Its shape is still convex, like SSD, therefore keeping the same convergence properties for the cost
function C(s) (region of convergence, etc.).
The Tukey function becomes flat beyond the threshold, which reduces more dramatically outliers influence;
but the convexity property is not respected anymore, and therefore the optimization algorithm can fail to
converge if s0 is far from the optimum (smaller convergence area).
A good strategy therefore is to use the Huber function at the beginning, when far from the optimum, while
“switching” to the Tukey function afterwards.

 42

The Levenberg-Marquardt (or Gauss-Newton) algorithms can be still applied to the case of M-estimators.
In fact, even though the cost function is not anymore an SSD, we can re-write it as a weighted SSD by
introducing weights

This time the weights are not constant, so we have to update them after each step. This is called re-weighted
nonlinear LSE, and the algorithm is the re-weighted Levenberg-Marquardt, which uses the weighted pseudo-
inverse of J in place of J+

and W is the diagonal matrix of all weights wi.

()
2

i

i
i

e
ew ρ

=

es ⋅+=Δ − WJIWJJ TT 1*)(λ

 43

RANSAC

The other alternative is to detect and discard the outliers from the sum, before doing the optimization, and
then perform a standard LSE over the remaining points (inliers).

A standard procedure to perform this task is called RANSAC (Random Sample Consensus), and is based on
a random search for outliers, by picking many small, random subsets of sample points, and trying the
consequent hypotheses on s to detect outliers. The best subset, with less outliers, will be reported and used to
discard outliers, and provides also an initial estimate s0, that can be used afterwards by the LSE
optimization.

 44

The sample subset used by RANSAC should be as small as possible, enough to perform a non-ambiguous
estimation (1 solution only). This is because we need many random evaluations.

For example, for the linear regression problem, a subset of 2 points is enough for estimating a model
hypothesis (straight line = 2 state parameters). By using a minimal subset, the estimation is doen with
simpler and faster methods, instead of the full LSE; in this case, the solution is also exact (the line that goes
through the 2 points).

Once a pose hypothesis is generated, the remaining points are tested against this line, and outliers are
computed; a common procedure is to set a threshold proportional to the standard deviation σ of the error
computed for all points (apart the 2 points of the subsample). If a point has an error more than, for example,
3σ, it will be classified as outlier with respect to this hypothesis.

This random evaluation of outliers is repeated many times, in order to guarantee a high probability of
detecting the "best" case, with the minimal number of outliers; it would be of course too expensive to
evaluate hypotheses for all possible subsets, if the sample set is large.

Of course, this means two things: first, we are not 100% sure that we will eventually get the “best” case, and
moreover, there can be more than one best case, with a minimal number of outliers.
Therefore, we must rely on probability theory, by computing the number of trials that give for example a
P=0.99 of detecting the best case(s) by generating random choices. For a given desired P, the number of
trials required will increase dramatically with the dimension of both the sample set and the random subsets.

 45

At the end, by keeping (one of) the best case, we can eliminate outliers, and we also have an initial estimate
s0 computed with the best point subset, that can be used by the final, LSE estimation, using all inliers.

For our case of 3D pose estimation problem, the minimal number of points for each RANSAC hypothesis is
3: with 3 body-to-screen point correspondences (3D/2D), one can compute the pose parameters s without
ambiguity using standard geometry considerations, apart from very few “pathological” configurations that
can be detected and avoided. This is called P3P algorithm: Perspective from 3 Points.

 46

RANSAC is a powerful method for eliminating outliers, but has no 100% guarantee to get the best solution,
and still some outliers can remain into the sample. Therefore, after the RANSAC procedure, one can perform
a robust LSE estimation using M-estimators, starting from the s0 hypothesis given by RANSAC itself.

 47

By combining both techniques, we obtain a general, robust and complete algorithm for model-based
statistical estimation of parameters (not only 3D pose, of course).

 48

Lecture 4 – Bayesian Tracking (I)

Visual tracking is a general name given to the problem of estimating the state of (one or more) objects in
time, using a sequence of visual measurements, that is, a sequence of images and image processing
operations.

Generally speaking, the term “tracking” is used to define all sequential estimation problems that involve one
or more sensors, providing a sequence of measurements in time.

In our case, the sensor is visual, and given by our CCD camera; the “raw” acquired signal is the image,
which is discrete in space (pixels) and intensity (gray- or color-values).

 49

Object state model

The state of the system is represented by a variable s that can be used to resume the object motion, and it
should be “rich” enough to enable single-step state predictions over time, by using a probabilistic motion
model:

st = f(st-1)

Because of physics’ laws, for an object with mass we need to define its state as s=[p,v] position + velocity
variables; in the case of 3D tracking, a rigid object has for example 6+6 = 12 state variables, where the
velocity is the time derivative of p (roto-translation pose parameters). If we define the state just as s=p, we
can still design a tracking system, but at the price of motion models that need two values of s for each
prediction: st = f(st-1,st-2).

NOTE: the possibility of using only the last value st-1 for a prediction is also called Markov property: the
probability distribution of next state is conditioned only on the last state, and not on the previous ones.

 50

Dynamic model

Motion models always consist of a deterministic part and a random component.

The deterministic part f(s,0) is also called prediction: it is a function (linear or nonlinear) that predicts the
next “most probable” state value, that is, in absence of expected perturbations w=0; the random component
w is also called motion noise, and models unexpected perturbations. Usually (but not always) the noise
components is additive with respect to the prediction

We can consider here some typical motion models. For sake of simplicity, we will define them for the case
where the object is a point mass, not a rigid 3D object; the extension to rigid object is a little bit more
complex, and involves different terms for linear and angular velocities (rigid body kinematics), but the ideas
are still the same.

),(1 ttt f wss −=

ttt f wss += −)(1

 51

Brownian motion is the most simple to model and, at the same time, the most difficult to track reliably. It
consists in a purely random velocity vector at any time, which is also a white process: noise at time t is
independent from noise at time t-1.
In this case, we can define the state as s=p, position only, since there is no prediction available about v, and
no correlation in time.

pt = pt-1 + wt Δt

w is assumed to be a zero-mean, Gaussian random variable with covariance matrix Λw The corresponding
probabilistic model for s=p is then

P(st|st-1) = Gauss (st-1, Λw Δt2)

This model is good in two situations: for objects with very low mass (no inertia), or when the sample time Dt
is too high (low tracking rate); in the second case, in fact, between two sample times there is enough time
also for a heavy target to make any “maneuvering”, and change velocity in an arbitrary way; in other words,
we loose part of our prediction abilities due to a too long Dt.

We can also say that Brownian motion gives a probabilistic model with a higher entropy (uncertainty) value
for the position variable p; it can be shown that this uncertainty is proportional to Dt.

 52

For objects with mass and reasonably fast sample times, we can use the White Noise Aceleration (WNA)
model, with much better prediction abilities.
In this case, in absence of unpredicted external forces or internal maneuvering, the trajectory should be
rectilinear with the current velocity v, therefore the predicted position is st+1 = st+vt*Dt; an unpredicted
acceleration a can be seen as a perturbation, and modeled as motion noise w=a.

In a general WNA model, full motion equations can be written as

pt = pt-1 + vt-1 Δt + (1/2) wt Δt2
vt = vt-1 + wt Δt

where w is again a Gaussian white noise with covariance matrix Λw

This equation can be compactly written in the state s=[p,v] and the corresponding probabilistic model is also
a Gaussian,

P(st|st-1) = Gauss (A st-1, BΛwBT)

In a WNA model, it can be seen that the uncertainty on pt is lower than for Brownian motion, and
proportional to Dt2.

 53

Another motion model, similar to the WNA, can be considered when the object is falling under gravity
(ballistic model); in this case, we can still use a WNA, but the average acceleration is not zero but –g, the
downwards gravity acceleration.
Perturbations are in this case random forces due to air viscosity, or other sources, which add to the total
acceleration a=w-g.

pt = pt-1 + vt-1 Δt + (a+wt) Δt2
vt = vt-1 + (a+wt) Δt

This correspond to a probabilistic model with the same uncertainty (noise) characteristics for the random
component, but a different prediction (deterministic part).

P(st|st-1) = Gauss (A st-1+C, BΛwBT)

The models considered up to now are examples of free, unbounded trajectories, with no fixed point
(attractor).
We can mention also motion models where the trajectory is expected to oscillate, or float, around a given
point in space. These models are useful when we expect the object pose to be limited to a range, around a
given base position p0; for example, in 3D face tracking, the head of a person is obviously rotating to a
limited extent, around the frontal position (it cannot turn 360° around!).

These cases involve a different model, which is called damped-spring motion…

(TODO)

 54

Measurement model: the Likelihood function

As for general tracking systems, a sensor can perform some signal processing before providing the
“measurement” to the system. This processing can be more or less sophisticated, ranging from simple
filtering, noise reduction, contrast enhancement etc., to extracting salient features (lines, corner points, color
blobs etc.) up to a full model-based pose estimation with possibly multiple hypotheses.

A sensor that performs this kind of processing, giving the output as “measurement” variable is often called a
smart sensor (or virtual sensor), and consists of both the hardware sensing device + the software
processing/interpretation algorithm.

This implies a much more general definition of “measurement”, that we can organize for our convenience
into low- middle- and high-level measurement typologies.

NOTE: this classification is not perhaps an official one (actually there is still no “official” classification
about visual tracking measurement models), but it is very often encountered in practice, and we need it in
this Course in order to introduce in a more systematic way our tracking methodologies.

Low-level measurement examples are: either the raw (color or gray) image as it is, or the image after some
basic pixel-based processing (noise filtering, edge pixel extraction, contrast enhancement, etc.). Low-level
measurements can be also called pixel-level, or image-oriented measurements, and their dimension is the
same of the full image = number of pixels.

Middle-level examples include feature-level operations: extract salient regions or geometrical items that can
be “seen” into the pixel matrix, for example color blobs, line segments of edges, corner points, textured
regions, etc. Generally speaking, every kind of feature has a descriptor, which specify peculiar properties
necessary to identify the feature: for example, a uniform color region may be described by the size, shape
and distinctive main color, a segment by its length, position and orientation, a characteristic local point by its
appearance (a small window of color pixels, or a more abstract description), etc.
From an image, a lot of different features of interest can be identified, from coarse and inform color or
motion blobs, to simple edge segments or circular shapes, up to very distinctive local points (e.g. the SIFT
algorithm); the choice of course is left only to the imagination of the designer of computer vision algorithms.

 55

In this context, model-free grouping of single features (for example, joining collinear segments into straight
lines) can be considered still a middle-level operation.
We can also call middle-level measurements feature-level, or feature-oriented, and the dimension is given by
(number of selected features)x(descriptor dimension for each feature), which is of course much less than the
full pixel matrix.

High-level measurements go one step further, and use the local image features for a model-based estimation:
for example, a pose estimation from 3D point correspondences, as we have seen, involves matching point
features from a 3D model to the image, and finding a pose hypothesis s* that best “explains” this set of
matchings. This is something that we can also call an “image understanding” procedure.
In the same way, we may call high-level measurements also model-level or object-oriented, and the
dimension is very small = dimension of pose parameters p of our model. If the model of the object is an
articulated, or deformable shape, of course the dimension of z may increase, but in any case it is of the same
order of the state variable s.

The choice between low- middle- or high-level measurements is by a large extent free, and depends on the
algorithm we decide to use for tracking. In any case, a general rule is that a low-level measurement needs a
sophisticated tracking algorithm, whereas high-level modules are by themselves computationally expensive,
but also allow the design of fast and simple tracking methods, since the measurement z can be directly
commensured to the state variable s (in this case, z is the position part of s, z=p*). On the other hand, if a
measurement variable z is rich with details, and is not just a “synthetic” information z=s*, the tracking
system is generally more robust.

Of course, the more complexity load is put onto the sensor system, the easier is the tracking system to
design. And, as often happens, the best is in between: middle-level measurement have the advantage of
extracting enough synthetic measurements z (in the form of elementary geometric features), but still rich
enough to design robust trackers.
But, since not all computer vision algorithms provide this kind of measurement, we must be prepared to deal
with all the above mentioned typologies, when designing our tracking system.

Once we have defined the measurement space z for the tracker, we also need to specify a probabilistic
measurement model.

A measurement model is a probabilistic model that describes both the deterministic (ideal) relationship
between the real state s and the expected measurement z from our sensor, and the overall uncertainty
(random component) of the measurement process. This is usually called Likelihood model of the sensory
(measurement) system.

For example, if we know the real state of the object s=[p,v], and our measurement instrument is a full pose
estimation algorithm, we expect, in absence of noise, calibration errors, etc., to have perfect point
correspondences, and to get a perfect estimate p*=p.

Therefore, the expected measurement is zexp = Hs, where H=[I 0], which is a very simple and linear
relationship. In the real case, because of noise, bad point matchings, camera parameters etc. we also expect
to have some uncertainty, that we can usually model as an additive Gaussian noise z = zexp + e, where e is
N(0,Se) with zero mean and Se covariance matrix; the covariance matrix reflects different uncertainties, for
example in position and orientation values.

This measurement model: z = Hs+e is equivalent to a probabilistic model: P(z|s), the probability of z for a
given state, which in this case is a Gaussian, with mean value Hs and covariance matrix Se.

If also the motion model is linear+Gaussian, this simple example allows to design the tracker without
difficulty, by using a standard Kalman Filter.

Unfortunately, for most measurement models the resulting Likelihood is nonlinear, non Gaussian, and often
very complex, forcing to use more sophisticated and general means for designing the tracking system. For

 56

this purpose, we will introduce next the Particle Filters approach, which is a very general and powerful
Bayesian tracking paradigm.

Using our classification of measurement models for visual tracking, we can now give a few examples in
order to clarify the concept of Likelihood.

 57

If the real object state s is given, generally speaking we can say that the measurement vector z, which can be
a more or less complex and large variable, is modeled again with a deterministic and a random (probabilistic)
component.

z = g(s,v)

The deterministic component is the expected measurement for the hypothesis s: zexp = g(s,0); this function
accounts for the measurement vector that we expect to receive from our “virtual sensor”, if the sensor were
an ideal, perfectly working sensor with no noise etc. In other words, g(s,0) is the sensor model.

The other term is a random component v, that accounts for unpredicted uncertainty in the measurement
process: this source of uncertainty comes from many factors, starting from hardware issues (camera noise,
distortion), up to algorithmic imprecisions in the measurement process (for example, bad camera projection
model, outliers for a pose estimation algorithms, imprecise and/or false edge detections for features
extraction, etc.).

Measurement models, unlike motion models, can be of very different complexity, ranging from simple
linear+Gaussian relations like z = Hs+v, up to extremely complex nonlinear models, with multiple
hypotheses and “false alarm” cases.

In any case, a general model of the form z=g(s,v) leads to a probability distribution P(z|s), which is called the
Likelihood function.

As already mentioned, a Likelihood model will be more complex when the measurement instrument is more
“primitive”, that is, when z is a more coarse information obtained at an early processing stage, or even just
the raw image itself. This choice can be seen as a “computational complexity balance” between measurement
module and tracking system.

 58

Example of Likelihod function when z is a full pixel map of image edges; in this case, the only processing
applied is an edge detector, which gives for every pixel a 0/1 value (edge/no-edge): this is also called edge
map.
The example is applied to a countour-based tracking system, where the object (the body) is modeled through
the external silhouette, and pose parameters s correspond to a given planar position of the contour + a scale
factor.
For a given hypothesis s, the contour model is projected onto the image, and, in the ideal case, one would
expect an edge map where edge points in the image are located exactly (and only) over the hypothetic
contour line. This edge map would then be our expected measurement zexp: edge pixels under the contour,
and no edges elsewhere.
Of course, this is an ideal case, and this simple silhouette model does not acount for evtl. interior edges or
external (background) edges; therefore, we also expect spurious edge points inside and outside; finally, since
the image contains noise and the shape is not exact, the extracted edge map will give edge points not
precisely under the contour, even in the correct pose s, and some points may not be detected at all.
All of these sources of uncertainty require a complex, multiple-hpothesis measurement model z = g(s,v) with
a proper random uncertainty variables v and a proper (nonlinear) function g(s,v).
Therefore the Likelihood model in this case is, as we already expected, a quite complex one. Several
simplifications are needed in order to make it easier to compute, for example searching edge points only to
alimited extent along normal directions, and only for a fixed set of positions along the contour; but still the
function remains a nonlinear and non-Gaussian one.

For this kind of measurement, the tracking system is more complex, and requires a proper methodology, for
example the particle filters approach (see next Lecture).

We can say, also intuitively, that the red hypothesis has a higher Likelihood with respect to the blue one:
contour points of the former are all located over strong edge points, whereas the latter has many points
located onto uniform regions, with no edge points.

 59

Another example is the chessboard pattern used for camera calibration and pose estimation problems.
We can first consider the set of detected feature points in the image as a middle-level measurement z. In this
case, a probabilistic model of our measurement is given by the relationship between state s and expected
position of all points: zexp,i = f(s,pi), where f is the nonlinear 3D/2D projection function.
The random component (noise) v takes into account the imprecision of local points estimation in the image,
due to image noise, and unmodeled distortion in the camera projection; therefore, we have zi = fi(s)+vi,
where the noise values vi are usually assumed independent, zero-mean and Gaussian random variables.

This gives a relatively simple Likelihood model: P(z|s) = Gauss(zexp(s),Λv) with Λv the joint covariance of
measurement noise Λv = Λv1∗Λv2 ∗..∗Λvn.

If also the motion model is (non)linear+Gaussian, tracking in this case can be performed with an Extended
Kalman Filter.

 60

By still considering the previous example, we can also define our measurement process as a high-level one:
the output z is the result of a nonlinear LSE pose estimation (see the previous Lecture): an estimate of the
roto-translation p* of the object.

Therefore, in this case the measurement and the real state of the object (position only) are directly
commensurable: z = p*+v, where v can be a Gaussian noise in the roto-translation parameters, representing
the uncertainty about rotation angles and translation parameters of our LSE estimation algorithm.

We can also say z = Hs+v, where H=[I 0] extracts the first 6-dimensional part of s, that is, the position, and
we can see that now there is no complex or nonlinear function mapping from s to zexp, which makes the
Likelihood model very simple: P(z|s) = Gauss(Hs,Λv).

If also the motion model is linear+Gaussian, tracking in this case can be performed with a standard Kalman
Filter.

 61

General Bayesian tracking scheme: prediction-correction

Bayesian tracking, in its more general formulation, is always solved as a two-step procedure each time: a
(prediction+correction) scheme.

Prediction has the effect of using the probabilistic motion model in order to assert in which state (where,
which velocity, etc.) the target object will be next time, given the current knowledge about the state.
Of course, this knowledge is always of a probabilistic nature; therefore it has some uncertainty which, in the
example below, is represented as an average position plus an uncertainty ellipsoid around.
The prediction step always increases this uncertainty by some amount, because it adds the uncertainty of the
motion model itself: even if we would know exactly where the object is now (with no uncertainty), because
of the motion model we will have some uncertainty over the next, predicted state.

And this motion uncertainty, as we have seen, grows with the length of the time step Dt: intuitively, the more
we wait, the more our uncertainty about the target state will grow up.

The result of a prediction step from time t-1 to t is a probability distribution over s, which is called prior
probability of the state at time t. Prior means “before doing a measurement”, or “in absence of the
information” z at time t.

The next step, correction, modifies the prior by using the information provided by the measurement
performed at time t, zt.
With this information, uncertainty about s is reduced, and the estimate is modified; in the Kalman Filter
language, the difference between the expected measurement in the prior position, zexp,t = f(sprior,t) and the
observed real measurement zt, is also called innovation: n = zexp-z.

The probability distribution that results from the correction step is called posterior distribution p(st|zt), that
is, the probability of the state s at time t, after the measurement zt has been done.

 62

The goal of Bayesian tracking is the following: to re-compute the full probability distribution of the state s at
present time t, by taking into account all the information available up to time t.

