
Pose estimation from point and line

correspondences

Giorgio Panin

October 17, 2008

1 Problem formulation

Estimate (in a LSE sense) the pose of an object from N correspondences between
known object points (3D or 2D) Xi and their noisy projections on the 2D image
plane, xi.

The pose is represented by a (3× 3) or (4× 4) homogeneous transformation
matrix T , belonging to a given sub-group G of object-space transformations. G
is a subset of all possible transforms, closed under matrix product:

T1, T2 ∈ G⇒ (T1 · T2) ∈ G

The intrinsic camera matrix K ((3× 3) or (3× 4), respectively) is supposed to
be known in advance.

Moreover, a reference (constant) transform matrix T̄ may be present, which
is pre-multiplied by T (e.g. a fixed displacement in articulated structures, with
Denavit-Hartenberg parameters), and this matrix may also not belong to the
same transformation group G.

Overall, this is a projective geometry problem, that can be formulated in
basically two ways: using homogeneous or non-homogeneous coordinates. They
raise two different LSE error measures to be optimized: the algebraic and geo-
metric error, respectively.

The latter is the real target of our estimation (Maximum-Likelihood solu-
tion), but usually non-linear, while the former gives redundant and sub-optimal
equations, but usually linear. Therefore, we can use the algebraic solution as a
starting-point to minimize the geometric error.

1.1 Geometric error

We have the following problem:
Given N exact model points X and corresponding noisy image points x in
homogeneous coordinates

X = (X,Y, 1) or X = (X,Y, Z, 1)
x = (x, y, 1)

1

find the optimal transformation T ∗ belonging to a group G, such that

T ∗ = min
T∈G

N∑
i=1

∥∥π(K · T̄ · T ·Xi)− π(xi)
∥∥2

where π is the nonlinear projection operator, from homogeneous to non-homogeneous
coordinates

π(x, y, w) =
[
x/w y/w

]T
and T̄ is a constant matrix, not necessarily belonging to the same group G.

Solution: nonlinear LSE optimization (Gauss-Newton), starting from an ini-
tial guess T0, close enough to T ∗ in order to ensure convergence.

All of the groups we will consider hereafter are smooth manifolds with a Lie
group structure, and the local tangent space at T is a Lie algebra, which maps
to the whole group through the exponential mapping. Therefore, Gauss-Newton
optimization is straightforwardly performed with the Lie generators Gi and the
compositional update (see e.g. [1][2][3]).

1.2 Algebraic error

In homogeneous coordinates, we look for T ∗ in G that satifies the equations:

T ∗ ∈ G : ∀i,∃λi :
(
K · T̄ · T ·Xi

)
= λixi

As we can see, the homogeneous formulation carry the projective ambiguity
as coefficients (λi) which account for the augmented number of equations (3
instead of 2) per point. We remove λi by writing the problem as a cross-product

T ∗ ∈ G : xi × (K · T̄ · T ·Xi) = 0,∀i

which provides a redundant set of homogeneous equations in T . That means,
one component of each cross product (usually the third) can be discarded from
the equations above, which then will be 2N again.

For noisy data, the problem above can be cast into an LSE form

T ∗ = min
T∈G

n∑
i=1

∥∥xi × (K · T̄ · T ·Xi)
∥∥2

and this problem can be usually put into a linear form min
p
‖Ap‖ or min

p
‖Ap− b‖,

where p is a vector parametrizing the transformation T, and A is a column-rank
deficient matrix with ∞1 solutions in p.

By imposing a constraint on p such as a unit-norm condition ‖p‖ = 1, the
globally optimal solution can be found in one step, via the SVD algorithm. The
resulting algorithm is called DLT (Direct Linear Transform).