The complete information is given by the set of all measurements up to now performed, Zt = (z1,z2,…,zt),
which is also called “measurement history at time t”.

So, the goal of Bayesian tracking is to compute P(st|Zt), that is the posterior probability of s at time t.
This function is also called belief about s at time t, and it is a full pdf (probability density function) over all
possible states.

There are many ways in which we can represent P(s|z), which depend on the nature of motion and
measurement models of the system to be tracked.

 63

Correction step: Bayes’rule

Bayesian tracking takes the name from the well-known Bayes’ rule of probability theory.
NOTE: a much more general class of problems in statistics and prob. theory are formulated as a Bayesian
estimation framework; of course, they all involve a Likelihood function and a prior knowledge (pdf), and the
Bayes’rule; in the tracking context, prior knowledge comes from a prediction step over time, therefore it is
called Bayesian tracking.

In general estimation problems, the prior knowledge can be very weak, therefore not everybody agrees in
including this knowledge and using Bayes’rule; but in the case of tracking, the prior pdf takes into account
all past measurements, and a reasonable motion model, therefore it is a very important and meaningful term,
which motivates the development of Bayesian tracking schemes.

By splitting the measurement history Zt in the present zt and past measurements Zt-1=(zt-1,…,z0), we can
write Bayes’rule for P(st|Zt), in terms of the current Likelihood P(zt|st,Zt-1) and prior probability P(st|Zt-1),
where the past measurements are always given.

A fundamental assumption is also that the current measurement zt (Likelihood model) is not influenced by
the past measurements Zt-1; this can be assumed for most physical instruments, and also for all of our
(camera+computer vision algorithm) measurement modules: in other words, what we will measure now
(from the current image) does not depend in any way from the past acquisition/processing procedures
performed, but is completely determined by current real state of the target object, st, the physical
enviromnent around, with noise etc. We can also say, “the observation instrument has no memory”, whereas
of course the object state does!

Bayes’rule tells us that we can compute the posterior probability P(s|z) if we know P(s) and P(z|s); the
measurement z is constant, and given from our instrument (as we have seen), while s is the variable we are
interested in. Therefore, the other term P(z) can be neglected, or computed afterwards (it is just a
normalization term, to make sure that the integral of P(s|z) be 1).

This rule correspond to the “correction” step depicted in the previous Slides. In order to apply this rule, we
need then the Likelihood model and the prior state probability, at time t.

),...|()|()|(01 zzsPszPzsP tttttt −⋅∝

 64

Prediction step

The next question then is how to compute the prior probability of state st, given the past knowledge Zt-1?

The solution to this problem can be formulated in terms of the previous posterior estimation, P(st-1|Zt-1),
through the motion model.

This equation corresponds to the prediction step.

∫
−

−−−− ⋅=
1

),...,|()|(),...,|(011101

ts
tttttt zzsPssPzzsP

 65

Bayesian tracking equation

The two equations of Bayesian tracking at time t can also be compactly expressed by the Bayesian tracking
fundamental equation

 44 344 2143421434214434421

1)-(tin Posterior

011

modelMotion

1

modeln Observatioin tPosterior

0),...|()|()|(),...|(
1

zzsPssPszPzzsP tt
s

tttttt

t

−−− ⋅∝ ∫
−

 66

Which resumes the propagation of posterior probability from time t-1 to time t, using the motion and
observation probabilistic models.

As we can see, this is a recurrent formula for updating the posterior, from time to time.
Therefore, it needs to be initialized at time 0.

The initialization needs the knowledge of an absolute prior P(s0), which is the knowledge that we have on
the state at the very beginning of the sequence, in absence of any measurement.

This knowledge must be given in advance for the tracking problem, like motion and measurement models.
If no initial knowledge is available, then one can use a very large and arbitrary distribution (high
uncertainty); there are two choices that are commonly used for this purpose:

- if the tracker needs Gaussian probabilities (e.g. a Kalman filter) then one must use a Gaussian also for
P(s0); therefore, one may choose P(s0) with an initial (arbitrary) mean and a very large covariance matrix.

- if we are completely free to choose P(s0), then the best choice is a uniform distribution, in a suitable (large)
range of values for s0. This corresponds to the “principle of sufficient reason” of Laplace: in absence of any
knowledge about a random event (s0), the only reasonable choice is to assign to every value equal
probabilities. Of course, we need at least to fix some boundaries for s0 (a “multi-dimensional box”).

 67

Possible models for the posterior pdf

The Bayesian tracking equation is a very general, but also very abstract formula.
In order to develop concrete tracking methodologies, we need now to consider the different, particular cases
for representing the posterior density (belief) and the other distributions involved.

The first, most simple example is the so-called MAP approach: MAP = Maximum-a-Posteriori.
In this approach, we do not track the full pdf P(st|zt), but rather its maximum value over all possible states.
This is a reasonable approach if the only thing we are interested in is an estimate of position/velocity of the
target, but not the uncertainty that we have over these parameters.
NOTE: From a mathematical point of view, this corresponds to representing the posterior pdf with just a
dirac (impulse) probability function, centered onto the MAP state.

Of course, with such a representation, we loose a lot of informations, that usually are of great interest: if we
know the uncertainty associated with the estimate, first of all we can say whether the estimate itself is
meaningful for our purposes, or if the tracking is going to be lost (too high uncertainty). And moreover, there
may be other, local maxima (peaks) in the pdf that correspond to other hypotheses about the location of the
target.
In this example, we can say that at current estimation step there are two main peaks of P(s|z), each one with
its uncertainty (area).

 68

A better representation involves using one multi-variate Gaussian probability distribution.
In this case, the mean value of the Gaussian is used to represent the “best” estimate s, and the uncertainty
about s is given by the covariance matrix, which gives an elliptical (in more dimensions, actually a hyper-
ellipsoidal) region of confidence for the target.

This representation is used by the Kalman filter, where propagating the belief in time correspond to
propagating the mean and covariance matrix.

Of course, we still keep a single hypothesis about the state, neglecting the other regions of P where there may
be also some other hypotheses (of course less likely, but still possible). And sometimes, even for a single
hypothesis an ellipsoidal area may not be a good approximation of the “true” pdf.

 69

In order to keep into account multiple hypotheses, a first idea is to use more Gaussians: a mixture of
Gaussians is just a weighted sum of a fixed number of Gaussians, each one with its mean and covariance
matrix.

This representation has some weakness, in that: we need to know in advance the number of hypotheses, and
they should not change in time. Instead, very often happens that some target hypotheses almost disappear, or
temporary “fuse together” into one, while new ones may appear as well.
From this point of view, very much depends on our measurement model, that is, on the Likelihood function
of our visual observation modality.

Moreover, designing a tracker with this distribution is much more involved than a Kalman filter, since also
the weights w of the mixture must be updated in time; therefore, using just a set of M Kalman filters is
generally not possible (or not recommended).

 70

A much more flexible and general representation is given instead by Monte-Carlo approximations, which in
the Bayesian tracking context are also called Particle Filters.

Particle Filters represent the belief P(S|z) through a set of many discrete hypotheses, called “Particles”.
Each particle is a pair (s,w) of an inividual state hypothesis + a weight, and the whole set “represents” the
continuous pdf in a discrete way, but consistent with probability theory (see the Factored Sampling Theorem
of next Lecture).

With this distribution, the full shape of P(s|z) into the non-zero regions is reproduced faithfully, provided we
use enough particles. This number grows with two factors: the dimension of the state-space (here is 2), and
the precision that we need for computing the values of interest from this distribution (for example, mean
value, uncertainties, etc.). This correspond more or less to the “law of large numbers” of statistics.
And, as always happens, unfortunately the number of particles needed (keeping the same precision) grows
exponentially with the space dimension (curse of dimensionality).

 71

 72

Lecture 5 – Bayesian Tracking (II)

Possible implementations of the tracking scheme

In the Bayesian tracking scheme, both motion and measurement models consist of a deterministic function of
the state s, and a random component.

 73

The deterministic component of the motion model is used to do the prediction step: expected next state
sexp,t+1, given the current hypothesis st. For the measurement model, it gives the expected measurement
zexp,t, given the state hypothesis st.
The random components are also called, respectively, motion and measurement noise.
Both models are equivalent to probability distributions: P(st+1|st) and P(zt|st); the second, in particular, is
also called the Likelihood model.

Depending on the assumptions on the form of probability distributions involved, we distinguish between
three main tracking methodologies:

- If both motion and measurement models are (linear+Gaussian), that is f() and h() are linear in s, and w,v are
Gaussian white noises, then the Bayesian tracking scheme reduces to the Kalman Filter (R.E. Kalman, 1960)
In this case, we can say that “everything is Gaussian”: the probability distributions (motion and Likelihood),
the initial prior P(s0) and, as a consequence, all prior and posterior distributions P(st) and P(st|zt).

- If f() and/or h() are nonlinear functions, and the noise vectors are still Gaussian, we can use the Extended
Kalman Filter, which is an approximation that uses Jacobian matrices (linearization) of f() and h(). We
cannot say anymore that everything is Gaussian, but this approximation provides good enough in most cases;
in any case, of course the result will not be optimal (i.e. Bayesian) anymore.

- If f() and/or h() are nonlinear, or one of the noise vectors is not Gaussian, we have to resort to a more
general tracking methodology: Particle Filters. This is necessary when, for example, the measurement model
provides multiple hypotheses, of which at most one can be generated by the real target, and the others are
“false alarms” arising from background clutter, etc.

 74

Linear+Gaussian case: the Kalman Filter

Multi-variate Gaussian distribution

A multi-variate Gaussian distribution (in N-dimensions)

Can be completely represented by only two quantities: the N-mean vector x_bar and the (NxN) covariance
matrix X.
The covariance matrix is symmetric and positive definite; its N orthogonal eigenvectors form the main axes
of an ellipsoid in N-space, and the length of these axes are proportional to the respective (positive)
eigenvalues. The center of the ellipsoid is x_bar.
This is the uncertainty ellipsoid, and we can say that most of the Gaussian distribution is contained inside
this volume. A smaller ellipsoid indicates a higher confidence about x (low uncertainty), where the
uncertainty can be of course different along different directions in N-space.

() ()⎟
⎠
⎞

⎜
⎝
⎛ −−−= − xxxxx 1

2/ 2
1exp

)2(
1),(X

X
XGauss

T

Nπ

 75

Motion and measurement models

If motion and measurement equations are (linear+Gaussian), all probabilistic models are Gaussian; if also the
initial prior P(s0) is a Gaussian, then everything is Gaussian, and the corresponding Bayesian tracking
equations (prediction+correction steps) reduce to the Kalman Filter equations, which deal exclusively with
mean and covariance matrices of the probability functions.

 76

Predition-correction equations

Prediction in Kalman Filter is obtained through the following equations for mean and covariance matrices of
the state

where the (-) sign denotes prediction (prior) quantities, obtained in absence of the current measurement z.

1−
− = tt Ass

w
T

tt AASS Λ+= −
−

1

 77

From this equation, the diffusion effect of prediction (increasing uncertainty about the state estimate) can be
readily seen, where the added uncertainty comes in part from the added motion noise covariance Lw.

Correction step in Kalman Filter is obtained through the following equation, where s and S are the posterior
mean and covariance matrices of P(s|z):

)(−− −+= ttttt CszGss

 78

where

is the Kalman Filter gain.

This step reduces uncertainty about the state, through the measurement z; the correction of the mean value s
is obtained through the difference (z-zexp) between expected and actual measurement, and this difference is
also called “innovation” in the tracking literature.

−− −= tttt CSGSS

1)(−−− Λ+= v
T

t
T

tt CCSCSG

 79

A complete tracking scheme requires also an initial step. In Kalman filtering, this is obtained through the
initial prior P(s0), which must be given in advance, and must be also Gaussian.
Of course, the initial estimation step will consist only in a correction, given z0, since no prediction from
previous time is available; therefore, the absolute knowledge P(s0) is used as initial prior over s0.

 80

Nonlinear+Gaussian case: the Extended Kalman Filter

If we relax the assumption about linearity for motion and/or measurement models, we cannot say that
everything is Gaussian anymore, even if both noise vectors w and v are still Gaussian and additive.
In this case, we can still approximate the Kalman Filter equation if we linearize the functions f() and h()
around the respective state values.

 81

The expected next state st+1 (motion)and expected zt (measurement) are still given by the respective
nonlinear functions f(st-1) and h(st-), in order to compute the prior and posterior mean state values.
Instead, the covariance propagation steps use a linearized version of f and h. This linearization is obtained
through the respective Jacobian matrices:

Which “act” like the A and C matrices of the linear Kalman filter, for computing prior and posterior
covariance matrices, and for the Kalman gain.

This tracker is called Extended Kalman Filter (EKF), and reduces to the standard Kalman Filter if f() and h()
are linear: the Jacobian matrices become exactly A and C.

This filter is not the optimal Bayes’ tracker, because of the linearization, which appxorimates f() and h().
Therefore, it works well as long as the two approximations are good, and nonlinear effects can be locally
neglected (not too wide steps from time to time, and not too much non-linear behavior of f and h around the
respective state values).

1−
∂
∂

=
ts

t s
fA

ts
t s

hC
∂
∂

=

 82

Non-gaussian situation: a multiple-hypothesis measurement model

In many cases, the measurement model provides multiple hypotheses. That means, for a measurement
variable z we can infer more, simultaneous possible localizations for the target pose, or for individual
features associated with the target.

In the picture, we have an object-level measurement (high level) which is directly a pose estimation of the
car, but this time in a situation when another car comes into the visible field of the camera.

Another example (more concrete for our task): in contour tracking we can often have an ambiguity, by
observing similar edges in the vicinity of a silhouette hypothesis s: which image edge corresponds to the
model edge of the object being searched?

 83

In this situation, we can either select the nearest detected edge, or for more robustness keep all the available
hypotheses without discarding anyone. In the second case, we need a Likelihood function P(z|s) which has
more peaks (a multi-modal distribution) that cannot definitely be modeled with a single Gaussian, so that a
Kalman Filter cannot be applied.

First approach to the multi-modal case: mixture of Gaussians

A Mixture of Gaussians can model a multi-modal distribution, but usually we do not know in advance how
many meaningful peaks (modes) are present, and this number can change during time.

Moreover, tracking a mixture of Gaussians needs also the estimation of the weights wk, together with the
mean and covariance matrix, and for this problem just a bank of K independent Kalman Filters cannot be
applied.

Therefore, we need a more general tracking method, like as the Particle Filters approach.

 84

Most general case: Monte-Carlo sampling scheme (Particle Filters)

Factored sampling: discrete implementation of Bayes’rule

 85

A Particle Set is a set of individual state hypotheses, associated with respective (scalar) weights.
This set represents in a discrete way the continuous posterior distribution. The idea behind this is given by
the Factored Sampling Theorem.

This is an equivalent of the Bayes’ rule, when using the particles representation.

That is, we can represent with arbitrary precision (in a probabilistic sense) the posterior P(s|z) if we construct
a particle set with the following properties:

- the state hypotheses s(i) are sampled at random from the prior distribution P(s)
- the weights of these hypotheses are computed as the Likelihood values w(i) = P(z|s(i))

Which is a Monte-Carlo equivalent of Bayes’rule.
In general statistics, Monte-Carlo techniques are methods for estimating properties of a given distribution
P(x) like as mean, covariance matrix etc., by generating random sample points from P(x) or other
distributions that are related to P(x) in some way.

The meaning of this representation is the following one: we can estimate from the set of particles any
property of the original P(x) by a discrete average (sum) instead of the integral function:

Where g(s) is an arbitrary function, that we can define in order to extract the quantities of interest for us.
In particular, in order to estimate the mean and covariance matrix of our belief (posterior) pdf, we have:

∑∫
=

≈
n

i

ii

s

sgzsPsg
1

)()()()|()(π

 86

Factored sampling corresponds to Step 2 of general Bayesian tracking (correction step).
As we can see from the example picture, now the pdf (prior and posterior) need not anymore to be
Gaussians, and the Likelihood model can be a multi-modal distribution, keeping all the multiple
measurement hypotheses available from the instrument.

Prediction step: Monte-Carlo sampling from the prior distribution

In order to perform Step 1 (prediction step) now we need to represent and compute the prior, P(st|Zt-1).

∑∫
=

≈=
N

i

ii

s

szsPs
1

)()()|(π

∑∫
=

−≈−=
N

i

Tiii

s

T ssszsPsssS
1

2)()()(2
)()|()(π

 87

 88

We recall the first formula (prediction) of Bayes’tracking, that involves the previous posterior and the
motion model.

In our case, the previous P(s|z) is represented by another set of particles. Therefore, we can approximate the
integral in a discrete way, if we consider the particles P(st-1|zt-1) as a sum of many Dirac (impulse)
functions, centered in the respective positions s(i)t-1, with magnitudes w(i)t-1.

Therefore, the integral becomes a sum over the previous particles

that approximates the prior at time t.
This representation gives us a way to generate the new particle set s(i)t in two steps:

1 – Pick at random one of the old particles, selecting an integer j=1,…,N with probabilities w(j)t-1
2 – Generate the new position s(j)t from the motion model P(st|s(j)t-1), centered in the old particle position

The first step is also called re-sampling, and has the effect of picking (with repetition) the old positions with
higher weights, while eliminating low weight particles (that are not selected at all).
The second step is called diffusion, because it moves the particles to new positions according to random
motion, therefore “spreading” them around and increasing uncertainty.

Re-sampling and diffusion, taken together constitute our prediction of the particle set, which will have a
higher uncertainty (like in the Kalman Filter case), that will be reduced by the correction step using the
measurement model.

∑
=

−−− ⋅≈
N

j

j
t

j
tttt ssPZHsP

1

)(
1

)(
11)|()|(π

∫
−

−−−− ⋅=
1

)|()|()|(1111

ts
tttttt ZHsPssPZHsP

 89

The complete Particle Filter scheme for tracking

In the computer vision literature, Particle Filters are also known as Condensation algorithm (Conditional
Density Propagation), where the conditional density is just the posterior P(s|z) density of s, conditioned on z.
It has been used in particular for contour-based tracking by Isard and Blake, who invented this name for the
filter, in 1998.

By resuming, also in the case of Particle Filters we need of course the initialization, using an initial prior
P(s0) available.

In this case, we are again not restricted to Gaussians; therefore, in case we do not know nothing about the
initial state s0 (in absence of measurements), we can use the uniform prior distribution over a bounding box
for s0, which is more appropriate.

For the initial step (correction only), we need to sample s0 directly from the absolute prior P(s0) and give the
weights according to the first measurement w0(i) = P(z0|s0(i)).

 90

Part II – Visual modalities for object tracking

Lecture 6 – Color-based object tracking

Introduction:

Color-based object tracking consists in obtaining the pose of an object, by using a model of its color
distribution: for example, if we wish to track a hand, we can look at regions of pixels with skin-color values.

This requires the specification of a more or less precise statistical model description: in simple words, for a
multi-colored object we could say “this object, from a given viewpoint, shows 70% red pixels and 30% green
pixels”.

That kind of description is formalized by a (possibly multi-modal) color statistics: what is the probability of
observing a given color, into the pixel area where the object is located:

P(x=c | x∈O)

Where c is the observed color at pixel x, and O is the “object class” (as opposed to the background class, B).

This is the color likelihood of x, supposed to belong to O.
Then, if we want to classify individual pixels as belonging to the object or background, we can say:

x∈O if P(x=c | x∈O) > t; else x∈B

with a given probability threshold t.

If we also have a background color statistics: P(x=c | x∈B), then we can do a more robust reasoning:

x∈O if P(x=c | x∈O) > P(x=c | x∈B); else x∈B

 91

that uses no threshold, but rather compares the two probabilities of x belonging to O or to B, respectively.

A background statistics may be also pixel-dependent: each pixel location may have a different, expected
color value, such as the gray pixels on the bottom and the brown pixels on the walls in the picture above.

As we can see from the picture (left frame), a color statistics can be obtained from a reference image,
manually initialized, selected by the user.
Pixels collected from this frame are used to build the statistical representation P(x=c | x∈O).
This representation constituters our feature space for color-based tracking.

We notice here how this kind of description has no information about the location of expected colors: in
other words, by saying how many pixels in the region have a given color (e.g. 70% red+ 30% green), we do
not say which pixels are expected to be red and which ones green, respectively.

Therefore, this model is of a purely photometric nature: no geometric information (feature location, size,
etc.) is contained in it.

Once a reference picture of the target has been taken, a suitable feature space (in our case, a quantized color
space) needs to be chosen, as well as the representation form of the probability distribution.
For example, the picture above shows how a color histogram can be used to represent the distribution: each
cell of the histogram corresponds to a given color range (e.g. red, green, yellow, blue, etc.), and the
histogram is obtained by collecting color pixels from the reference model, and accumulating them in the
respective histogram cells. Finally, the histogram is normalized by dividing every cell by the sum of cells (so
that the sum of probabilities is 1).

A color histogram is a feature descriptor, which has as many degrees of freedom as (number of cells – 1),
since the last one can be obtained from the others (the sum is always 1).

 92

After the feature-space model (q) is obtained, it can be used in order to localize the object in subsequent
frames: in fact, by moving the window to another position (s) and re-computing the histogram in the new
image region, we get a different feature descriptor p(s).
By comparing the two histograms using a suitable similarity (or likelihood) measure f(p,q), we can search for
the position s that maximizes this similarity.

This is a Maximum-Likelihood problem in feature-space, for which we can find the highest value in a
neighborhood of the initial point s0 (that means, it is a local search method).

In order to do the optimization, we need to formulate the likelihood f() in an appropriate way: it should be a
smooth surface in state-space (s), and we should be able to compute easily also the derivatives with respect
to s.

The mean-shift approach, that will be explained later on, is one such maximization methods, which can be
applied if the probability densities p and q are represented by kernel functions.

 93

Color-space representations

In order to perform color-based tracking, we need first to talk about the color-space representation of our
image and model.

Each unique color that can be observed by human vision (or by a digital camera) and represented on a media
such as paper, monitor screen, etc., can be represented by a t-uple of coordinates, which are most usually 3.

There are many different representations of color, which are called color-spaces.

 94

Usually, on a PC we use the RGB representation: the amount of red, green and blue components that make
up the color. They correspond to superimposing different intensities of the three primary lights onto a screen,
which are mixed to produce the desired color.

 95

The RGB representation is quite popular; however, it does not exactly correspond to a natural description of
visible colors, in terms of perceptual properties (such as “how bright a given color looks”), nor it corresponds
to the real physiology of the human retina (i.e. the color receptor cells).
A more perceptually meaningful representation is the HSV (Hue-Saturation-Value).
The first component (Hue) represents the main spectral component of the color: in other words, it answers
the question “which color is this”? (a red, a green, a yellow, a violet, …). Physically, it corresponds to the
main frequency that the light wave carries.
The Saturation component tells how pure the frequency spectrum is: if a color is highly saturated, it has only
the main component (the hue), whereas a non-saturated color is a large mixture of all nearby frequencies, and
looks less “pure” (or less “colourful”). The extreme case are gray colors (which include also black and
white), that contain an equal mixture of all visible frequencies.
Finally, the Value is the light intensity (or perceived brightness), which roughly corresponds to the
amplitude, or energy, of the light wave.

Unlike the RGB “cube” (which is a linear space), the HSV color space can be more conveniently represented
on a cylinder, where the main axis (V) represents varying brighness, the radius is the saturation component
(that is null on the axis of grey colors), and the angular component is the Hue value.

As we can see, for low values of V all colors tend to appear black, while at high values they are very well
distinguished. Therefore, a better representation is the HSV cone, where colors are distributed in a more
uniform way for all HSV triplets.

 96

This is in any case a non-linear representation which may have singularities: in fact, for colors with S=0, the
Hue component makes no difference (there is no “main” component). Therefore, the conversion between this
space and another space like RGB contains a singularity: for a given HSV value, the RGB value is always
unique, but for a given RGB color, there may be infinite HSV values (when S=0).

 97

Another representation, mostly used by digital cameras (CCD sensors), is the YUV space: this is similar to
the HSV representation, in that it separates the pure brightness component (Y, which is related to the Value,
but not exactly the same) from the two chromatic components (U,V).
However, the meaning of (U,V) plane is quite different from (H,S), and in particular, this representation has
a linear relationship with the RGB space.

 98

In digital cameras, in order to reduce the transmission bandwidth, often input pixels are sub-sampled: not all
values of (Y,U,V) are sent along the cable, but some intermediate values are missing, and they need to be
interpolated (often, simply repeating the last one) in the resulting image.
Sub-sampling takes place on the U,V channels only, since human vision has a lower spatial resolution for
chromatic components, than for the intensity values. In fact, intensity values are a more important part of
early visual processing (which is the processing done by the neuron layers of the retina).
There are several sub-sampling schemes in commercial devices, that are indicated by 3 numbers Y:U:V.
The 4:4:4 format corresponds to the full transmission. 4:2:2 takes 2 values of (U,V) every 4 of Y (that is, one
every two pixels are missing). 4:1:1 is even more sub-sampled, and 4:2:0 indicates that pixels are
subsampled on both the horizontal and vertical direction: only one color value every two pixels, on both
axes, is detected and sent along the cable.

 99

Another color-space, more related to human perception of color, has been developed by the CIE organization
in the early 1930s and refined into the CIE-XYZ specification of 1970(?).

This model corresponds to the tristimulus concept: human receptors for color (retinal cone cells) compute
one of three possible values, obtained by filtering the input light spectrum I(λ) by means of the tristimulus
spectral responses (corresponding to the three color curves x(λ),y(λ),z(λ) above). This is achieved as an
integral value, over all visible spectrum λ (with wavelength measured in nm)

Applying the tristimulus responses give, respectively, the X,Y,Z values of the colored light.

The three curves very roughly correspond to the red, green and blue components of the perceived color light.
As a result, any light spectrum I(λ) with the same (X,Y,Z) values is perceived as the same color; therefore,
our perceived color-space is three-dimensional.

In particular, the second component Y, roughly corresponds to the brightness (or luminance) of the color, but
X and Z are not “purely chromatic” components (such as Hue and Saturation, or U and V, etc.)

 100

If we normalize the X,Y,Z components, dividing by their sum, we get (x,y,z) coordinates, which sum to 1.
Therefore, only two of them can be specified. And this normalization produces purely chromatic coordinates,
independent of the overall brightness.
Then, by considering (x,y,Y), where Y is the brightness, we get a more suitable color space, with the desired
separation between chroma and luminance components: this is the CIE-xyY space.

We can see that, on the (x,y) plane, visible colors occupy a “horse-shoe” region: the center is the “achromatic
light”, with no saturation (gray), and the border contains pure colors (monochromatic locus). Along the
border, the wavelength is specified, corresponding to the respective pure color.

 101

The visible color region is much larger than a common visualization device (such as a monitor, or a color
TV) can actually display.
In fact, on the right side this sub-region is displayed, which contains all unique colors that can be displayed
by a typical monitor.
All other colors seen here are just “copies” of the ones on the triangle border, but we can see many more
colors, that are actually present in nature.

 102

Looking at the interior colors of the triangle, the problem with the CIE-xyY space is the non-uniformity of
perceptual color differences: in the center, two colors that look similar can be far apart, while on the border,
two different colors are close.

This is not desirable for computer vision, since clustering colors in an image works better if their perceptual
differences are roughly proportional (i.e. linear) to their distance in color-space. In other words, “perceptual
clusters” of pixels are better distributed, and separated, in color space.

Therefore, the L*u*v color space attempts to modify the xyY space through a non-linear transformation, so
that this “perceptual linearity” is achieved: similar colors are close, different ones are far apart.

Modeling color distributions

 103

In order to perform a color segmentation, we can look at the distribution of color pixels, in a suitable color
space. Often, the L*u*v* space is chosen, because of the linear distribution of perceptually different colors,
so that pixels form good-shaped clusters in this space.

Clustering is a procedure which finds high-density regions in color space, and assigns pixels to each cluster.
Most often, clusters have an ellipsoidal shape, since they represent a mixture of Gaussian distribution (or
color-likelihood function).

 104

A clustering method looks for the local maxima (or modes) of this color likelihood, and assigns each pixel to
the respective basin of attraction: all pixels for which the local maximization leads to a given mode, are
assigned to this cluster.

What is needed for such a clustering procedure is, therefore: defining the color likelihood (that should be
proportional to the local point density), and the local maximization procedure.

 105

Usually, clustering only in color space is not sufficient: in fact, for a good image segmentation, we are also
interested in spatial relationships between pixels (for example, the chair has the same color of the stripes on
the painting above, but they are two different objects).

Therefore, in image segmentation, the feature space consists of both position (x,y) and color values (l,u,v), so
that clustering takes place in a 5-dimensional space.

 106

A first representation of the color likelihood is given by histograms: each bin represents a given interval of
color values, where pixels are collected. High peaks on the histograms represent prevalent colors in the
image.

Histograms are easy to understand and to collect, and they are a non-parametric representation: the only
parameter is the number of bins (i.e. the resolution in color-space), which however should be carefully
selected.
A too low resolution (few bins) leads to a poor and ambiguous representation, since it neglects small color
differences; on the other hand, too many bins lead to an “over-fitting”, that is, noise and small color
variations give very different histograms, and therefore many small segmentation regions.

There is no standard rule to select the bin size, but it should be anyway proportional to the sample size: in
fact, a higher resolution can be used when many pixels are available, while for a small sample size, the
number of bins should be kept low.

 107

Another useful representation is given by Mixtures of Gaussians: in fact, each cluster can be usually
approximated by a multi-variate Gaussian distribution, with given mean vector (the mode, or average value)
and covariance matrix (the extension and shape of the cluster).

 108

However, this model is highly parametric: all mean vectors, covariances, weights, and even the number of
Gaussian components (i) have to be determined, for a given sample set. This can be accomplished by using
the Expectation-Maximization (EM) algorithm, which has some computational complexity, but for low-
dimensional spaces like this, can be efficiently implemented.
Still, the problem of estimating the number of components (which is an integer value) has to be solved, and
in the literature some methods (or simple rules) have been indicated for this purpose.

The advantage of using Mixtures of Gaussians is the smoothness of the resulting color likelihood: all
derivatives can be computed, which is very useful for tracking (frame-to-frame estimation of the likelihood
function)
For image segmentation, the Gaussian already represent the modes of the distribution, unless too many
components are present (in which case, two clusters which are too near can always be “merged” in one).

 109

A third representation, which joins the best properties of both the previous ones, is given by kernels.

Kernels are a non-parametric representation, that unlike histograms is also smooth and differentiable, so that
local modes can be found by gradient ascent maximization, in a relatively quick time.

The idea behind kernels is to place a uni-modal function with a compact support (kernel) onto each sample
point, and summing them together to obtain the resulting function.

This looks like a mixture of Gaussians (the kernel can also be a Gaussian), but it is not: no parameters (mean
and covariances) have to be specified, since all kernels are located on sample points, and have a unique
covariance, which is the only parameter to be specified.

In this way, high-density regions will have many neighboring contributions, and give high likelihood values,
and vice-versa for low-density regions.

 110

The kernel function K(x) has some basic properties, in order to provide a meaningful probability density
estimate (f(x)).

In particular, the first condition (compact support) ensures a limited influence to each point from the overall
sample set: only the nearest neighbor samples contribute to the value of f(x).
Alternatively, one can specify a kernel with very fast (exponential) decay to 0, such as a Gaussian.

In any case, the integral of the kernel function must be 1 (normalization), so that summing up all kernels, and
dividing by N, keeps the integral of f(x) to 1.

ERROR: the normalization coefficient (1/hd) should be already included in K(x)!

Finally, usually it is desirable to keep symmetry of the kernel around the origin.

 111

The most common choice is a radially symmetric kernel, meaning that the extension and shape of K(x) is the
same in all directions.
In this case, we can substitute x with its norm ||x||, so that these Kernels can be conveniently expressed by a
scalar function, K(||x||).

Well-known examples are: the uniform kernel (constant), the Epanechnikov kernel (quadratic) and the
normal (or Gaussian) kernel. The first two have compact support, while the Gaussian does not; but anyway,
it has an exponential decay, so that outside the covariance region, KN(x) ~ 0.

 112

The Mean-Shift Algorithm: I – Definition

As we said in the previous Section, clustering can be seen as finding the modes (peaks, or local maxima) of
an underlying likelihood density, that models the probability from which the observed sample set is supposed
to have been generated.

By using kernel estimators, this density function is given by a smooth and differentiable function, that can be
locally optimized, starting from any sample point.

 113

Each local maximization produces a trajectory in the feature space, which converges to one of the modes of
the kernel density estimate. In particular, several trajectories converge to the same mode, and therefore form
a cluster.

This procedure has the advantage of being completely unsupervised: apart from the sample data, no other
information is given a-priori, with the exception of the choice of kernel (shape and size).

So, we compute automatically both the number of clusters, their centers, and assign all the cluster points.

 114

Another advantage of kernel density estimators, is the generality with respect to the underlying function, and
cluster shapes: also very non-linear and non-Gaussian clusters can be separated with this method.

 115

 116

Intuitively, the goal of mean-shift procedure is the following: starting from a given sample point, we try to
go in the direction of maximum density increase (i.e. the gradient of f(x)), evaluated in a region around the
point. This region (blue circle) contains all sample points that have influence over f(x), therefore it has the
size of the kernel K().

Afterwards, we move to the new point and do the procedure again, and iterate until convergence: we will
then find the maximum density point, at least locally. Starting from any point in the picture above, lead to the
same mode, so they belong to the same cluster.

For a radially symmetric kernel k(||x||), more precisely, the gradient of the kernel density can be evaluated
with the formula above, where g(x) is the first derivative of k.

As we can see, also the gradient of f(x) has the form of a kernel density estimate, but with kernel g(x), and
multiplied by the vector joining each point xi (in the neighborhood) to x.

 117

By re-writing the formula above, we can see that the gradient of f(x) is given by two terms: a scalar term
(kernel density estimate using g(x)), and a vector term, which is called the “mean-shift” vector.

The mean-shift vector gives the direction of motion from x to the new point (which is the new “mean” of the
density). When the density is locally maximum at x, no shift will be present, and the algorithm will stop on
x.

 118

 119

The Mean-shift algorithm: II – Color segmentation

For color segmentation, it is important to include both geometric (positional) and photometric (optical)
information. Therefore, a good methodology involves a 5-dimensional feature space, containing for every
pixel its position (x,y) and color (l,u,v) in a joint descriptor.

In this case, the geometric and photometric components may have a different numerical range, therefore two
kernel sizes (hp and hc) are recommended. The mean-shift procedure can be easily applied also for non-
isotropic kernels (i.e. with different sizes along different dimensions).

Some example of mean-shift image segmentation follow.

 120

In this example, a gray-level image is shown (where the feature space is given by (x,y,l)). The color example
shows how objects with the same color (e.g. the red chair and the red stripes on the wall) belong to different
clusters, since they are separated in the position (although not in the color) components.

 121

Natural scenes like the one above are generally more difficult to segment, since they contain complex
textures, and complex shapes (for example, the trees).

The picture below shows how a highly non-Gaussian region (the blue ring), is still correctly separated from
the finger and the hand. This is due to the generality of the kernel-based representation (a Gaussian mitzure
could not perform as well).

 122

 123

 124

The Mean-shift algorithm: III – Object tracking

Color-based object tracking can also be performed with the mean-shift algorithm; in this Chapter we will see
how this can be accomplished frame-by-frame, by maximizing a color matching likelihood using a reference
model of the object.

In particular, we need to define an appearance model of the object to be tracked, and a feature space where to
define the descriptor for matching it inside the new image.

The descriptor here is given by a color histogram, obtained by collecting all the pixels inside the reference
window (left).

This histogram can be described by a 1-dimensional vector qu, where u is the bin index (although we may use
two or three color channels, a 2- or 3-dimensional histogram can always be “vectorized” into one
dimension).

On the new image, for a given pose hypothesis s (in this case a simple 2D translation) we can do the same
and collect pixels in a new histogram pu(s). Both histograms are normalized to sum 1 (since they represent a
probability distribution).

Then, we can compute a similarity function f(q,p) between histograms, that tells how good the state
hypothesis s is.

 125

After defining f(p,q) we can look for the local maximum w.r.t. st-1, starting from the previous state st. Since
from frame to frame the object does not move very much, if the similarity function is well-behaved (i.e.
smooth, and with a large local peak), then we should most probably obtain the correct matching pose.

A similarity function can always be converted into a distance function B (with the standard metric
properties), so that maximizing f is equivalent to minimizing B.
In particular, here B is the so-called Bhattacharyya distance, defined by the formula above.

 126

In order to understand the Bhattacharyya distance, it is useful to represent it geometrically: in fact, by taking
the vector of square roots of all entries (for q and p), we get two vectors q’ and p’, which form an angle in an
N-dimensional space (where N is the number of histogram bins) θ.
Then, the B. distance is simply the cosine of this angle (which can never be more than 90° since both p’ and
q’ have positive entries) or, equivalently, the scalar product of p’ and q’, divided by both vector norms.

Therefore, the B. distance between the two distributions is called a divergence measure: it is related to the
“divergence” angle of the two distributions, in feature-space.

There are other well-known examples of divergence measures, such as the Kullback-Leibler divergence,
which can be defined both in finite-dimensional space (such as histograms) as well as infinite-dimensional
ones (such as generic, continuous-valued representation of probability distributions).

 127

In order to optimize the Similarity function with mean-shift, we need to express it somehow in terms of a
kernel-based representation, and the color histograms are not well-suited for this task.

First, we perform a linearization of f around s0 (the previous state estimate), by using the first-order Taylor
expansion. This leads to two terms: a constant one (depends only on s0) and a term linear in s.

Next, we need to compute the derivative of pu’ in s0 (inside the second term). This derivative can be obtained
by a second linearization, of pu(s) around s0. This allows computing it in terms of pu(s) and pu(s0).

 128

In order to arrive to the kernel-based representation of f(s), we make the histogram smooth in terms of s: that
means, we express each bin contribution (from the respective pixels) in a fuzzy way, where the membership
of pixel xi to the bin u (to which its color belongs) is weighted by its distance from the region center, s,
through a kernel-shaped function (for example, a Gaussian with approximately the size of the region).

In this way, pixels near to the center contribute more to the histogram than pixels in the periphery, which is
also plausible with the fact that central pixels have a higher probability of belonging to the object (and not to
the background).

The result is that now pu(s) is a smooth function of s, and expressed by a sum of kernels.

Note that here k(x,y) is a kernel in position only, not in color space; in fact, the color information is included
as the bin b(xi) to which the point xi contributes.

 129

Now we can express f(s) in terms of the kernel k(), and we obtain a weighted kernel representation, where
the weights wi contain the color information, collected inside the histograms p and q.

So, we can now apply a weighted mean-shift procedure in order to reach a local maximum of f (single mode),
starting from s0. The difference between the original and weighted mean-shift is given by the presence of wi,
in both numerator and denominator of the mean-shift vector.

 130

 131

Bayesian tracking for a color-based modality

 132

In a color-based visual modality, we can include dynamical models for tracking if we properly define the
Bayesian filter and the measurement and dynamical models.

Concerning the measurement, by resuming our classification into three measurement levels for object
tracking:

At pixel level, a color-based visual modality computes the predicted map h(s) at a given pose hypothesis
(corresponding to an ideal, noise-free segmentation).

The actual measurement z is given by the color segmentation of the current image, which also contains noise
and background clutter, as well as missing points in the object region.

The residual image is given by the X-OR of the two binary maps, collecting the differences between
expectation and observation.