By resuming, we solve the original problem in two steps:

1. Estimate a T0 matrix (hopefully close enough to T ∗), by minimizing the
algebraic error (DLT)

2

2. Starting from T0, minimize the geometric error with the Gauss-Newton (or
Levenberg-Marquardt) method, in order to obtain T ∗. For this purpose,
we use compositional updates ∆T and Lie algebra derivatives

In some cases (especially 2D-2D or 3D-3D problems), the geometric error is
linear and can be solved at once, without need for T0. And also some nonlinear
cases (e.g. the absolute orientation problem) can still be solved in one step for
the geometric error.

However, most 3D-2D cases have an inherent nonlinearity due to the projec-
tion π(), therefore the two-step procedure cannot be generally avoided. In that
case, altough step 2 has a common formulation for all poses (apart from differ-
ent Jacobians, obtained through the respective Lie generators) step 1, instead,
must be solved differently for each class.

2 2D-2D transforms: T = (3x3) matrix

In a 2D-2D problem, both X and x are given by 3 homogeneous coordinates, of
which the third is usually set to 1.

Moreover, we suppose all (3x3) K matrices to have the simple form:

K2D =

 1 0 rx/2
0 1 ry/2
0 0 1

where (rx, ry) are the horizontal and vertical image resolution, respectively.
Therefore, all image data points xi can be pre-processed in order to remove
both K and T̄ :

x̄i = T̄−1K−1xi = T̄−1
(
xi − [rx/2, ry/2, 0]T

)
and the two LSE errors are re-formulated as

• Algebraic: T ∗ = min
T∈G

∑N
i=1 ‖x̄i × (H ·Xi)‖2

• Geometric: T ∗ = min
T∈G

∑N
i=1 ‖π(H ·Xi)− π(x̄i)‖2

NOTE: If the last row of T is [0, 0, 1], then the geometric error

T ∗ = min
T∈G

N∑
i=1

‖T ·Xi − x̄i‖2

has a linear form, and the problem can be directly solved in non-homogeneous
coordinates.

3

2.1 Additional symbols:

In = (n× n) Identity matrix
tn = (n× 1) Translation vector
Rn = (n× n) Rotation matrix: RTnRn = In
Rx,y,z = (3× 3) Single-axis rotation matrices
s = Uniform scale factor
Dn = diag(s1, ..., sn): Non-uniform scale matrix
An = (n× n) Linear transformation
vn = (n× 1) Perspective distortion vector

2.2 Pose2DTranslation (2 dof, min. 1 point)

The simplest case is a pure translation

T =
[
I2 t2

0 1

]

Figure 1: Pure translation.

The geometric error is

T ∗ = min
(tx,ty)

N∑
i=1

‖Ait− bi‖2

with
Ai = I2
bi = x̄i −Xi

that is, T ∗ = min
t
‖At− b‖2 with A =

 I2
· · ·
I2

 ,b =

 b1

· · ·
bn

4

This is a linear LSE, solved by t∗ = A+b; in this case, the LSE solution corre-
sponds to the displacement of point centroids:

t∗ =
1
N

N∑
i=1

(x̄i −Xi) = µx̄ − µX

2.3 Pose2D1ScaleTranslation (3 dof, min. 2 point)

Next, we add a uniform scale factor

T =
[
sI2 t2

0 1

]

Figure 2: Translation and uniform scale.

The geometric error results

N∑
i=1

‖p(TXi)− p(x̄i)‖2 =
N∑
i=1

∥∥∥∥ sXi + tx − x̄i
sYi + ty − ȳi

∥∥∥∥2

=

∥∥∥∥∥∥A ·
 s
tx
ty

− b

∥∥∥∥∥∥
2

with

A =

X1 1 0
Y1 0 1

· · ·
XN 1 0
YN 0 1

 ,b =

x̄1

ȳ1

· · ·
x̄N
ȳN

This is again a linear LSE problem in (s, tx, ty).

5

2.4 Pose2D2ScalesTranslation (4 dof, min. 2 points)

A non-uniform scale with translation is given by

T =
[
D2 t2

0 1

]

Figure 3: Translation and non-uniform scale.