In this case, a particle filter can be used (since this is a highly non-linear and non-Gaussian process).
Since the expectation h(s) has to be computed many times (for each particle) a good solution is to implement
this procedure on graphics hardware (GPU) where rendering the object silhouette can be performed very fast.

At feature-level, we consider the expected color distribution h (represented by the reference histogram), and
match it with the observed color histogram z of the underlying pixels, in the predicted area at pose s.

In this case, the overall residual between z and h is given by the Bhattacharyya distance between the two
histograms. In order to obtain a Likelihood value (as probability distribution), we can use a Gaussian-like
distribution, where the B distance is used instead of the standard Mahalanobis distance, and with a suitable
variance σ2.
Note that in this case, we cannot speak of a Gaussian distribution (because of B), but rather of a more general
“Gibbs-class” distribution, which has this exponential form.

 133

Therefore, this likelihood cannot be used with a Kalman (or Extended Kalman) filter, so we can use a
particle filter instead.

And finally, at object-level, after running mean-shift optimization, we get a pose-space estimate p*, which
constitutes the measurement z, while the expected measurement h is the prior pose p0 (predicted from the
previous frame).

In this case, a standard Kalman filter can be used in order to perform Bayesian tracking.

 134

 135

Lecture 7 – The Kanade-Lucas-Tomasi Features Tracker

Local keypoint-based tracking

Point-based visual tracking employs a set of feature points, that belong to the visible surface of the object to
be tracked.

These points are uniquely identified from one or more reference views of the object.
When these points are detected, or tracked, into the current image, a procedure for 3D pose estimation can be
performed, yielding an estimate of the state s*. This can be used as measurement variable (z) for a Bayesian
tracking scheme, where the measurement is of a high-level (i.e. object-level) type.
NOTE: As we have seen, the measurement can also be defined as the set of feature points themselves
z=(q1,…,qN) which is a middle-level (feature-level) type, and in this case the Likelihood model will be
defined between expected and observed feature points. The choice between the two is absolutely free, and
influenced only by application-specific arguments.

 136

Definition: local features

A point feature is also called local feature, because they describe a specific visual property which is localized
in a very small area of the object surface.
This property is of a general type: it can be a small distinctive pattern of colors/grey values, or a local
configuration of edges (a corner), etc.

Two most important properties for a local features are: it should be a distinctive pattern (a pattern which is
very unlikely to be found in other parts of the image), but at the same time it should be easy to be identified
again from different views of the object.

 137

In model-based tracking, we always have two main phases: modeling (off-line) and tracking (on-line).
For the case of point-based 3D tracking, the following tasks are involved.

Off-line, we need to compute a database of relevant points from the object, by taking one or more reference
views.
The database contains all the information needed to identify the local pattern in subsequent images: this is
called the feature descriptor. Moreover, since each feature point corresponds to a unique 3D point from the
object surface, we need to store this information as well, that is the (x,y,z) coordinates of the point, referred
to the body frame.

On-line, we have two alternatives: features detection (frame-by-frame) or tracking (frame-to-frame).

 138

Keypoint descriptors database

A descriptor is a vector containing all informations needed to identify the local feature i.e. the pattern. The
local pattern can be described in very different ways, according to the degree of robustness that we need for
matching and identifying it in different views.
The simplest example of descriptor is given by the grey-values of the window itself, stored in a long row.
But this descriptor not always has the properties needed for a good tracking (invariance), as we will see next.

 139

When features are collected from a reference view of the object, the local positions in the image (x,y) can be
used in order to get back the corresponding 3D points on the object surface.

This procedure is called back-projection, from image to space, and it is possible in this case, since we know
already the pose of the object in the view.

Back-projection can be done using the depth-map of the CAD model, rendered at the given pose: a depth
map contains the depth (z) of each pixel of the rendered model at that pose, and these informations are
sufficient to reconstruct the original coordinates of the point, in body frame.

 140

On-line features detection vs. tracking

A first solution to point-based tracking involves first tracking the local features themselves, from frame to
frame.

 141

This idea is easier to implement, faster, and does not require the selection of particular invariance properties
for the feature points, which therefore can also be selected in a large number.

This is because from frame to frame, the object view changes little, as well as the light etc., so that one can
expect a very similar grey pattern to be found near the previous location.

In this case, a simple grey-level descriptor is sufficient.

The other possibility is to perform a new detection of features in the whole image at every frame, that need
afterwards to be matched to the original ones from the reference view.

In this case, since the pose, light, etc. can be a very different one with respect to the reference, we need more
invariance properties.

From the model point of view, this has two main consequences: the first is that less feature points can be
selected from the object (only points with “special” properties), the second is that we also need to use a
different, invariant descriptor, (the grey-level window does not have these properties).

 142

Invariance properties for features detection

The most important invariance properties that we need to consider are:

- invariance to light: not only the external environment light can change in time, but actually the incident
direction of light onto the object changes with the pose, and therefore the local grey pattern

- invariance to geometric deformations of the pattern: when the space pose (roto-translation) is different, this
reflects on the appearance of the image patch, which basically can rotate, scale, and deform according to the
perspective transformation

Therefore, in order to perform frame-by-frame detection and matching of local features, our method should
be robust with respect to these modifications, so that the feature point can be found and matched with the
correct one into the reference database.

 143

The reason to consider both approaches for on-line tracking is that they have complimentary
advantages/disadvantages.

Detection can find the object also when the image is very different from the reference view, which happens
for example in the initial frame of a video sequence, where no previous knowledge is still available.
A main disadvantage is that, because of the global search, it is a complex, slow and not very precise, even
with the best methodologies today available (e.g. SIFT).
In particular, low precision results in a jittering pose estimation (not very stable and accurate).

Features tracking, instead, is stable, precise and fast, because based on local search algorithms (features are
searched only in a neighborhood of the old ones).
The main disadvantage in this case is the drift problem: whenever a feature gets occluded from external
objects, or disappears from the visible area, it will be mis-tracked and never recover again, and all the pose
estimation result will be definitely lost.

Therefore, features tracking alone is not sufficient: it needs a re-initialization procedure, which can be
supplied by the other methodology, that in this case acts as a “supervisor” of the tracking process.

In order to obtain this result, of course we also need a criterion to check at each time if a feature is getting
lost, to be eventually replaced in order to keep the number of points to a sufficient level for 3D pose
estimation.

 144

The KLT feature tracking algorithm

The KLT tracker is a well-known algorithm for frame-to-frame tracking of local features.

This algorithm also provides the initial selection of feature points good for tracking.

The criterion for this selection is of course different from the one used by invariant detection methods like as
SIFT. In particular, it is less restrictive since the points do not need particular invariance properties, but only
to be distinctive, and reliable to be followed from frame to frame.

 145

Optical flow conditions

The tracking part of KLT solves a LSE problem for searching a small patch of grey-pixels of the current
image over the subsequent one.

This task must be separately accomplished for every feature point, and for the purpose of speed it employs
simple and linear models of transformation in the image plane:

- 2D Translation
- 6D Affine (linear+translation) deformation

These models can be reliably employed for frame-to-frame tracking, because of the small difference between
the two images.

 146

The Optical flow function describes corresponding pixels motion between two images of the same scenario,
in the most general case:

The two terms dx, dy express pixel displacements, and they are function of:

)),,,,(),,,,((),,(ttyxdytyxdxItyxI yx τττ −−=+

 147

- the original pixel location x,y
- the previous and current time in the sequence

This is because:

- different pixels can be the image of different real-world parts, eventually moving with different velocities
- even when two pixels belong to the same, rigid object, their image motion can be different because located
at different depths, etc.
- moreover, since motion can be complex (roto-translation), over a long time difference, the displacement
between pixels cannot be approximated with a simple translation

If we impose two conditions:

- consider a small window of pixels
- consider a small time difference τ

then we can assume a parallel translation for each pixel inside the window; in this case, dx and dy are
constant over the window (pure translation of the feature window).

Solution for the translational model

When the approximation holds, we can track a feature from frame to frame, by solving a LSE problem in
(dx,dy)

NOTE: although the transformation between image positions is linear, the overall cost function is nonlinear,
because the image values (grey-level) are nonlinear and unknown functions of pixel positions!

∑ −−−+=
yx

yx tdydxItyxI
,

2*),,(),,(minarg τ
d

d

 148

For this problem, KLT uses the standard Gauss-Newton algorithm. In this case, the Jacobian matrix A is also
constant (not dependent on dx, dy); therefore, it can be computed just once, at the beginning of the
optimization.

If we write the equation for each Gauss-Newton step (linearized LSE), we find a linear (2x2) system, with a
constant coefficient matrix Z.

 149

This matrix is also called auto-correlation matrix, and it is related to the gradients inside the feature window;
it expresses the correlation of the window with itself (see also next Lecture), and it can be used also in order
to select good features to track.

In order to improve robustness in features tracking, it is generally better to give different weights to the
pixels, where central pixels are more important than peripheral ones; this is obtained through a 2d Gaussian
function with proper variance.

 150

KLT: good features selection

Another criterion to select features for tracking is the KLT criterion.
This is again based on the Z matrix, but this time considers a good feature one that can be reliably found in
the next image, that is, when the Gauss-Newton equation is good to be solved (well-conditioned system).

This means that both the eigenvalues of Z should be high, and not too different from each other.
High eigenvalues the feature point shows a high variability along all directions.
Not too different eigenvalues the intensity variability is similar along all direction (“corner-like”).

 151

After looking for windows with this property, KLT also removes features that are too near each other, by
setting a minimum distance proportional to the window size.

 152

Many image patches that look like corner points are in fact no real features: they do not belong to any
existing object point in space.

This is the problem of false features, and typically happens in case of depth illusions (when two object at
different depth appear intersecting on the image) and in case of shadows or light spots.

All feature tracking methods also have drift problems: a feature track can get lost, and never recovered again.

This happens for two reasons:

- It was a false feature, therefore when the scene changes, it does not exists anymore
- The motion was too fast, so that in the next frame the point was too far for the region of convergence of
Gauss-Newton optimization
- The feature is not visible anymore, either because has been occluded, or covered by light/shadows, or
because it is not visible anymore from the new camera point of view.

We need then an automatic way for detecting this event, and eventually terminate the track for this feature.

KLT: on-line quality check

In order to check the quality of tracked features, we can use the original feature window (descriptor) from the
reference image: if we track the same feature point, its appearance should be similar to the original one, apart
from eventual light changes; on the contrary, if the feature has drifted or occluded, then we are tracking a
very different patch.

This can be done by computing the SSD error between grey values of the two windows, which is the same
cost function used for the KLT tracking algorithm (Gauss-Newton optimization).

 153

But, in order to do this comparison, we must transform the pixel coordinates from the reference to the current
position of the feature.

And for this purpose, a simple (x,y) translation model is not sufficient anymore, since the current viewpoint
can be very different from the reference one (remember that the optical flow approximation is good only for
small viewpoint differences, that is, between consecutive frames).

Solution for the 6dof affine model

The affine (6dof) deformation model is more general than the pure translation, and appropriate for this
purpose.

Here, we have a linear+constant transformation, where d is the translation vector, while the (2x2) matrix D is
the linear deformation matrix.
This kind of transformation is still simple enough for an LSE optimization (Gauss-Newton), and allows a
rectangular window to be rotated, stretched and skewed (but always keeping parallelism between opposite
sides).

 154

In this context, in order to warp the original (reference) feature window onto the current one, we use Gauss-
Newton, starting from the estimated translation d0 (from the KLT tracker), and estimating all the 6 dof
(D*,d*) (where d* of course can be slightly different from d0).

 155

A Gauss-Newton loop with this model needs to compute the related (Mx6) constant Jacobian matrix A, and
the linearized LSE system at each step is obtained with the (6x6) matrix W, which is also constant
throughout the optimization, and the 6-vector w.
NOTE: A (and W) are constant throughout the tracking sequence, because they are referred to the reference
image; therefore, they can be computed off-line, before tracking. Instead, the Z matrix of KLT is computed
once per frame, and it is constant only inside the Gauss-Newton loop. The right-hand sides (in both cases)
are instead computed at every GN iteration, and every frame.

After the optimization, we have the possibility of computing the residual SSD error between the reference
feature window and the warped one from the new image. If this error is above a threshold, we can say that
the feature has been lost (drift, etc.), and we can discard it from the set.

KLT: the full algorithm

A sketch of the complete KLT algorithm: Selection (first frame), tracking (frame to frame) and check quality
(after tracking). If too many features get removed from the last step, we also need to replace them with new
ones, by selection of new features from the visible surface of the object.

Since now the view is very different from the first (or from the reference) frame, this replacement can be
better done by using an invariant feature detection algorithm, e.g. SIFT.

 156

Lecture 8 – Feature Detection Methods: the SIFT Approach

Features detection

For features detection, we use a database of reference points, that we try to match with the features extracted
from the current image.

Therefore, now the correspondence problem must also be solved: which feature points in the new image
correspond to the reference points?

This is different from feature tracking, where each feature was individually tracked across subsequent
frames, and therefore there was no problem of identification (matching).

 157

Features detection proceeds in two steps: selecting new features, and matching them to the database.

The key idea is the following: we use an algorithm for extracting feature points which should be invariant to
light or viewpoint change; therefore, we expect to select from the new image almost the same set of points
that we selected in the reference frame.

Of course, since the new image is rather different (with more objects, etc.) we also expect some of the new
detected points are not present into the old database, and also that some of the database points are not
missing from the new image detection.

But, as long as the detection algorithm has good invariance properties, we expect to have still many good
matchings.

 158

Invariance properties

Most important invariance properties for local features are: invariance to light, to in-plane rotations, to scale,
and (to some extent) to out-of-plane rotations. The latter are the most difficult to achieve, since out-of-plane
rotations of the object will result in perspective deformations of the feature gray-scale pattern.

The invariance requirement translates into two main requirements for the detection method:

 159

- The selection algorithm (which extracts “good” features for detection) should give similar results in
presence of the above mentioned effects (light, etc.). In other words, it should detect almost the same set of
points, apart from a few missing ones, or new detections.
Since these features are always found in a new image, even in different view situations, they are called
invariant features.

- Once that invariant features have been detected, they should also be described in such a way that we can
match (i.e. compare) them correctly The grey-pattern itself (a MxM matrix of grey pixels) is not anymore
a good descriptor for the local feature, and we need to transform it into an invariant descriptor.

The second requirement (invariance of the description) means that we must encode the grey pattern into a
more abstract vector (= descriptor) that remains almost the same also when the pattern undergoes a change in
scale, intensity, etc.

The Harris-Stephens feature detector

 160

The first idea (Harris, 1988) for detecting invariant features is to use a selection criterion based on a specific
property of a feature point: the “cornerness” measure.

This measure says how much a given image window represents a corner point of an object in the scene.

 161

It is based on a simple principle: a feature window in the image represents a corner point if, when moving the
window of a small amount in all possible directions, we get a large variation of the gray-pattern.

This idea allows to distinguish a corner feature window from other windows centered on flat regions, where
small variations are observed when moving the window, or edges, where the gray pattern has a large
variation only for displacements in the direction orthogonal to the edge, but not along the edge.

Detection with the auto-correlation matrix

From a mathematic point of view, the “cornerness” measure can be computed using the autocorrelation
function E.

This function is basically the “correlation between a signal and its shifted version”, where the shift is 2-
dimensional (u,v); or, in other terms, the SSD between the window gray pattern and the shifted pattern.

If a window represents a corner, then E should be increase rapidly for all possible small 2D displacements
(u,v) (for example, a few pixels in all directions).

A better function is the weighted autocorrelation, where a weight term w(x,y) is introduced, that gives more
importance to differences in the central pixels of the original window, rather than the periphery pixels.

The window, as usually, is chosen to be a 2D Gaussian with covariance proportional to the window size (in
order to cover the area properly).

 162

In order to make computations easier, the autocorrelation E is then approximated with a bilinear function: in
other words, since u and v are small, instead of using the shifted window I(x+u,y+v), we approximate it to
the first order in u and v (bi-linear), by taking the image gradient in (x,y).

The result is a quadratic form in (u,v), that approximates E: a second-degree polynomial (quadratic) where
the (2x2) coefficient matrix Z is called auto-correlation matrix.

We have already seen this matrix for the KLT algorithm, where Z is used both to select good features to
track, and to track them across subsequent frames (pure translation model).

 163

The two orthogonal eigenvectors/eigenvalues of Z (which is a symmetric, positive-definite matrix) represent
the axes of the elliptical level sets of E (or actually, the approximation of E for small u,v).

In particular, the largest eigenvalue corresponds to the direction of fastest change in E, while the other
corresponds to the slowest change direction of E.

Harris “cornerness” measure

 164

Therefore, we have a criterion for selecting “corner-like” points, by computing the two eigenvalues of Z.

- Flat region: there is a slow increase of E along all directions both eigenvalues are small
- Edge: one eigenvalue is large, the other is small
- Corner: both eigenvalues are large

 165

The Harris measure of cornerness is defined by R, where the constant k is to some extent arbitrary, but in the
range 0.04-0.06.

- Flat region: R is small (it can be positive or negative)
- Edge: R is large and negative
- Corner: R is large and positive

 166

 167

 168

The Harris algorithm performs the following steps to detect corners:

- From an original image (gray-scale), compute the R response at every window position (NOTE: the
window size is selected in advance, typically ~ 25x25 pixels).

- Set a positive threshold on R (it can be fixed or adaptive), and segment the image in “corner-regions”

- In order to find single corner points, for each corner region take only the local maximum of R.

As we can see from the example images, most of the same points are found on the object, even if there is a
rotation and a different light The Harris detector has some invariance properties.

 169

Invariance properties of Harris’ detector

 170

 171

Concerning invariance:

- Harris is invariant to in-plane rotations, because the auto-correlation matrix Z for a rotated window has
different directions (eigenvectors) but not eigenvalues R is almost the same

- It is partially invariant to light changes:

If the change is a brightness shift (I+c), the gradients inside the window are the same, therefore Z does not
change.
If the change is about contrast (aI) then the gradients change magnitude, and so R (aR); therefore, if the
threshold is not adapted, we will get more or less corner points, but the old positions are not changed.

- It is NOT invariant to scale changes: a feature that is detected as corner point, when the scale increases
cannot be found anymore, because the feature window (25x25) is not changed!

If we would be able also to know the “correct” window size, we could solve the problem of scale invariance:
for a given feature point, select also the scale (=size).
But we cannot do it with the Harris detector.

Another method that solves this problem, more complex but much better, is SIFT: Scale Invariant Features
Transform.

This method selects good features by detecting not only their position in the image, but also the scale,
searching in an augmented (3D) space of image and scale coordinates (x,y,s) which is also called the scale-
space.

 172

Scale-space representation

When we get an image through a digital camera device, the optical resolution is given by the pixel size,
which also define the size of the finest detail of the physical scene that can be distinguished.

Therefore, we can say that the original image has the maximal resolution, that we call “scale 1”.

If we perform a sub-sampling, by merging 4 pixels together (2 on both x and y axes), we reduce the number
of pixels, and the size of the smallest physical details that can be distinguished decreases of the same
amount.

In scale-space language, we say that the scale has been doubled. The term “scale” is related to the size of
smallest object details that can be perceived from the digital image.

For example, in these images we can see how the phone keyboard (as a whole) can be still identified up to
the third scale, whereas the individual keys are visible only up to the second scale. The last scale barely
allows to distinguish the handle, the cable and the small calculator, as identifiable intensity “blobs”.

In this sense, we can say that the feature “telephone keyboard” exists at scale 2^2=4, whereas the individual
keys are visible at scale 2^0=1, and the calculator at scale 2^3=8.

This justifies the idea of a “scale-space” (x,y,s) for identifying features: a feature exists in a given location
(x,y) = center, and at a given scale s.

 173

Gaussian image filtering

As we have seen, different scales can be obtained by subsampling the original image, which reduces its size
of powers of two.

 174

If we want to keep the size in pixels of the original image, and represent it in a continuous scale-space s (not
just powers of two), then we can apply an equivalent principle: Gaussian filtering (blurring).

Gaussian filtering is a 2D convolution operation, between the image and a Kernel function (in this case, a 2D
Gaussian).

A Kernel function G(u,v) is a function which covers a limited area: for a Gaussian, this area is proportional
to the covariance matrix.

When we apply a Gaussian filter, we have the effect of blurring the image: this basically means that we loose
small details like edges or near corner points, that are “smoothed” and merged together.

∑ ++==
),(

),(),(),)(*(),(
vu

vyuxIvuGyxIGyxJ

 175

This is equivalent (in scale-space theory) to the subsampling operation.

The larger the covariance of a Gaussian Kernel, the higher will be the equivalent scale of the filtered image.

Scale-space example

 176

This leads to the concrete idea of (continuous) scale-space: we can take the original image and apply
different Gaussian filters, in order to obtain all the scales we want.

A scale-space representation of the image is therefore a 3D space (x,y,s) of image gray values, where (x,y)
are pixel positions and s is the scale.

In this representation, we take a diagonal covariance matrix S = sI, with the only parameter s.

Usually, to build a discrete scale-space the scales are sampled in a logarithmic way: the next discrete scale is

si+1 = ksi

with 1<k<2 (typically k=1.4).

 177

The NLoG kernel and the scale-space theorem

Scale-space theory is useful in order to detect scale-invariant features.
In fact, a basic result from this theory is that we can select invariant features in scale-space by applying the
NLoG operator to each image.

NLoG is the Normalized Laplacian-of-Gaussian kernel function, which is well known in edge detection (for
a single image).
Normalization comes from the scale term s2, multiplying the LoG (scale-normalized LoG).

 178

This example shows a NLoG scale-space for the original image on the left.

The scale-space theorem basically says the following:

 179

If we search in NLoG scale-space for local maximal (in 3D) point, then we find feature points with given
location and scale (x,y,s) that are invariant to scale and rotation.
This means that, if we take a second image which has been re-scaled and we do the same detection, we will
detect more or less the same keypoints, but of course in different position and scale (and, eventually,
different orientation).

This is the principle used in SIFT:

SIFT = Scale Invariant Features Transform

meaning that we transform the images in a representation that can be used to select features which are
invariant to scale.

But also, once we find the keypoints, we need to represent them in a way that allows the correct matching at
different scales and orientation (the SIFT invariant descriptor) Therefore, the transformation involves also
building the descriptor itself, which cannot be just the grey-value pattern (like in KLT).

SIFT: Scale-Invariant Features Transform

Computing the DoG scale-space

The NLoG can be computed more efficiently by using an approximation: Difference of Gaussians (DoG).

The DoG is a good approximation if the difference in scale is small enough. Both kernels, being symmetric
in (x,y), detect features which are invariant to planar rotation as well as scale.

 180

In order to compute the DoG, we can first compute the scale-space F(x,y,s) representation of the image I, and
then simply taking the differences between adjacent images.

 181

Detecting invariant features

From the scale-space theorem, features detection in the DoG scale-space is performed by looking for local
maxima of the absolute value |DoG(x,y,s)| in 3 dimensions.

 182

This can be simply done by looking at a (3x3x3) cubic neighborhood of every point (x,y,s).

The problem is that a fixed size of the neighborhood is not good for all scales, since we expect to get larger
features at larger scales!

It would then be unpractical to increase the size of the neighborhood, since this would cost much more
computational time.

 183

Subsampling the Gaussian pyramid (Octaves)

Therefore, another solution is to subsample the higher scales: every double scale s 2s we reduce the size of
the image by a factor 2.

Of course, the intermediate scales between s and 2s will keep the same size, and we perform the subsampling
only at each octave = double scale, where we expect to get features of ~ double size.

 184

This gives the scale-space pyramid (both image and the DoG).

In order to compute the DoG correctly, we must consider the difference between image sizes, which happens
when changing octave.
For this case, SIFT uses a simple trick: before subsampling an image, we keep also the original version;
therefore, we can use the proper “version” of this image for the DoG difference (the larger with the previous
image, the smaller with the next).

 185

An interesting example of detected invariant features; on the right, we can see the maxima represented in 3D
scale-space.

 186

Refine features detection

The next step in SIFT is to remove less significant features (weak maxima of the DoG).
These points are local maxima (in their neighborhood), but the DoG function is very small; therefore, they
can be removed by putting a threshold on the DoG.

 187

Afterwards, the remaining points can be localized with better (sub-pixel and sub-scale) accuracy.
This can be done by fitting a 3D quadratic function in scale-space, that interpolates all the cubic
neighborhood of the point in DoG, and the local maximum can be better detected.

Building an invariant descriptor

 188

Once we have the SIFT features, we need a way to represent them (descriptor) in a way that they can be
matched between different images.

NOTE: remember that the gray-value pattern is not invariant!
Therefore, we also need an invariant descriptor.

In SIFT, instead of using the gray values, we can use the image gradients: this makes the description less
dependent on lighting, since for a change I aI+b the gradient vectors change magnitude but not
orientation.

The window used for a SIFT feature is about 16x16 pixels; since the images are also subsampled at double
scale (pyramid), actually the feature window will be doubled at each octave.

 189

From the pixel window at the detected scale, we can compute image gradient magnitudes and orientations.

Gradient orientations are then collected in an orientation histogram, where each bin represents an interval of
angles.

 190

Each gradient contributes in a weighted manner to the histogram: the weight of the contribution is
proportional to the magnitude; in this way, we consider large gradients more significant, because smaller
ones can be affected by image noise, and their orientation is less reliable.

Moreover, we also give a higher weight to the central pixels (as usually), with a Gaussian weight function of
covariance proportional to the image scale.

 191

The orientation histogram is used to compute the principal orientation of the feature, which is the highest
peak.

If there are other significant peaks (>80% of the main one), then the feature is duplicated, by assigning a
different principal orientation to each copy.

The main orientation θ is stored, and the feature gradients are rotated back, so to have orientation θ=0.
This step is important to provide rotation invariance of the descriptor.

 192

Finally, the main feature window is subdivided into smaller sub-windows (4x4) and for each one, a local
orientation histogram is computed (in the same way as the global one, but with less bins (8) because there are
less vectors).

The resulting array of 16 histograms with 8 bins is stored in the database, along with the position, scale and
main orientation of the feature.

 193

This is the SIFT invariant descriptor.

If the light changes I aI+b, then the magnitude of the gradients will be M aM, and the orientations are
the same.

Therefore, the weighted histograms will be just scaled by a, and we can obtain also light invariance, by
normalizing everything in the Euclidean norm (sum of squares).

 194

Examples

 195

 196

 197

Matching features

In order to perform features matching, the SIFT detection algorithm is applied to both images, and the two
databases are compared to find correspondent points.

If also the new image contains the reference object, we will hopefully detect most of its points, but of course
with different scales and orientations.

Since the SIFT descriptors are invariant to scale, rotations and lighting, we can directly compare two features
by computing the Euclidean distance (SSD) between the descriptor vectors.

Therefore, matching features will be selected by looking at the minimum Euclidean distance between all
possible pairs.

 198

A first idea to do the matching is: for every feature in the new image, look into the reference database for the
minimum distance one.

But this does not work good, because some keypoints in the new image are not existing in the reference
image, so they should not be matched with any reference feature!

 199

This could be done by putting a threshold on the minimum distance, and discard a new feature if the
minimum distance with the old database is still too high.

But still, there is no absolute threshold value for this problem, because when the scale, light, etc. is different,
the difference can be high also for the correct matching.

Instead, the method suggested in SIFT is to use the ratio between the best and the second best matching: if
this ratio is low, then the feature has only one strong matching in the database, and therefore this should be
very likely a correct matching.

Another problem concerns the possibility of multiple matchings: if we do a mono-lateral matching scheme
(from the new to the old database), it can happen that the same old feature is matched to more new features;
this is of course an impossible event.

 200

A better scheme is a bi-lateral matching: first, match features from the new to the old database, and then do
the same in the opposite direction.
Afterwards, we keep only the matchings that have been found in both directions.

NOTE: This does not ensure 100% that we do not still have multiple matchings, but at least most of them
will be removed. If we need to absolutely avoid multiple matching groups, then we need a further check to
remove them, for example by keeping only the strongest matching of the group.

For an image pair, we can have thousands of SIFT features on both sides, therefore testing every matching in
both directions can be a quite expensive process.

For this purpose, there are also faster methods based on binary search trees, which are a bit complex to
explain here, and can be found in the literature about the SIFT algorithm.

 201

SIFT - Resume

SIFT can be used also for multiple object recognition, without performing an explicit pose estimation.

 202

When SIFT features detection is used for an LSE pose estimation (see Lecture 3), we have a point-based
tracking method which is actually frame-by-frame performed (every image is processed without taking into
account the previous one).

This is in fact slow, if we use SIFT at every frame (about 2-3 fps) and not very accurate (jitter), as we have
anticipated before.

Therefore, the best strategy for point-based object tracking is to combine off-line (for example SIFT) and on-
line (for example KLT) feature point tracking.

An example in the literature of this combination can also be found in [Lepetit], which uses a different
approach for both modalities (off-line and on-line), but the idea is the same.

 203

SIFT has been used by the AIBO robot of Honda, which needs an object recognition system to recognize
visual cards to communicate with a human operator.

The inventor of the SIFT algorithm is David Lowe, who holds a patent for it.

 204

The basic theory of scale-space has been instead mostly developed by Tony Lindeberg 10 years before, and
described in a quite famous book published by Kluwer.

 205

Lecture 9 – Contour tracking using the image edge map

Definition and motivations

Contour-based tracking aims to estimating the 3D pose by using only the boundary (contour) visible lines of
the object.
For this task, we need a 3D contour model, which can be provided by a standard CAD application.
The contour lines separate either between the object and the background (external contours) or between
internal parts of the object itself (internal contours).

The latter usually correspond to weaker edges, since the object surface parts usually have the same color, or
reflectance properties; instead, the external lines usually have a strong separation in the image, if the
background is very different from the object, and they can be more reliable for tracking.

 206

Contour tracking has the advantage of using a simple and, at the same time, robust feature (edges): a long
edge line can be clearly identified in the picture also when the light and pose is changing, or when partial
occlusions are present.

Moreover, edges are simple to detect and to use for tracking, unlike local keypoints like SIFT, which require
a complex computation for detection and matching.
Therefore, we can obtain a higher frame-rate for tracking, which highly improves the quality of the result.

 207

Another advantage is that we can also track objects that have no textured surface or distinctive keypoints, but
a distinctive contour line.

 208

The requirement for contour-based 3D tracking is to have a non-ambiguous (possibly complex enough)
contour model, in order to be able to uniquely determine the object pose from the projected 2D image lines
only (silhouette).

This makes impossible, for example, to track fully a revolving surface (cylinders etc.); in this case, we can
still estimate part of the pose, and for the remaining degrees of freedom we need to integrate another visual
modality (e.g. point- or template-based).

A second disadvantage is the ambiguity of the edge features themselves: unlike distinctive keypoints, the
matching problem here is more difficult, because it is possibly to have very similar edged, near one another.

 209

Modeling the Object Contour

In order to model the object contour, we need a representation of lines.

For straight line segments, we can just store the two end-points (in 3D space).
For curved shapes, usually B-Splines are instead used.
A B-Spline representation of a curve line (see next Lecture) allows to model the contour using a finite set of
control points (again, in 3D space).

When we need to project the model contour from space to image, we can do every computation by projecting
only the 3D contour points, in the standard way.

 210

A very important issue in 3D tracking is the model visibility at a given pose hypothesis s.

In the case of contours, we need to determine which lines of the model are visible from the camera, and use
only these lines for computations (matching, measurements, etc.).

We can also distinguish between internal and external visible lines, which are different from pose to pose.

 211

For tracking, we always need to define our measurement variable z.

In contour-based tracking, z can again be distinguished among the three levels:

• Pixel-level (A,B): z is a map of pixel-wise values (for example, an edge map, or the gray-scale
image itself)
Example: the Condensation algorithm of (Isard and Blake)

• Feature-level (C): z is a set of detected lines (e.g. segments) from the edge map; in this case, z is a

set of geometric primitives, which we use for tracking, into our Likelihood model P(z|s)
Example: the Lowe’s algorithm for segment detection, followed by an EKF tracker (Koller et al.)

• Object-level: z is directly a state (pose) estimate z=p*, obtained after a cost function optimization

Example: the RAPiD algorithm and its variants, or the CCD algorithm (ML/MAP optimization)

Obtaining the image edge map for tracking

An edge map is a binary image (0/1 values) obtained from the original image, which contains 1 where a
possible edge has been detected.

It can be stored as a list of pixel sequences (more compact), or just as a whole binary image.

 212

A good way to obtain an edge map for tracking is the Canny algorithm, which finds connected sequences of
1-pixel wide edge lines, by following lines of (locally) maximum image gradient.

Using the edge map for 3D pose estimation

The edge map can be used for pose estimation, by defining a suitable Likelihood function.

 213

For this purpose, we need to project at pose s the visible object lines, which give us the expected edge map
(zexp). This corresponds to an ideal, noise-free measurement if the pose were the correct one.

In order to obtain the expected edge map at the given pose hypothesis, every visible model edge Ri is
projected onto the image.

From a practical point of view, instead of the full 3D edge model, only some points are selected and
projected onto the image; the normal direction ni to the edge line at point mi is also computed, an used for
computing the Likelihood of the observed edge map w.r.t. the ideal edge map at pose s: P(z|s).

This type of contour tracking methods then evaluates the error between zexp and z, by searching the nearest
edge point to each projected model point mi, along the normal direction ni.
The error is defined as a standard SSD measurement using the distances between expected and nearest edges
found on the map.

In the ideal case, of course, SSD should be 0: that is, every projected model point mi should be exactly onto
an image edge point. Due to errors, image noise, missing edge detections and false edges, this will never
happen, so we search again for the “best” pose, that minimizes SSD distance.

If we use standard SSD, minimizing the cost function is always equivalent to maximizing a Gaussian
Likelihood function: z = zexp+v, where v is Gaussian with 0 mean and given covariance matrix.

As we can see from the example picture, sometimes this is not the best choice: the nearest edge point can be
the wrong one!

A better approach (we will see it next time) considers instead all edge points found along the normal (up to a
maximal distance), that can be more than one: this is a multiple hypothesis measurement, and gives a multi-
modal Likelihood function, not Gaussian anymore but with several peaks (=modes), one for each edge point
found.

 214

Contour-based pose estimation in real-time: the RAPiD Algorithm

The RAPiD Algorithm has been developed by using the idea above described: minimize SSD between
expected and measured edge points along the normal (nearest neighbor only).

 215

The first step, as we have seen, amounts to project the model edge point and normal, and find the nearest
edge in the Canny map along the normal direction.

The projection from 3D model to screen is again the same used for points (see Lecture 3):

mi = f(ri,s)

The second step linearizes the model projection for small parameter changes Ds, by using the Jacobian
matrix at each projected point:
Ji = ∂mi/∂s = ∂f(ri,s)/ ∂s

Then, another approximation (for small displacement Δs) is made, by assuming that also the normal direction
ni does not change.
At this point, the new distance between q and mi(s+Δs) along the normal ni is

li’ = li - ni’ Ji Δs

 216

This gives a linearized new cost value C(s+Δs)

If we search for the increment Δs minimizing the linearized error C, we have Δs = A+b, and we can update
the parameter s.

Since we linearize C, this is only an approximation, and we need to repeat the procedure with the new point
mi, new normal ni, and new nearest edge point qi.

This is almost equivalent to the standard Gauss-Newton algorithm.

 217

Using explicit features extracted from the edge map

Problem formulation

When we define a feature-level measurement for contour-based tracking, we need a further processing step.

 218

In this case, the observed image features Z are a set of line segments, that we try directly to match to the
model contour of the object.

In particular, after computing the Canny edge map, we need a procedure that joins individual, consecutive
edge points into segments, and gives as output a list of geometric descriptors, for example Qi = (x,y,l,θ)i,
where x,y are the image coordinates of the center point, l is the length and θ the angle with respect to the x
axis.

NOTE: in this case, edge points are joined into geometric structures (segments), therefore we are working on
a different space, which we may call the segment space (x,y,l,θ).

Extract image segments

An algorithm for extracting line segments from an edge map has been done by David Lowe in 1987.

The procedure amounts to take a single, connected Canny edge line (a), connecting the extreme points and
split it by finding the maximum distance point (b), into sub-sections, whch are in turn split again; this
procedure (c) stops when all of the single segments are shorter than a threshold; then, the procedure merges
together short segments into longer ones (d), such that the SSD difference between constructed segments and
image edge points is minimized (e) (segments must fit the image points), and the result is a set of “optimal”
segments Q that fit the image edge points (f).

 219

Define the segment projection (Warp)

Now we have a set of features (segments) that we wish to match to the model contours.

For this purpose, we first need to project model segments from 3D space to the image, by using our
extrinsic+intrinsic projection function f(P,s), where P is a 3D body point and s is the roto-translation pose
vector.

A model segment R is given by the extreme points in 3D space, P1 and P2.

If we project the points f(P1,s) and f(P2,s), we obtain two image points (x1,y1) and (x2,y2), and we can
compute the middle point (xm,ym), the length l and the angle θ.

In this way, we have a mapping from the model segment R and the image segment Q, that we can globally
represent as a nonlinear function Q=f(R,s).

 220

The segment-based pose estimation procedure

In order match segments, we also need a distance measure, between an expected feature Qexp and the
observed one Q.

We will next define this distance measure, which is again a Mahalanobis distance.

The general procedure for estimating the object pose s is then:

1. Detect segments, to get the measurement z=Q1,...,QM (for example, using the Lowe’s algorithm)
2. For a pose hypothesis s, match visible model and image segments by looking for the minimum

distance (with the Mahalanobis distance for segments). Since usually the number of observed
segments M is much greater than the visible model segments N, we can have ambiguities in the
matching process (false matchings), that are solved during the pose optimization process

3. Estimate pose, by doing a Gauss-Newton optimization step

 221

Define the LSE error to be optimized: segment distances

The LSE error to be optimized is, in this case, a sum of squared Mahalanobis distances.
If we do a single-hypothesis measurement, that is, we select only the nearest segment to each model segment
for matching, then we have a nonlinear function+Gaussian noise model (zexp = h(s) + v), which can be
inserted later on into an Extended Kalman Filter for tracking.

Now we do an object-level measurement, since we optimize the LSE error, to get the Maximum-Likelihood
state estimate (maximum Likelihood for Gaussian noise = minimum SSD error).

 222

The Mahalanobis distance between segments takes into account a different importance (weight) for the 4
different components (x,y middle point, length and angle).
This is better than the standard Euclidean distance, where the weights are the same, since the reliability of
the middle point, for example, is more than the angle or the length, which instead are more uncertain because
of the noise.

 223

The covariance matrix of this distance, in turn, can be obtained as a sum of two matrices: the projected
model segment and the detected image segment covariance matrices.

These matrices reflect the uncertainty in the respective parameters, and they can be even different for
individual segments (for example, very short model segments have a higher uncertainty, therefore a higher
covariance).

As an example of this methodology, apart from the already mentioned work by D. Lowe (1987) we can
mention the paper by Koller et al. (1993), where a 3D car model is tracked using explicit edges.

The contour model consists only of segments, and at a given pose a visibility test based on standard
geometric rules (no self-occlusions) is performed in order to determine the ones used for pose estimation.

 224

From the image, we can build the edge map and detect segments; at pose s, we match projected model
segments f(R,s) with image segments Q, by searching for the nearest one (in the Mahalanobis metric).

 225

If the initial pose guess s is not correct, of course we will match some wrong edges; therefore, the matching
process must be repeated after each correction (Gauss-Newton optimization) step.

The Gauss-Newton step for LSE optimization

LSE minimization uses the same Mahalanobis distance, in order to compute the SSD error.