This is similar to the previous problem, but with 2 scales (s1, s2, tx, ty); the
geometric error minimization gives:

T = min
(s1,s2,tx,ty)

∥∥∥∥∥∥∥∥∥∥

X1 0 1 0
0 Y1 0 1

· · · · · ·
XN 0 1 0
0 YN 0 1

 ·

s1

s2

tx
ty

−

x̄1

ȳ1

· · ·
x̄N
ȳN

∥∥∥∥∥∥∥∥∥∥

2

2.5 Pose2D1ScaleRotoTranslation (4 dof, min. 2 points)

Now we consider transformations involving rotations.
These are in principle nonlinear problems (because of the rotation matrix

R) but fortunately, due to the nature of the problem, the LSE geometric error
can still be globally optimized in one step, by using the SVD decomposition.

We start by giving here the solution for the general similarity transform
(uniform scale, rotation and translation), and deduce its sub-cases afterwards.

T =
[
sR2 t2

0 1

]
From the [Umeyama] paper: the LSE geometric error is optimized by the
(s,R, t) parameters obatined from the following steps:

6

Figure 4: Similarity (rigid roto-translation and uniform scale).

Mean vectors: µx̄ = 1
n

∑n
i=1 x̄i, µX = 1

n

∑n
i=1 Xi

Variance of the norms: σ2
x̄ = 1

n

∑n
i=1 ‖x̄i − µx̄‖2 , σ2

X = 1
n

∑n
i=1 ‖Xi − µX‖2

Cross-covariance matrix (2× 2): Σx̄X = 1
n

∑n
i=1(x̄i − µx̄)(Xi − µX)T

SVD of the cross-covariance: Σx̄X = UDV T

Sign correction for det(R): S =
{
I if det(Σx̄X) ≥ 0
diag(1, 1, 1, ...,−1) if det(Σx̄X) < 0

Rotation reconstruction: R = USV T

Scale reconstruction: s = 1
σ2
X
tr(DS)

Translation vector: t = µx̄ − sRµX

2.6 Pose2D1ScaleRotation (2 dof, min. 1 point)

Similar as before, but without translation:

T =
[
sR2 0

0 1

]
This implies that the mean vectors are µx̄ = µX = 0. Therefore we have:

Variance of the norms: σ2
x̄ = 1

n

∑n
i=1 ‖x̄i‖

2
, σ2

X = 1
n

∑n
i=1 ‖Xi‖2

Cross-covariance matrix (2× 2): Σx̄X = 1
n

∑n
i=1 x̄iXT

i

7

Figure 5: Rotation and uniform scale.

SVD of the cross-covariance: Σx̄X = UDV T

Sign correction for det(R): S =
{
I if det(Σx̄X) ≥ 0
diag(1, 1, 1, ...,−1) if det(Σx̄X) < 0

Rotation reconstruction: R = USV T

Scale reconstruction: s = 1
σ2
x̄
tr(DS)

2.7 Pose2DRotoTranslation (3 dof, min. 2 points)

By removing the scale (s = 1), we get the Euclidean transform (rigid roto-
translation):

H =
[
R2 t2
0 1

]
where σx̄ = σX = 1. The algorithm becomes

Mean vectors: µx̄ = 1
n

∑n
i=1 x̄i, µX = 1

n

∑n
i=1 Xi

Cross-covariance matrix (2× 2): Σx̄X = 1
n

∑n
i=1(x̄i − µx̄)(Xi − µX)T

SVD of the cross-covariance: Σx̄X = UDV T

Sign correction for det(R): S =
{
I if det(Σx̄X) ≥ 0
diag(1, 1, 1, ...,−1) if det(Σx̄X) < 0

Rotation reconstruction: R = USV T

Translation vector: t = µx̄ −RµX

8

Figure 6: Euclidean transform (rigid roto-translation).