This can be re-written in a weighted, standard LSE form, if we build a weight matrix W that contains the
covariance matrix of the Mahalanobis distance between segments (Λi).

Therefore, we can do a weighted Levenberg-Marquardt step (=Gauss-Newton, plus the correction factor λI).

In order to perform LM, we need to calculate also the Jacobian of the mapping between 3D and 2D model
segments, that we defined earlier.

This is a (4x6) matrix for each of the K visible model segments, so that we have a (4Kx6) total Jacobian
matrix.

 226

After a single LM optimization step, we get a new pose hypothesis sk sk+1, which should be closer to the
correct value; then, we can refine also the matching between model and image segments, by searching again
the minimum distance segments with the Mahalanobis metric.

 227

The algorithm stops when the pose increment ||sk+1-sk|| is below a threshold, or when at the next step, the
correspondences between segments M Q do not change anymore.

Comparison between segment and edge map for tracking

A comparison between pixel-level and feature-level contour tracking (RAPiD vs. explicit edges).

RAPiD requires less image processing (only the edge map is needed) and uses many edge points from the
model. Therefore, it is more flexible and more robust with respect to noise: if a single model point from a
segment is mismatched, the contribution of this error is smaller, when compared to a mismatch between
entire segments (second method).

A disadvantage in terms of computational complexity is the use of a larger Jacobian matrix (many points).
Instead, explicit edges require more processing, to get the segments Q from the edge map (Lowe’s
algorithm), and give also a more compact information, that can be more sensitive to noise.

An advantage is of course the smaller dimension of J, which gives a faster optimization time.

 228

Bayesian estimation with dynamic models

In order to implement Bayesian tracking, both methods are suitable for KF or EKF implementations.

In particular, RAPiD can be used in an EKF context, if instead of the Gauss-Newton optimization we
directly use Z (the edge map) in order to compute the Likelihood P(z|s), by putting together all of the
projected model points mi into a big vector m (=expected measurement, zexp), the corresponding nearest
image edge points in another vector q(= observed z) and measure the Likelihood as a Gaussian (z-zexp(s))
with a given covariance matrix.

For an EKF implementation, of course we need also the Jacobian of zexp(s), which is the Jacobian of the
usual body-to-screen projection f(P,s).

In this case, we can say that we use again a feature-level measurement z, where the features are the nearest-
neighbor edge points to the model points, in the edge map.

The same can be done for explicit edges, in this case in segment space (features=segments), with the proper
Jacobian matrix.

Another choice for both algorithms is instead to perform the LSE optimization, and use the estimated pose
s*=z as an object-level measurement.

In this case, a standard Kalman Filter can be implemented.

NOTE: whatever filter we implement, we must be careful to put the “right” covariance matrix C of the
measurement noise!

 229

Lecture 10 – Contour tracking using Likelihood functions

Representation of curvilinear shapes with B-Splines

A parametric curve model can represent all points along a regular curve, in plane or 3D space, by a scalar
parameter l (curvilinear coordinate) that runs in a continuous way from 0 (start point) to L (end point) and
represents the intermediate curve length.

One of such representations is given by the uniform B-spline, which provide a smooth and differentiable
curve, in order to model different and eventually complex shapes with relatively low effort.

 230

A uniform B-spline is represented by a set of control points, in plane or space; the locations of these points
provide the shape of the curve, and every intermediate point c(l) is obtained through a linear combination of
the control points, through the B-splne basis function B(l).

If there are L control points, and we use them directly as basis coefficients (as in the formula above), then at
integer curvilinear coordinates l=0,1,...,L the curve approximates (but not exactly interpolates!) the control
points.
If we need an exact interpolation of the points, then the B-spline coefficients are a bit more complex to
compute, for which we need to solve a system of linear equations.

As we can see, in order to model the shape we need to specify both the Basis function (a piece-wise
polynomial function) and the control points.

 231

B-Spline basis functions

Basis functions are given by piece-wise polynomials of degree n, and they have a limited support of n+1.
For example, the linear function covers only two unit intervals for l, the second degree only three, and so on.
They also provide a n-1 differentiability: linear b-splines are continuous but not differentiable (0-order
differentiability), quadratic splines are 1-st order differentiable, and so on.

The first three basis functions are the most used.

 232

As the example shows, for the same set of control points we have an increasing quality of approximation for
increasing degree; but for a too high degree, we instead have a worse curve, with a “spiky” behaviour,
because of too many degrees of freedom of the curve (in the approximation theory this is a well-known fact).

Therefore, a quadratic or cubic spline is usually the best choice, which give a 1-st or 2-nd order
differentiability.

 233

Properties of B-Splines

A “broken point” is given by a discontinuity in the first derivative, in order to model a “corner” in the object
contour.

 234

For contour tracking we usually need also to compute the normal direction to the contour line, that in case of
B-splines can be obtained by using the derivative of the basis function, and the same coefficients used for the
curve points.

By using 3D control points in a reference frame (body frame) we can model the object contour, and project
directly the control points onto the image, with the projective camera transformation used so far.

At pose s, we obtain therefore any curve point, and its normal direction, both projected onto the image plane.

 235

Multi-modal contour Likelihood

Edge models often contain ambiguous information: in this example, it is very difficult from the edge map to
distinguish between real finger edges and shadows.

This happens because of the low distinctive properties of edges: a straight edge is just a line segment, with
the only information concerning length and orientation; therefore, parallel lines are almost impossible to
distinguish between one another. In contrast, local keypoints (e.g. SIFT) carry a very specific distinctive
property, given by their descriptor over a pixel window.

For edges, a multiple likelihood model is better suited: if we make a hypothesis on the state S (picture on the
right, we may have multiple hypotheses for the corresponding measurement (edge pixel) to each contour
point along the normal.

Only one can be the “true” edge, while the others are shadows, or different edges. In the tracking literature,
we talk about “target-generated” measurement, as opposed to “false alarms” or “clutter” measurements.

The problem of finding the correct measurement and associating it to the real state S is also called “data
association” problem: which edge points actually correspond to the object, and which are false alarms?

If we just take the nearest edge hypothesis, we may do the wrong association; a better idea is to keep all of
the measurements, and give them a weight (association probability) that tells the probability for each edge
point to have been generated from the real target or not.

This is a multiple hypothesis measurement, and in presence of clutter situations (many false alarms), it is
much more robust than the nearest-neighbor approach, where the nearest is associated with probability 1 to
the target, and the others with probability 0.

Of course, in this case we do not have a single Gaussian anymore for P(z|s), but rather a multi-modal
distribution (multiple peaks).
Therefore, we cannot use Kalman or EKF anymore, but we can instead use Particle Filters.

 236

A multi-modal likelihood can be modeled by a function h(s), which tells the expected measurement
(expected contour, or edge map) plus a noise vector which is not Gaussian but multi-modal, which models
the presence of multiple measurements in the vicinity of the projected curve.

As the example shows, there can be one, no one, or multiple associated measurements for each contour
position (expected measurement).

 237

Multiple-hypothesis edge measurement

In order to understand this likelihood model, we consider first a mono-dimensional case: the state hypothesis
(x) is also the expected measurement, while our “measurement instrument” gives several output hypotheses.

Only one can be target-generated, or eventually no one (missing detection), but no more than one; the
remaining ones must be false alarms (clutter).

If we have no clue a-priori, we must assume all zi to have the same probability φ of being the true one.
If all zi are false, then we have the missing detection case, with probability q.

 238

The true measurement is distributed as a Gaussian around the expected measurement = x (standard model),
while false alarms are instead uniformly generated in the visual field.

The result is a measurement model which is a sum of Gaussians around each zi, weighted by the probabilities
of zi being the true one, plus a constant (uniform) noise term for the false alarms. This is a multi-modal
distribution P(z|x).

 239

By going back to the 2D contour, we can use the formula before developed for each contour position, along
the respective normal. In this case, zi are observed edge points along the normal, in the vicinity of the
edgehypothesis.

For computational simplicity, only the points within a distance of 2-3σ are considered, since far points do not
contribute to the Likelihood (Gaussian is almost 0).

 240

The complete contour Likelihood

By considering the measurement process to be independent for different contour positions, we can multiply
individual contributions together, and obtain the overall Likelihood of the contour P(z|s).

This Likelihood in principle (if the number of sample position goes to infinity) should cover every edge
point, therefore being a complete P(E|s), where E=Z is our “pixel-level measurement”.

In practice, since we use a finite number of positions, it is an approximation, but sufficient for our tracking
purposes.

 241

If we would use, instead, the nearest-neighbor contour likelihood (the same used for RAPiD pose
optimization), we have a cheaper model (actually a Gaussian model), but much less robust to cluttered
background, noise, and other object edges.

In this case, we can use an Extended Kalman filter, since the model is z = h(s)+v, where h is nonlinear (3D to
2D projection of contour points).

 242

Particle Filters for contour tracking – the CONDENSATION approach

Particle Filters can be used with this Likelihood function, which is nonlinear and non-Gaussian.

 243

In this example, a set of particles is a set of contour hypotheses, and the weight is P(Z|S) which is
represented here with the contour thickness.
High Likelihood hypotheses are distributed around the correct one, where most edges are observed near to
the projected contour.

 244

With the particle representation, we can compute the average value of the output distribution, and the
covariance matrix as well, in order to monitor the tracking quality.

 245

This resumes the particle filtering scheme, applied to contour tracking (see Lecture 5).

 246

Particle Filters have the advantage of being flexible to nonlinear motion and/or measurement models, but
they suffer from computational complexity, because the required number of particles to represent the
posterior P(s|z) grows exponentially with the state dimension.

Therefore, for 3D tracking problems they offer still a challenging situation.

There are several ways to improve this approach: one is given by the Importance Sampling method
(ICondensation) which allows introducing a complimentary low-level visual modality (e.g. color blobs) that
helps to focus the sampling process, and allows to reduce the number of particles.
Another possibility is to distribute the computation between parallel processing units, since each particle can
be processed (Likelihood and Motion) independently from the others.

Contour tracking using color region statistics

Motivation of the main idea

In some situations, there are many false edges inside the object, that therefore is difficult to track using the
edge map.

Nevertheless, we still wish to use the contour model of the object (in this case a circle) for tracking, since it
is visually well-identified, and at the same time is very simple (no 3D information).

A human can well match by sight the position of the ball in the image, since as we can see the contrast
between color distributions inside vs. outside is very sharp.

Therefore, we can obtain another way of matching contours to images, based on color statistics separation
instead of matching intensity edges (like the edge map above).

 247

 248

This is again contour-based tracking, since we use the contour model of the object as the main visual feature
to match against an image; the difference with the edge-map approach is the matching criterion: we use
region color statistics instead of edges (intensity transitions) in the image.

Idea: If the contour position is well separating the two regions, we should see along the contour (on the
respective side) color pixels that are well coherent with therespective region statistics.

For example: by collecting pixels inside and outside, in the both cases we have inside an almost black+white
statistics, and outside almost green.
But in the second case, we observe along the contour on the inner side, green pixels, which are not in
accordance with the statistics.
Therefore, we can say that the first contour hypothesis better fits both color statistics than the second one.

 249

The color separation approach works well only if there is actually a real separation between inside and
outside.
In this case, since there are wide holes, inside we see also the background, and there is no real color
separation on the correct pose hypothesis. Therefore we need to use edge maps again.

 250

Color Likelihood definition and the CCD algorithm

In this approach we can see the measurement z as an object-level one: we try to minimize a complex SSD
cost function, which will be a color separation index, which is equivalent to maximizing a Likelihood
function.

(Remember: min SSD = max Likelihood, if the measurement uncertainty is Gaussian)

In what follows, we will define the color separation cost function, and how to optimize it. This is the CCD
algorithm.

 251

Modeling the two-sided color statistics

We start with the simplest case: a uniform color object against a uniform background.

In this case, we can look at the color histograms inside and outside, in order to model color statistics.

A color histogram is a histogram in color space (usually the HSV space = Hue-Saturation-Intensity), where
each bin corresponds to the probability of a given color (or a small range of colors).

In the example, inside the contour the bin corresponding to the red color as a high value, and the statistics are
modeled by a probability 1 for red and 0 for the other colors.

This is a discrete way of modeling the color distributions, and actually not well suited for our optimization
purposes, but meant only as a simple graphical representation.

 252

Usually we cannot say that we have uniform color distributions, but colors with different values distributed
around an average: inside the average is still red, but also near orange values are present, and the same
outside.

The histogram is not a very good representation in this case: then, we use Gaussians in color space.
A Gaussian in color space is a 3-variate Gaussian with a color mean and a (3x3) color covariance matrix.

This models the two color statistics with more accuracy.

 253

Color statistics can be multi-modal: a single, global Gaussian in color space is not sufficient to represent the
distribution.
We will consider this problem later on, when defining the so-called local color statistics.

Now we need to define the SSD cost function to minimize, that constitutes our color separation index.

 254

Color separation criterion

The first step in CCD consists in computing color statistics for the two regions.

We choose to work in the RGB color space, and we can compute the sample mean and covariance of the
color distributions: at a pose hypothesis s, we project the model contour onto the image, and collect all color
pixels from the respective region (inside A, and outside B).

The color mean and covariance matrices for region A are referred by mA and CA, and the same for B.

 255

Once we have the color statistics, approximated by two Gaussians, we can do a first definition of our
Likelihood function for the contour, P(Image | s), by considering a set of sample points cAi and cBi along the
contour line on the two sides, and see how well the observed colors are predicted from the respective
statistics: P(cAi) and P(cBi).

 256

If the separation is good, then all sample points have a high probability, that means, they “fit well” with the
respective statistics.

 257

Maximum Likelihood pose hypothesis

In mathematical terms, we compute all sample point probabilities, and multiply them together: this
corresponds to an independence assumption (every observed point color does not depend on the others).

The result for P(I|s) is a global Gaussian, where the exponent is the sum of Mahalanobis distances, between
expected and observed colors, at each contour point.

As we know, this is the standard case for Gaussians: maximizing a Gaussian probability is equivalent to
minimizing a Mahalanobis distance, which can always be written as a weighted SSD cost function.

So, it seems that we formulated the problem in a standard nonlinear LSE way. But there is still a problem.

 258

Although the cost function is a SSD (sum of squared Mahalanobis distances), this is not a standard LSE
problem, since everything inside E(s) depends on s: both the color statistics (m,C) and the color points cAi,
cBi.

If only the sample points cAi, cBi were dependent on s, then we would have a standard LSE, and we could use
Gauss-Newton for optimizing it.

By taking a simple example like the one above, we can see also another problem: the shape of this cost
function is very narrow, therefore in order to optimize it successfully, we would need to start from a very
near initial guess to the optimal pose.

 259

Refining the cost function

1 – Split the optimization in two steps

 260

A first approach to the second problem is to split the optimization in two subtasks: first compute color
statistics (m,C), then optimize the LSE function, by considering only cAi, cBi to be dependent on the pose s,
and keeping (m,C) fixed.

The statistics (m,C) will be then updated after each Gauss-Newton pose update s+Δs.

This is reasonable, since color statistics do not change very much from one pose to the next, therefore their
influence to the error is much less fast than the influence of observed color pixels cAi, cBi, which instead
change much faster with the pose parameters.

We can call the new cost function E2(s), which has the same value of E(s) for a given pose, but where the
color statistics (m,C) terms are considered not dependent on s, when computing the derivatives.

This solves only the second problem, but the first one (i.e. the fact that E(s) has a very narrow convergence
region) is even worse with E2(s)!

2 – Blurring the statistics

This phenomenon is due to the fact that in this example, there is a very sharp transition between color values.
Therefore, by taking sample points near the contour, their classification changes very quickly when we cross
the boundary between color regions.

 261

This problem is actually common to many different Computer Vision problems, where the cost function
becomes too sharp for a successful optimization, if the first pose guess s0 is far from the correct one.

 262

A common solution is given by a multi-resolution approach: by blurring the original image of an increasing
amount, we get images with less sharp transitions everywhere, but also less precise details.

The effect on the respective cost function is that they get smoother, with a larger convergence area, but less
precise optimal value.

Therefore, a multi-resolution approach consists in starting the optimization from s0, using the smoother
(more blurred) version of the image, performing a full Gauss-Newton (or L-M) loop, increasing the
resolution and repeating the optimization again, starting from the previous result s1.

In our case, a further benefit for the optimization is obtained keep the sample points more far to the contour
line for the first loop, and shrink their distance for the next loops. This widens even more the low resolution
versions.

3 – Using local statistics for multi-modal distributions

Now we have to consider the problem mentioned in the beginning: multi-modality of color distributions.
In fact, in a situation like the one above (which happens quite often) we cannot model color statistics with
single Gaussians.

In real scenes, this is true at least for the background, which is unpredictable and can have multi-modal color
statistics.

 263

We could think about using mixtures of Gaussians, but this gives a too complex approach for a real-time
tracking algorithm: the number of Gaussians is unknown, and should be estimated at each optimization step.

A better idea, used in CCD, is to use local color statistics: in fact, although the full region had a multi-modal
color distribution, in a neighborhood of a contour position we can say that the statistics are mono-modal, and
can be still approximated by Gaussians.

Therefore, for every contour position i we take a local (small) area around, and compute the respective
statistics (mi,Ci).

 264

In this way, we can re-formulate the Likelihood (and SSD) function, and use the same Gauss-Newton
approach developed before: here, the only difference is that now (m,C) are dependent on i (contour position)
but not on s, of course.

After each GN step, we will re-compute local statistics as well.

Optimizing the Likelihood with Gauss-Newton

 265

Local areas must be not too small, since otherwise the assumption of independence of (m,C) on s is violated:
they will change too fast with s, and this dependence could not be anymore neglected!

But they must also be not too large, otherwise the assumption of mono-modality (single color distribution
~Gaussian) would instead be violated.

Finally, for good convergence properties, local areas for collecting statistics are kept wider for low-
resolution images, and decreasing for higher resolutions.

 266

At each step, after that local statistics are computed, optimizing E2(s) is a standard, weighted nonlinear LSE
problem, for which a Gauss-Newton (or Levenberg-Marquardt) step can be performed.

 267

In this formulation, at each position i the observed color values cAi(s) and cBi(s) have to be matched against
the predicted (mean) colors mAi, mBi, in the Mahalanobis distance sense, and the weight matrix W contains
all of the color covariance matrices.

The Jacobian matrix for this problem contains the image color gradients (3x2) and the usual Jacobian (2x6)
of the nonlinear projections fi(s) (from body to screen contour points).

 268

Adding prior knowledge for MAP estimation

CCD is therefore a Maximum-Likelihood pose estimation algorithm, where the Likelihood maximized color
separation between the two regions.

A final improvement of CCD can be obtained if we have also a prior information P(s) about the pose (for
example, from the previous frame estimation).

In fact, in this case we can use Bayes’ rule, and multiply it with the Likelihood, to obtain a MAP (maximum-
a-posteriori) pose estimation s*.

In this case, we do not estimate a full state posterior (Bayesian tracking), but we just maximize P(s|z),
because the Likelihood P(z|s) is far too complex to be represented.

 269

If the prior P(s) is modeled with another Gaussian, with mean s0 and (6x6) covariance C0 (in pose space), we
can add this term to the overall Mahalanobis distance, when performing a Levenberg-Marquardt
optimization step.

The overall CCD pose estimation algorithm

 270

 271

In this picture, the prior information about the position of the cup is represented by a Gaussian (s0,C0) in
pose space.
By starting the optimization from s0, and performing a full MAP estimation, we obtain the result shown
above.

 272

Here we can see how local color statistics are more blurred in the first optimization steps, while increasing
precision (and decreasing convergence area as well) for the subsequent steps, where the certainty about the
pose estimation increases.

This is an example where a common edge-based contour tracker would fail, due to too many edges, both
inside and outside the object.

 273

Lecture 11 – Active Appearance Models

Template modeling and tracking

 274

Here the model consists of the full 3D shape, together with the surface appearance.
This approach exploits the full information for tracking, and therefore it is also called a global-feature
approach.

 275

By using a global template, we have not anymore the problem of solving false correspondences, as we did
for local features.
In other words, all of the visible template points on the surface, at a given pose hypothesis, will be all
together directly mapped onto the current image for comparison.

Another advantage concerns surfaces which have not many distinctive local features, but an overall
distinctive appearance.
For example, a face has few distinctive keypoints (eye corners, mouth, nose, etc.). Usually these points are
not sufficient for a reliable tracking.
Instead, the full 3D face template (shape and appearance) can be visually well-matched to the image, because
it exploits all of the available information about.

In some cases, however, local features are already enough for tracking (see the example above), and a
template-based approach does not improve very much the quality of the result.

 276

A disadvantage for template tracking is the fact that the light is distributed along the surface in a complex
and nonlinear way.
Instead, for a local feature, a light variation usually can be modeled as a simple, overall brightness/contrast
change (linear model).

This problem can be solved in two main ways: one is to use different appearance models onto the same 3D
shape, in order to model unpredicted light variations and estimate them as well as the pose (appearance
parameters).
The other consists in substituting the cost function (better called in this case “similarity function”), with a
more robust one, which works correctly also when the light appearance is different from the original
template.
If this function is robust enough, just one appearance template is again sufficient for tracking.

 277

Another disadvantage of template tracking is the computational requirements: we basically need to solve a
very large LSE problem for pose estimation (and evtl. also appearance estimation, if multiple models are
used). This is because we use many points, distributed along the 3D surface.
Therefore, we also need a fast and efficient optimization method.

Finally, we have to consider (as for all estimation problems) the outliers: in this case, outliers are unexpected
pixel colors due to partial occlusions or light effects (spots, shadows). We call these intensity outliers, as
opposed to the position outliers that we have seen for local features matching.

 278

Active Appearance Models

An active appearance model is a model that contains both pose and appearance parameters: in particular,
appearance parameters are used to model variations due to different light exposures, different viewpoints and
shadows.

 279

The shape model of a face template usually contains parameters which can model both the overall pose (roto-
translation) and individual deformations (stretch, local deformations etc.).

This corresponds to a non-rigid (deformable) model.
In the most general case, if we have a triangular mesh like the one above, we can model the shape as a
collection of vertices position; for sake of simplicity, a planar deformation model is used, where vertices are
defined on the (x,y) plane only, without depth information.

In such a model, 3D parameters are not directly estimated, but they can be subsequently obtained from the
2D deformation parameters, at a price of some complex computations more.

An alternative is to use a rigid but 3D model, which cannot accommodate expression variations (particularly
the eyes and the mouth), and therefore can be a bit weaker.

 280

If we just define as “shape” the set of all vertices of the mesh, as if they were independent one another, we
would end up with a too large pose space, which makes no sense: the vertices can move only in “realistic”
ways, and they are dependent one another.

Therefore, a first step is to identify and to model the allowed deformations for our object to be tracked. The
result is a lower dimension “shape-space”, where deformations can be expressed as a linear combination of a
base shape + base deformation vectors, in a limited number.

The pose (or better, shape) parameter is then given by a vector p in Np dimensions.

As already mentioned, this vector represents only a planar deformation, not 3D, so that the actual 3D pose in
space (roto-translation) has to be subsequently estimated through geometric reasonings, or better through a
Kalman-filter approach (see the end of Lecture ...).

 281

The Warp function

Once we define the shape-space, we can introduce the Warp function, that maps every point x on the
template to a point y on the current image, at pose hypothesis p.

Since we defined only the vertices transformation, in this case we also need to map the internal points for
each triangle, which can be obtained through linear interpolation.

 282

The next step for defining the model is to set up the variable appearance model.

As for the shape-space, we can define an appearance-space, which consists of the base appearance of the
object, modified through a linear combination of appearance variations.

The base appearance variations should be enough to accommodate all possible (or at least, expected)
variations for the specific tracking problem; but at the same time, not too many coefficients should be
present, in order to avoid increasing too much the dimensionality for the estimation problem.

For both shape and appearance models, we need off-line a training phase: this is necessary for learning the
base and the variation vectors, from a sequence of training images, taken in a variety of conditions.

 283

As a result, we can model any new pose, expression and light shading of the face, by combining all of the
shape and appearance base vectors, and describe the new instance just through the parameters S = [P,A].

By using graphics hardware (OpenGL) we can render the new instance very quickly, by mapping the
appearance A onto the triangular mesh, and attaching the texture to every triangular vertex.

This is therefore our template state-vector S, which has a much higher dimensionality than the usual 6-pose
vector for 3D tracking.

Training the AAM

 284

Principal Component Analysis

The next question concerns how can we obtain the base shape and appearance vectors.

A standard procedure is depicted above.
First, we have a large set of training images of the subject we want to track. On every picture, we can
annotate by hand (or with the help of semi-automatic contour matching tools) the observed shape, by
matching salient features (eyes, mouth, nose, cheek contours).

This provides for each training picture the 2M-vector Pk.

If we represent the set of training shapes in this multi-dimensional space, usually we observe a dense
clustering around some volume.

This means that not all shape configurations are actually possible, but only a compact set which lies in a
lower-dimensional subspace.

In the picture above, in order to give the idea, we see an example in 3D space.

In particular, the situation is such that there is a principal direction (red line) along which we observe the
maximal variation inside the training set, and other directions (green) where the sample variation is very
small.

 285

In such a situation, it is possible to reduce the dimensionality of the 2M space, by finding the so-called
principal directions of the training set.

For this purpose, the mathematical tool is called PCA: Principal Component Analysis.

The idea behind PCA is simple: to search for the the orthogonal directions (axes) in space where the sample
set has maximal variation (principal components), and discard the remaining axes.

This will give an approximate description of the training set in terms of a smaller number of dimensions, that
will be our linear, orthogonal basis for shape modeling.

 286

PCA usually is performed in a sequential way:

- First, the mean point of the sample set is computed (average) v0. This will be the origin of the new
coordinate system

- Afterwards, the principal axis w1, going through v0, is found: this is the direction where, when every point
is projected along the line, maximal data variance is observed

- Then, the main component w1 is subtracted from all data points, that will be therefore projected in a
subspace, orthogonal to w1 (here, it is a plane)

- The same procedure is repeated in this subspace, and the main direction w2 is found.

- At the end, we are left with a 1-dimensional subspace, which is the last axis of the PCA basis (w3)

The result of this procedure is a new orthogonal coordinate frame, with origin in v0 and axes (w1,w2,w3),
which are the principal components of our data set.

As we can see from the picture, only the first two axes (w1,w2) are sufficient to approximately describe our
data set, since the third component (along w3) is much smaller.

Therefore, any point can be approximated as v ~= v0+a1w1+a2w2, with two coefficients (a1,a2) instead of
three.

In high-dimensional spaces (like the shape and appearance spaces) this procedure is extremely useful, and
leads to a very high reduction of dimensionality.

 287

In mathematical form, PCA is very simple to obtain, by using the covariance matrix of the sample data, W.

In fact, it can be demonstrated that the principal components (w1,w2,...) are simply the orthogonal
eigenvectors of this matrix (which is symmetric and positive definite), and the principal variances of the set
V around the wi axes are the respective eigenvalues λi.

 288

Therefore, we can do a PCA of our training set, by discarding the directions w with lowest eigenvalues, in
such a way to have an approximation error less than 1% (for example) over the whole set.

The result is a set of Np vectors (w1,..,wNp) plus the average vector v0.

 289

Shape model training with PCA

For the shape case, the PCA procedure gives a base shape P0 and the principal deformation vectors Pi, and
any new shape (vertices configuration) P will be expressed as a linear combination of Np vectors in the
N=2M space, where Np<<N.

 290

Appearance model training

A very similar procedure can be done for training the appearance space.

In particular, for this task we first need to align all the appearances to the same shape; this can be done by
warping back all the training image, from the respective annotated shapes to the average shape P0.

After all images are aligned, we can store each observed appearance in a very long vector of color pixels,
which is the appearance vector A.

Here the use of PCA is even more important, since the A space has a very high dimension N (around 10,000
color pixels), but the observed appearances actually are distributed only along the first, very few principal
directions in this space (Na), as we expect.

 291

At the end of both PCA procedures, we finally have the two linear bases, which can be used for tracking the
same face in new images.

Tracking an AAM

 292

State definition

In Active Appearance Models, the state variable is a joint vector s=[a,p] which contains both appearance and
shape parameters.

For a hypothesis s, we have an expected measurement zexp, which is the template image that we expect to
observe if the hypothesis is the true one.
This is defined here as a pixel-level measurement.

This image can be compared with the real (observed) image z, in order to assess the Likelihood P(z|s) of the
hypothesis.

 293

In AAM, the real pose s is estimated through a single large, nonlinear LSE optimization, as we will see in the
following Lecture.

For this purpose, the cost function is first defined, as the sum of squared differences (SSD) between expected
and observed colors at corresponding pixel locations y.

NOTE: This is different to the SSD between expected and observed positions, that we used for point-based
tracking, where the errors were defined in pixel coordinates (re-projection errors). Here, instead the error is
defined in color (or intensity) space. But otherwise, the general formulation of the problem is of course the
same.

Since the cost function here defines “how similar” the expected and observed images are, the SSD function
is actually called “similarity” function.

 294

Optimization of similarity measures

For template matching we have more options to define the similarity function.
One is, as we said, classical SSD in color space.

A more robust solution for outliers uses also M-estimators.

But since here the color correspondence problem is much more critical (observed colors can be very different
from the template), better and more general similarity functions have been defined.

We will see in the last Lecture a very powerful one, called Mutual Information, that is used for multi-modal
medical images registration (CT vs. MRI, PET etc.) where the similarity problem is much more difficult to
solve than optical images.

 295

Lecture 12 – The Lucas-Kanade Algorithm for template tracking

Piece-wise affine Warp for deformable templates

The base shape deformation model is linear with respect to the vertices (P), but in order to map also interior
points for each triangle, we need to use some kind of interpolation.

In this case, a very simple interpolation scheme uses so-called “triangular coordinates”: every internal point
(x,y) can be expressed with two positive coordinates (α,β) such that (α+β) is between 0 and 1.

In particular, the 3 vertices are given by (0,0), (0,1) and (1,0).

 296

For every point (x,y) the two coordinates (α,β) can be obtained with the formula above.

In this way, every internal point can be warped into the new triangle, by keeping the same coordinates (α,β),
of course now referred to the new vertices.

The overall function W(x,p) therefore maps every point of the surface mesh to a new position, in 2D space:

- First the vertices Pi are linearly modified through the shape coefficients p
- Then every internal point (α,β) of each triangle is warped to the corresponding triangle point.

 297

Such a warp function is called piece-wise affine, because for a given point (x,y) the mapping is affine
(linear+constant) with respect to the shape coefficients p, but the affine relationship (coefficients) are
different for different points (α,β) or a different triangle (i,j,k).

 298

As already stated in the previous Lecture, AAM tracking consists in estimating both shape and appearance
parameters [a,p] in a new image, by using the piece-wise affine warp with coefficients a and p for every
visible point (x,y) of the base mesh (template).

Two steps: estimating pose and appearance parameters

The AAM estimation is a large, nonlinear LSE problem, that in principle could be solved by using the
Gauss-Newton algorithm, starting from an initial estimate [a0,p0] for shape and appearance parameters (for
example, obtained from the previous frame estimation).

But here we have an additional problem: shape and appearance parameters are on two different parts of the
cost function, therefore this is not a standard form for optimization.

A first idea would be, intuitively, to split the problem in two parts, by solving first for the shape parameters p
(for example) with fixed appearance a0, and afterwards fixing the shape on the estimated value p* and
optimizing over a.

The first problem would be a standard LSE, that can be solved with Gauss-Newton: this is also known, in the
template matching literature, as Lucas-Kanade algorithm.

The second problem would be even simpler (linear LSE) since the dependence of the template on the
appearance parameters a is linear (see the previous picture).

 299

Unfortunately, we cannot operate in this way, because this is not the minimum in the joint [a,p] space. This
would correspond to minimize the function on two orthogonal subspaces, that is the pure appearance (a) and
pure shape (p) spaces, respectively.

But still, the idea of splitting the AAM problem into two steps can be applied, if we do the “correct”
subdivision, that means, by operating on the correct orthogonal subspaces (appearance subspace projection).

We will see this strategy later on.
Now we talk about the first idea, of optimizing the shape parameters p only.

 300

The Lucas-Kanade algorithm for pose estimation

The LSE problem is solved, as usually, by linearizing the cost function around the current pose estimation,
for a small increment Δp, and iterating again the procedure until convergence.

This is very similar to the KLT optimization method (which actually bears the same author names); the main
difference is that now we have a more general Warp function, instead of the simple translation (2dof) or
affine (6dof) models; and, of course, the size of the template is much larger than the small features (25x25)
used for point-based tracking.

 301

By writing the linearized cost function E(Δp), we can see how the general computation of the Jacobian at
pose p0 is obtained by multiplying, for every point x of the template, the projected image gradient (1x2) in y
= W(x,p0) with the (2xNp) Jacobian matrix of the Warp.

 302

The result of this product can be graphically represented as a set of images, which are also called steepest-
descent images.

Finally, we can put everything in a more compact matrix form, and compute the Gauss-Newton step as above
indicated.

 303

 304

As we can see, this algorithm has a high computational complexity, because every quantity (Warp Jacobians,
image gradients, and the Gauss-Newton matrix) has to be computed for each template point x, and again for
each pose pi during the optimization.

In particular, the most expensive step is the Gauss-Newton matrix computation (Step 6), that requires for
each template point x to add an (NpxNp) contribution.

The problem comes from the fact that every quantity inside Lucas-Kanade depends on the shape p.
Therefore, the general algorithm is very slow, and can be applied only to smaller and simpler problems like
the KLT tracker (a few Warp parameters Np, and a small number of template points N).

 305

First speed improvement: the forwards-compositional approach

We can improve Lucas-Kanade, if we try to modify the update rule (Step 9 of the algorithm).

In fact, in Gauss-Newton we solve the problem by updating p in an additive way: we compute a shape
increment Δp, and add it to the previous estimate p0.

This approach can also be called forwards-additive.

 306

There is another way to do the optimization, which can be proven to work equivalently (convergence
properties), if we restrict a little bit the set of allowed Warp functions.

This approach is called compositional: instead of adding the incremental parameter Δp, we compose the
Warp with itself.

In this case, of course the meaning of the update Δp is not anymore of an “increment”, but for sake of
simplicity we can still call it in this way.

In order to apply this approach, we require for the Warp an additional property: for a null shape vector Δp=0,
we should obtain the identity function W(x,0) = x.

In other words, the null Warp should give the base template T unmodified, which is a property satisfied by
several common Warps (like the piece-wise affine function up to now considered).

In this way, we can write the cost function in terms of this composition, instead of the additive increment,
and try to minimize it with respect to Δp, as always, by linearization around Δp=0.

 307

We call this approach forwards-compositional, since we warp the points x forwards (from the template T to
the image I) but using a compositional update rule.

 308

After an optimization step, this time we cannot use the result Δp as an additive value p1=p0+Δp, because it
does not represent an increment.

Instead, we need to compose the Warp to find the new parameter p1: that is, to find p1 such that the new
function W(x,p1) is equal to W(W(x,Δp),p0) for every point x of the template.

This looks rather complex to compute, but for a large class of Warps is actually simple, and always possible.
In particular, it can be shown that for the piece-wise affine Warp this can be done.

The advantage of the compositional approach lies in a simpler optimization step: in fact, by linearizing the
cost function E w.r.t. Dp, we see that the Warp Jacobians are evaluated always at pose p=0.

This is a big advantage, since all of these N matrices, with size (2xNp), can now be pre-computed (off-line)
and stored for each point x of the base template.

Instead, the image gradients must be still evaluated for every new pose p, since they are computed at the
warped image locations y = W(x,p).

 309

The advantage of having an off-line evaluation of Warp Jacobians is by far bigger than the disadvantage of a
more complex update rule (compositional) for the new parameters p0 p1.

Therefore, whenever applicable, the forwards-compositional approach is much faster.

 310

Second improvement: the inverse-compositional approach

A step further, in the direction of a faster Lucas-Kanade optimization, consists now in considering an
inverse-compositional approach.

If we do some further assumptions about the Warp, we can in fact invert it w.r.t. p, and therefore compose
the inverse Warp in Δp with the base one.

This is possible for a more restricted set of warps, and it gives a more complex update rule for obtaining p1
from p0 and Δp.

In this way, we can move the “incremental warp” W(x,Δp) from the image I to the template T.

 311

The advantage for optimization is here even bigger, since now the linearized cost function contains most
terms that depend only on the template points T(x), and not on the pose p.

Therefore, all of the Gauss-Newton matrix now can be computed off-line, and only few terms remain in the
on-line optimization step.

 312

In order to optimize over the full pose+appearance space, now we need to consider the dependence of the
template T on the appearance parameters, ai, which we kept fixed in the Lucas-Kanade approach.

 313

The complete cost function is more complex, and not in standard LSE form anymore.

In the compact notation, we can see how the parameters are “distributed” between the two terms (shape and
appearance).

 314

Appearance estimation: the appearance subspace decomposition

In order to solve the problem, we need first to introduce a more general concept: the orthogonal
decomposition of a linear space.

In fact, for a given vector space E, and a given subspace V, there always exist a unique orthogonal space V┴,
which has the property E = V+ V┴.

In other words, every vector e of E can be expressed as a unique sum of two orthogonal components, one in
V and the other in V┴, which are the two projections of e onto the two subspaces.

In our case, the appearance base vectors (excluding A0), generate a linear subspace of RM, the space of all
possible appearances span(Ai).
Therefore, there exists a unique orthogonal complement to the appearance subspace (the “impossible”
appearances), so that an arbitrary pixel pattern can be expressed as the sum of a possible appearance
(combination of Ai) plus an orthogonal term.

 315

By doing this decomposition, we can therefore decompose the error vector, E(a,p) as the sum of two terms,
obtained by projecting E onto span(Ai) and the orthogonal space, respectively.

Since the two components are orthogonal, we can also say that the overall error norm (=SSD) is the sum of
the two separate norms.

 316

If we consider the second projection (orthogonal to the Ai), the middle term inside just disappears, and
therefore it depends only on p, and not on a.

Instead, the other projection still contains both (a,p) parameters; but, for any fixed value of p*, we can see
that its minimum value is always zero, that is, it has always an exact solution in a*.
In particular, since this is a linear function of a, the solution to the appearance problem is obtained
immediately, in one step.

 317

This decomposition, as we can see, allows to split the joint (shape+appearance) estimation problem in the
correct way.

1 - In the first problem, we solve for p*, by using Lucas-Kanade onto the subspace span(Ai)┴

2 - Afterwards, we solve for a* in one step, with shape fixed to p*.

And (a*,p*) is the true optimizer of the joint SSD error function E(a,p).

 318

Modified Lucas-Kanade for pose+appearance estimation

The Lucas-Kanade algorithm has to minimize the projection of the error vector E onto a subspace, instead of
the full vector E.

This implies only two modifications to the algorithm:

- Step 2b (error image + projection onto the subspace)

- Step 5b (steepest-descent images + projection of each image onto the subspace)

 319

At the end, we also have the appearance parameters computation, that is solved in one step (in vector form).
This is the complete AAM optimization algorithm.

 320

In this example, we can see how the joint shape+appearance computation can give very good and realistic
results, where the estimated template perfectly matches the underlying image with almost no error (bottom-
rigth image).

Improving convergence with multi-resolution

The Lucas-Kanade algorithm can also be improved by using multiple resolutions: the optimization can start
from a coarse, blurred image and template, with a larger convergence region, and be repeated afterwards
with increasing resolution, up to the original image and template.

Both image and appearance template, in this case, will be filtered with the same set of Gaussian filters
(pyramid).