2.8 Pose2DRotation (1 dof, min. 1 point)

Finally, if both scale and translation are removed, we obtain the absolute ori-
entation problem:

T =
[
R2 0
0 1

]

Figure 7: Pure rotation.

which is solved by

Cross-covariance matrix (2× 2): Σx̄X = 1
n

∑n
i=1 x̄iXT

i

SVD of the cross-covariance: Σx̄X = UDV T

9

Sign correction for det(R): S =
{
I if det(Σx̄X) ≥ 0
diag(1, 1, 1, ...,−1) if det(Σx̄X) < 0

Rotation reconstruction: R = USV T

2.9 Pose2D2ScalesRotoTranslation (5 dof, min. 3 points)

The problems with non-uniform scale and rotation cannot be solved like the
uniform scale cases. Since the number of degrees of freedom is close to that of
an affinity (6 vs. 5 dof), we prefer to solve first for an affinity, and then upgrade
to the non-uniform scale similarity, by removing 1 degree of freedom.

We consider here two sub-cases: with and without translation. The first one
is given by

T =
[
R2D2 t2

0 1

]

Figure 8: Roto-translation with non-uniform scale.

and the complete procedure is the following:

1. solve for an affine transform (see below), and find A, t

2. using the SVD, compute A = R(θ)R(−φ)DR(φ) with D = diag(s1, s2),
and s1 > s2

3. set R = R(θ) and remove φ: if φ ≈ 0, then keep the order of (s1, s2) in D;
if φ ≈ 90 deg, then swap the scales

4. Finally, since this solution is generally not the optimal LSE, it is recom-
mended to run a Gauss-Newton optimization in the geometric error.

10

2.10 Pose2D2ScalesRotation (3 dof, min. 2 point)

Next, we consider the rotation with non-uniform scale:

H =
[
R2D2 0

0 1

]

Figure 9: Rotation with non-uniform scale.

This is a special case of the previous one, where t = 0. We can solve it as a
purely linear (affine without translation) transform with 4 dof, then upgrading
A to the non-uniform scale and rotation matrix as in the previous Section.

2.11 Pose2DAffine (6 or 4 dof, respectively 3 or 2 points)

T =
[
A2 t2
0 1

]

Figure 10: Affine transform (linear+constant).

11

The affine case is again a linear LSE problem in the geometric error

[A∗, t∗] = min
(A,t)

N∑
i=1

‖AXi + t− x̄i‖2 = min ‖Mia− x̄i‖2

with a the 6 stacked parameters

a =
[
A11 A12 A21 A22 tx ty

]T
and Mi a coefficient matrix function of Xi

Mi =
[
Xi Yi 0 0 1 0
0 0 Xi Yi 0 1

]
By stacking together the Mi matrices and the x̄i vectors, and solving for a∗,

we get the LSE affine parameters.
Similar equations can be written for the purely linear case (t = 0)

T =
[
A2 0
0 1

]

Figure 11: Purely linear transform.

with 4 parameters only

a =
[
A11 A12 A21 A22

]T
Mi =

[
Xi Yi 0 0
0 0 Xi Yi

]

12

2.12 Pose2DHomography (8 dof, min. 4 points): the DLT
algorithm

In the most general 2D-2D case, the matrix T can be any linear transform in the
homogeneous coordinates. This is defined up to a scale factor, that we remove
by setting T (3, 3) = 1:

T =
[
A2 t2

vT2 1

]

Figure 12: General 2D homography.

By applying the projection operator p, this leads to a non-linear geometric
error; therefore, the pose estimation problem must be formulated in two steps
as described in the introduction (algebraic and geometric error minimization).

Concerning the first, after pre-processing (removing K and T̄ from the data
points xi) we have an algebraic error of the form

T = min
T

N∑
i=1

‖x̄i × (TXi)‖2

with Xi, x̄i ∈ <3, T ∈ <3×3. By writing Xi = (Xi, Yi, Zi), x̄i = (x̄i, ȳi, z̄i) we
take the first two terms of the cross product, and we have, for each point i, two
homogeneous equations

[
0T −z̄iXT

i ȳiX
T
i

z̄iX
T
i 0T −x̄iXT

i

] h1

h2

h3

 = 0

where hi are the three (transposed) rows of H =

 hT1
hT2
hT3

.

13

If A is the (2n× 9) stacked matrix of all l.h.s. terms above, we get the DLT
equation min

T
‖Ah‖ with rank-deficient A that, as we expect, has ∞1 solutions

in h. By imposing ‖h‖ = 1, the solution is obtained by the SVD decomposition

A = USV T

as the last column of V (corresponding to the minimum singular value in S).
In addition, the normalization technique (removing the centroids of X and

x, followed by isotropic coordinate scaling) ensures a better numerical stability,
and therefore we use it.

1. Removing centroids: For both point sets, we compute the mean values
µx̄ = 1

n

∑n
i=1 x̄i, µX = 1

n

∑n
i=1 Xi and remove them from each point

2. Isotropic scaling: Afterwards, we make sure that the average distance from
the mass center (which is 0) is equal to

√
2, i.e. that the “average” point

of both sets is (1, 1, 1)T

These two steps ultimately correspond to multiply the two point sets for
two matrices TX, Tx̄. Therefore, after estimating the transformation T̃ ∗ the two
normalizations are removed by

T ∗ = T−1
x̄ T̃ ∗TX

14

3 3D-2D transforms: T = (4x4), K = (3x4)

Here, the calibration matrix K can be more general; in particular, we consider
pinhole models, without distortion and skew, and with equal focal lengths:

K =
[
K ′ 0

]
,K ′ =

 f 0 rx/2
0 f ry/2
0 0 1

Moreover, we have extrinsic transformation matrices the type

T =
[
A3×3 t3

0T 1

]
∈ G

T̄ =
[
Ā3×3 t̄3

0T 1

]
∈ G′

belonging to possibly different groups G,G′. The base estimation problem be-
comes: find (A∗, t∗) such that[

A∗ t∗
]
∈ G : ∀i,∃λi :

(
K ′
[
ĀA Āt + t̄

]
Xi

)
= λixi

We can pre-process the image data xi

x̄i = (K ′)−1 xi

and re-write the equations[
ĀA Āt + t̄

]
Xi = λix̄i

However, unlike the 2D-2D case, in general we cannot remove neither Ā nor t̄,
because of the non-square matrix on the left side1.

Moreover, as already mentioned in the introduction, because of the dimen-
sionality loss (from 3D to 2D) the projection operator π() always provides a
nonlinearity, no matter of the form for A, t. Therefore, the linear approach for
the algebraic error (DLT) cannot be avoided, in order to provide an initial guess
T0 for the geometric error optimization.

Finally, we need the DLT approach for all transform classes, which may have
much less than the maximum number of parameters (12); therefore, we assume
that each T ∈ G can be parametrized (or at least approximated) by a vector q[

A(q) t(q)
]

with dim(q) = dq ≤ 12. In what follows, we will call this method generalized,
projective DLT (GP-DLT).

1The only exception is given by t̄ = 0, in which case Ā can also be removed from the data

points x̄i =
(
K′Ā

)−1
xi and the problem becomes a purely projective one

[
A t

]
Xi =

PXi = λix̄i

15

3.1 Algebraic error for 3D-2D projections: the GP-DLT
approach

We re-write the algebraic error in terms of the reduced parameters q as follows:

q∗ = min
q∈<dq

n∑
i=1

∥∥xi × ([ĀA (q) Āt (q) + t̄
]
·Xi

)∥∥2

that can be written as

q∗ = min
q∈<dq

n∑
i=1

‖Fi (q) + fi‖2

with
Fi (q) = [xi]× Ā

[
A (q) t (q)

]
Xi

fi = [xi]×
[

03×3 t̄
]
Xi

and

[xi]× =

 0 −zi yi
zi 0 −xi
−yi xi 0

the cross-product matrix.