 321

Estimating 3D pose parameters with a combined (2D+3D) approach

Finally, we mention here the 3D pose estimation problem.
In fact, as we have seen, with AAM we can only estimate a piece-wise affine Warp, which is a complex
Warp working only in 2D. 3D estimation requires a projective model, as we know, from body space to
camera image, which is non-linear and much more difficult for the optimization.

For this purpose, another idea is to use the piece-wise model up to now developed, and then extract a more
compact 3D information (6 dof, global head roto-translation) out of the complex 2D deformation parameters
Np.

This can be done by using an Extended Kalman Filtering approach, where the 2D parameters constitute the
observation vector (Z) and the 3D pose is the state (S), eventually with or without velocity component.

The proper, nonlinear measurement model, together with the 3d motion model, can be specified for this
filter, by using the nonlinear 3D/2D camera projection function, and Jacobian, so that the pose S is estimated
in a Bayesian tracking way.

 322

This tracking method is called Combined 2D+3D AAM, where the 3D pose information is a by-product of
the complete 2D affine shape parameters.

Lecture 13 – Robust template similarity functions

 323

Robustness issues in template tracking

The problem of outliers, in template matching, can be particularly critical, since and lighting or viewpoint
change of the object usually reflects in a nonlinear shading effect (dark-bright pattern).

Therefore, as we have seen, the observed appearance of the object can be very different from the original
template, and this is the reason to need a multiple appearance template (AAM), in order to carry out a
successful LSE pose estimation.

Partial occlusions can be as well a big source of outliers, and in any case pose difficult problems, since they
of course cannot be modeled by the AAM.

Moreover, using an active appearance models requires in any case a training phase (PCA etc.), which can be
more or less long and more or less successful.

 324

We can consider such outliers intensity-outliers, since they give big errors in color (or intensity) space, rather
that re-projection errors (in 2D space), as we instead have for keypoints tracking.
And, as we can see, their percentage now can be critically high, with respect to the sample set.

 325

Improving robustness of the similarity function

The question we consider now, instead, is the following one: can we use a different template matching
strategy, where a simpler (possibly unique) appearance model is needed?
The answer is yes, if we substitute the cost function (traditional SSD) with something more general and more
robust to this kind of outliers.

 326

The first idea is to use the M-estimators that we used for keypoints matching.

This has been done in several works, and improves the result very much over standard LSE. Nevertheless,
the need for multiple appearance models is still critical, since a different lighting (shading) produces a very
different, and nonlinear, transformation of the original template gray-pattern.

 327

NCC is instead a more general measure of matching between templates, and it is widely used also for local
keypoints.

The idea behind NCC is the following one: we search for the pose of the template where corresponding
intensity pixels show the “most linear” intensity relationship with the image pixels.

This is more general than SSD: in fact, the latter tries to find the template pose that maximizes “similarity”
(that is, equality) between pixel intensities.
If we look at the picture above, we see how the three images are related by a linear transformation
(brightness+contrast change) of the kind I=aT-c. This fact maximizes NCC, but it is not good for SSD, which
only searches for the “best equality” I=T.

The index is of course more complex to compute and optimize, but it is very good for local features, which
are small and therefore transform approximately only with linear relationships when light changes.

But unfortunately, this is not enough for a global template matching: as we can see, a global, nonplanar
surface exhibits a complex transformation of intensity pattern, which is generally much nonlinear.

 328

We consider here a better function, which is the most general similarity index, working also with multi-
modal medical images.

This is the Mutual Information similarity index.

Mutual Information allows also nonlinear relationships between template and image, because it looks for the
pose where the two images show a relationship at all (linear or not).

For example, if we look at the example above, we have two images of the same physical thing (a given
brain’s slice) taken with two different procedures (CT and MRI, for example).

Since the two represent the same object, the corresponding patterns are expected to have a kind of
relationship: for example, grey pixels on the left are white on the right, etc.

If they would not be correctly aligned, instead, the superimposed pixels would show less, or no relationship
(=correspondence) at all.

But we do not know the relationship, and it can be nonlinear. Therefore, we need an index that is maximized
when there is any kind of relationship, or dependence, between the patterns. This is Mutual Information.

Mutual Information for template tracking

Introduction: information theory

In order to introduce it, we need to talk a bit about Information Theory.

 329

Information Theory is concerned with analysis and quantification of the amount of information “contained”
in a random variable.

This quantity is identified by the minimum (on the average) number of bits needed to represent a message,
generated from that variable, in the most compact way as possible (compression).

This quantity is actually an average one, since we are not sure how many bits we will really need to
compress this message, because it comes from a random event. But the average becomes most exact, when
the length of the generated message is high (law of large numbers).

 330

In order to arrive to the MI index, we need to start from the concept of Entropy.

Entropy is the amount of uncertainty carried by a random event x, with a given probability distribution P(x).

Before we know an outcome of x (for example, before tossing the coin), our degree of uncertainty about x is
given by H(x).

After we know a particular event x, our uncertainty is reduced to 0: therefore, we also can say that this event
gives us an amount H(x) of information about x.

NOTE: H(x) is a single number, that characterizes the whole distribution P(x). We can also say that is a
functional quantity (function of a whole function P(x)).

Mutual Information, instead, concerns the information in common between two variables, that is, the amount
of information that an output of one variable gives about the other: MI(x,y). This of course must be
symmetric between x and y: MI(x,y)=MI(y,x).

 331

Entropy and coding

As a simple example of Entropy, we can consider a binary variable X={0,1}. If one of the two outcomes of
X has probability 1 and the other 0, we have no uncertainty about X, and entropy is H(x)=0.
In this case, an observed value on X gives also no information, since we were already sure about it from the
beginning.

If, on the opposite extreme, the two values have the same probability 0.5, then we have the maximum degree
of uncertainty H(x): any of the two can happen, and we have no clue in advance (we cannot “bet” in any
way).
In this case, observing an output of X gives the maximum information about it.

 332

After Shannon’ definition and axioms, we get this function as the only possible entropy computation H(x) for
a N-ary variable.
The binary (N=2) case is depicted above, where we can see the maximum value in the equi-probable case.

 333

We can use this definition of uncertainty, when coding a sequence originated from X, for communication
over an ideal channel.

In fact, the most important thing here is to choose the right compression (=coding) scheme: that is, choose an
alphabet, and the coding rules, in order to compress in the most efficient way the sequence S.

It is intuitively clear that, if we choose the codeword lengths in relationship of the behavior of S (i.e. the
expected sequences have short codewords, and the unexpected ones have longer words), then we obtain the
best compression efficiency, in a probabilistic sense.

This simple example shows the idea: the subsequence (0,0) is observed much more often (on the average)
than others, since 0 has a higher probability than 1. Therefore, by assigning a short word to this subsequence,
we get better compression.

In this case, we obtain a compression ratio of 16/20.

NOTE: The code should also be good for decoding: no codeword should be prefix of another one, in order to
avoid ambiguity at destination! This restricts the set of possible codewords, and they will have different
lengths.

 334

The role of Entropy here is given by the Source Coding Theorem: even the “best” coding scheme cannot
obtain an average compression ratio better than H(x).

That means, H(x) gives also the minimum possible encoding length of a (long) sequence generated from X.

 335

Image entropy computation with histograms

Going back to images, we can compute the entropy measure of intensity (gray values) for a template T.

The procedure is the following: first, we need to estimate the distribution (statistics) of grey values P(i),
where i are integer values between 0 and 255.

This statistics usually is computed by using histograms, with a given number of C bins.

Since the sample size is high (the number of pixels), this is a good statistical description of the image, and
we can use it for computing H(T).

 336

We can see the image as a random sequence generated from the statistics P(T). But this, of course, is a very
abstract description, since in reality we have also spatial relationships between pixels! Nevertheless, this is
enough for our purposes of template matching, where the joint pixel correspondences between two images
are used.

 337

As we did before, we can obtain H(T), the image entropy, with the same formula. The meaning, in this case,
is the maximal amount of compression that we can get by using the “best” compression algorithm (without
loss).

 338

When we have two images, we can now consider their relationship.
First, we have two separate histograms, describing the two intensity statistics.

Afterwards, we can consider the relationship between corresponding grey values (at the same pixel
coordinates), and construct the so-called joint histogram.

This is a 2D histogram, which represents the joint probability of the event (T,I). Every cell gives the
probability of observing a given pair of grey values (black-white, white-black, grey-white, etc.), for all
(256*256) possibilities.
In fact, the number of cells is (C*C) which is less, and this is better for statistical reasons.

 339

Joint image entropy as similarity measure

Now, with the joint probability we have a joint Entropy, which expresses the uncertainty of the joint event
(T,I).

 340

If there is a relationship, then only a few pairs will be observed (high P) and most other combinations will
have null P. This gives a low joint uncertainty, that could be used as a correlation index.

Still, we have the problem of false positives: here we see no relationship at all, but H(T,I) is low, as
computed from the joint histogram!

 341

Mutual Information as similarity measure

This is the reason for using MI: MI is the difference between the prior entropy of I, H(I), and the posterior
(after observing T), or conditional entropy, H(I|T).

That is, MI measures the information gain on I, that we obtain after knowing T.

The idea is: by knowing the value of T, the uncertainty (entropy) about I must decrease. The amount of
decrease in uncertainty is also the information that T gives about I, and vice-versa.

 342

Concretely, MI is computed with the formula above, which requires both the joint histogram P(T,I) and the
two marginal ones. But the marginal histograms can be in turn obtained from the joint, by summation over
rows and columns, respectively (which is also called marginalization).

 343

The result is the amount of dependence between T and I at the given pose: if they have a high MI, then they
must depend on one another, otherwise they are independent variables.

Here we can see how the previous situation is handled by MI: in fact, MI is high only when both images
have a high information content (high marginal entropies) and, at the same time, the joint entropy is low.

This is the correct way of maximizing the dependence, and gives a very general and robust matching index,
that we can use for template matching, with a single appearance model, that can be very different from the
current light/shading situation in the image.

 344

Matching templates with MI

In template matching, we need to compute the similarity function for a given pose p.

That is, we need to take the corresponding points to the template in the image, by using the Warp W(x;p),
in our case for computing Mutual Information.

 345

The procedure for computing MI between image and warped template at pose p is resumed above.
This is the most expensive step, since we have to warp each pixel, and then sum the contribution of the
observed grey value pair (template-image) to the respective histogram cell.

 346

The second step of an MI evaluation is instead simpler, because the double sum is over the number of cells
CxC, which are usually much less than the image (and template) size.

There is a statistical reason, in fact, for choosing a value of C which must be much lower than the sample
size (number of pixel pairs). Usually, C ~ sqrt(N) is the rule of thumb for this choice.

Comparison with SSD

By comparing an MI evaluation with SSD, we can see how SSD looks at first simpler, since it requires only
one pass, and only to accumulate a sum of squares.

But actually the difference is not significant, since the most expensive step in MI is only the first, due to the
Warp of each template pixel onto the image. And this is almost the same cost, in terms of operations, of
SSD.

The other drawback of MI is actually the use of the joint histogram, which needs a lot of random accesses
(one for each pixels) on the square (CxC) matrix, and degrades system performance, while SSD of course
does not have this problem.

 347

Optimizing Mutual Information with a Levenberg-Marquardt approach

For the template pose estimation, we also used the derivative of the cost function (Gauss-Newton), where the
GN matrix was an approximation of the second-order Hessian matrix H, using only first derivatives
(Jacobian matrix).

Here we do not have the standard Gauss-Newton algorithm anymore, since the cost function is not in a LSE
form.
But still, we can approximate the Hessian matrix of Mutual Information with a first-order matrix, using only
the Jacobian of the Warp function.

 348

This is a good approximation, replacing Gauss-Newton and providing a fast and robust optimization method
for Mutual Information.

The computation of both gradient and Hessian matrix requires the derivatives of each joint histogram cell,
with respect to the pose parameters.

This computation can be done while accumulating the histrogram itself, by accumulating for each sample
pair also the derivative of P(i,j) as well.

 349

The full MI optimization algorithm

This algorithm for MI optimization resembles to the Lucas-Kanade approach from many aspects, and the
same improvements can be applied (forwards- and inverse-compositional, multi-resolution) for speed and
robustness.

 350

Selected bibliographic references

Survey papers

• [1]
• [26]

Lecture 2. Camera-world geometry

Representation of rigid-body rotations

• [1] (§ 2.2) with references

Intrinsic camera parameters

• [1] (§ 2.1) with references
• The MATLAB Calibration Toolbox: http://www.vision.caltech.edu/bouguetj/calib_doc/

Lecture 3. 3D pose estimation from point correspondences

Linear and Nonlinear LSE (Gauss-Newton and Levenberg-Marquardt)

• [1] (§ 2.4) with references

Robust LSE (RANSAC and M-Estimators)

• [1] (§ 2.5) with references
• [2] (original paper on RANSAC)

P3P pose estimation problem:

• [1] (§ 2.3.3) with references

Lectures 4-5. Bayesian Tracking

Motion models (Brownian Motion, WNA)

• [3]

Bayesian tracking scheme

• [1] (§ 2.6) with references

Kalman Filter

• [1] (§ 2.6.1) with references
• http://www.cs.unc.edu/~welch/kalman/
• [3]

Extended Kalman Filter

 351

• [1] (§ 2.6.1) with references
• [3]

Particle Filters

• [1] (§ 2.6.2.) with references
• [4]
• The Condensation web page:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/ISARD1/condensation.html

Lecture 6. Kanade-Lucas-Tomasi features tracker

KLT algorithm

• http://www.ces.clemson.edu/~stb/klt/
• [5]

Optical Flow

• http://en.wikipedia.org/wiki/Optical_flow

Harris Corner detector:

• http://en.wikipedia.org/wiki/Corner_detection
• [6]

Lecture 7. SIFT

• [7]
• [8]
• [9]

Lecture 8. Edge-based contour tracking

• [1] (§ 4.1) with references
• [10]
• [11]
• http://en.wikipedia.org/wiki/Canny
• [12]
• [13]

Lecture 9. Contour tracking using Likelihood functions

B-Splines

• http://de.wikipedia.org/wiki/Spline, and references
• http://userpage.fu-berlin.de/~vratisla/Bildverarbeitung/Bspline/Bspline.html

CONDENSATION for contour tracking

• Official Page: http://www.robots.ox.ac.uk/~misard/condensation.html
• [4]

CCD Algorithm

• [14]

 352

• [15]

Lecture 10. Active Appearance Models

AAM Webpages:

• http://www2.imm.dtu.dk/~aam/tracking
• http://www2.imm.dtu.dk/~aam/faces
• Tim Cootes’ page: http://www.isbe.man.ac.uk/~bim/
• CMU Webpage: http://www.ri.cmu.edu/projects/project_448.html

AAM Papers

• [16]
• [17]

PCA

• http://de.wikipedia.org/wiki/Principal_Component_Analysis

Lecture 11. Lucas-Kanade Algorithm for template matching

• http://www.ri.cmu.edu/projects/project_515.html (with Matlab code)
• [20]
• [16] (Piece-wise affine Warp)
• [16] (forwards- and inverse-compositional methods)
• [16] (combined pose+appearance optimization)
• [19]

Lecture 12. Robust Template Similarity Functions

• [18] (M-Estimators)
• [21] (NCC)
• http://en.wikipedia.org/wiki/Information_theory
• http://en.wikipedia.org/wiki/Mutual_information
• [22] (Shannon’s original paper)
• [23]
• [24]
• [25] (Optimization of MI)

References

NOTE: Most of the publications below are also in a large (~40 Mb) zip file,

that can be downloaded from

http://www6.in.tum.de/~panin/Bibliography.zip

[1] V. Lepetit and P. Fua, Monocular Model-Based 3D Tracking of Rigid Objects: A Survey, Foundations
and Trends in Computer Graphics and Vision, Vol. 1, Nr. 1, pp. 1-89, October 2005

Online : http://cvlab.epfl.ch/publications/publications/2005/LepetitF05.pdf

This text has also references inside (as indicated in the list).

 353

[2] M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981

[3] Yaakov Bar-Shalom, X.-Rong Li, Thiagalingam Kirubarajan Estimation with Applications to Tracking
and Navigation, 2002

[4] Michael Isard and Andrew Blake CONDENSATION -- conditional density propagation for visual
tracking Int. J. Computer Vision, 29, 1, 5--28, (1998)

[5] Jianbo Shi and Carlo Tomasi. Good Features to Track. IEEE Conference on Computer Vision and Pattern
Recognition, pages 593-600, 1994.

[6] C. Harris and M. Stephens (1988). "A combined corner and edge detector". Proceedings of the 4th Alvey
Vision Conference, pages 147--151.

[7] Lowe, D. G., “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal of
Computer Vision, 60, 2, pp. 91-110, 2004.

[8] Lindeberg, Tony "Feature detection with automatic scale selection", International Journal of Computer
Vision, 30, 2, pp 77--116, 1998.

[9] Iryna Skrypnyk, David G. Lowe: Scene Modelling, Recognition and Tracking with Invariant Image
Features. ISMAR 2004: 110-119

[10] C. J. Harris. Tracking with rigid models. In A. Blake and A. Yuille, editors, Active Vision. MIT Press,
Cambridge, MA, 1992.

[11] J. Canny A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol 8, No. 6, Nov 1986.

[12] David G. Lowe: Three-Dimensional Object Recognition from Single Two-Dimensional Images. Artif.
Intell. 31(3): 355-395 (1987)

[13] Model-Based Object Tracking in Monocular Image Sequences of Road Traffic Scenes. D. Koller, K.
Daniilidis, H.-H. Nagel. International Journal of Computer Vision 10:3 (1993) 257--281.

[14] Robert Hanek and Michael Beetz. The Contracting Curve Density Algorithm: Fitting Parametric Curve
Models to Images Using Local Self-adapting Separation Criteria. International Journal of Computer Vision
(IJCV), 59(3):233–258, 2004.

[15] Robert Hanek, Thorsten Schmitt, Sebastian Buck, Michael Beetz: Towards RoboCup without Color
Labeling. RoboCup 2002: 179-194

[16] T.F.Cootes, G.J. Edwards and C.J.Taylor. "Active Appearance Models", in Proc. European Conference
on Computer Vision 1998 (H.Burkhardt & B. Neumann Ed.s). Vol. 2, pp. 484-498, Springer, 1998.

[17] I. Matthews and S. Baker “Active Appearance Models Revisited”, International Journal of Computer
Vision, Vol. 60, No. 2, November, 2004, pp. 135 - 164.

[18] B. Theobald, I. Matthews, and S. Baker, “Evaluating Error Functions for Robust Active Appearance
Models”, Proceedings of the International Conference on Automatic Face and Gesture Recognition, April,
2006, pp. 149 - 154.

[19] J. Xiao, S. Baker, I. Matthews, and T. Kanade, “Real-Time Combined 2D+3D Active Appearance
Models”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June, 2004.

 354

[20] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying Framework”, International Journal
of Computer Vision, Vol. 56, No. 3, March, 2004, pp. 221 - 255.

[21] J. P. Lewis, “Fast Template Matching”, Vision Interface, p. 120-123, 1995.

[22] Claude E. Shannon “A Mathematical Theory of Communication”, Bell System Technical Journal, Vol.
27, pp. 379–423, 623–656, 1948.

[23] P Viola, WM Wells III “Alignment by Maximization of Mutual Information”, International Journal of
Computer Vision, 1997 – Springer

[24] Frederik Maes, André Collignon, Dirk Vandermeulen, Guy Marchal, Paul Suetens: “Multimodality
Image Registration by Maximization of Mutual Information” IEEE Trans. Med. Imaging 16(2): 187-198
(1997)

[25] Thevenaz, P. Unser, M. “Optimization of mutual information for multiresolution image
registration” IEEE Transactions on Image Processing, Dec 2000

[26] Yilmaz, A., Javed, O., and Shah, M. 2006. Object tracking: A survey. ACM Comput. Surv. 38, 4 (Dec.
2006), 13