If we further impose A (q) and t (q) to be linear in (q), then we can show
that

Fi (q) = Fi · q
and the algebraic error becomes a linear LSE problem. This condition seems to
be quite restrictive, since most parametrization for transformation groups are
nonlinear (particularly if a rotation matrix is involved); nevertheless, we can
always find a parametrization ql in a linear group Gl that includes G, where
dim(Gl) is higher than dim(G), but as close as possible to it.

Afterwards, the so obtained transform Tl can be upgraded to the actual T
by a Procrustes analysis (min

T∈G
‖Tl − T‖F) or by simpler means, such as clamping

the affine parameters φ for upgrading to a similarity, etc. (similarly to the 2D-
2D cases). In any case, the result of this procedure is needed only as a starting
point for the geometric error optimization.

3.2 Example of linear constraints for 3D pose parameters

We mention here a few examples of linear constraints that we can impose to p.

• Pure translation in 3D
P =

[
I3 t3

]
This corresponds to impose

Q =

03×3

03×3

03×3

I3×3

16

p0 =
[

1 0 0 0 1 0 0 0 1 0 0 0
]T

q =
[
tx ty tz

]T
• “Almost” pure rotation around z (without the non-linear constraint c2 +
s2 = 1)

P =

c −s 0 0
s c 0 0
0 0 1 0
0 0 0 1

This corresponds to

Q =

1 0
0 1
0 0
0 −1
1 0
0 0
· · · · · ·
0 0

p0 =

[
0 0 0 0 0 0 0 0 1 0 0 0

]T
q =

[
c s

]T
4 Line correspondences

In some cases, the image measurement consists of line segments, that have to
be matched to corresponding model segments.

For example, when performing a hand detection task (Fig. 13), the Hough
transform provides very well-aligned line segments on the fingers, associated to
the corresponding model lines.

Segment correspondences in principle provide 2 point correspondences (i.e.
4 measurement data). However, as we can see from the fingers in Fig. 13, the
end-points of the detected segments are not as well localized as the line itself
(direction and distance from the origin), therefore the most reliable matching
can be obtained by considering pure line correspondences.

This unfortunately provides less equations (2 instead of 4) for each feature,
but at least assures to use only the most reliable information source for pose
estimation2.

As long as pure lines are concerned, a simpler way to describe correspon-
dences consists of replacing them by 2 point-to-line correspondences (i.e. a
segment-to-line correspondence), where the two model points can be arbitrarily
chosen onto the respective line (in 2D or 3D space).

2Alternatively, the end-points information can be still included, but with a lower weight in
the LSE optimization process

17

Figure 13: Line detection with the Hough transform for planar hand detection.

Therefore, we formulate the problem as follows: given a model segment
(L1,L2) and a corresponding image line l = (l1, l2, l3)T , find a transformation
H such that both points HL1 and HL2 lie on l.

When a noisy measurement l is given, the error can be again formulated in
two ways (geometric and algebraic error) which lead to different LSE errors. In
order to provide the geometric error, we also assume that the normal direction
to the image line n = (l1, l2) is normalized ‖n‖ = 1; in this way, the third
component l3 = d represents the distance of the line to the origin of image
coordinates.

In particular, algebraic errors are defined in homogeneous coordinates, and
geometric errors in projected (non-homogeneous) coordinates, through the π()
function.

• Algebraic errors:

lT
(
KT̄T · L1

)
= lT

(
KT̄T · L2

)
= 0

• Geometric errors:

nTπ
(
KT̄T · L1

)
+ d = nTπ

(
KT̄T · L2

)
+ d = 0

which, in a least-squares setting, become

• Algebraic LSE:

T ∗ = min
T∈G

n∑
i=1

(∥∥lTi ·KT̄T · L1
i

∥∥2
+
∥∥lTi ·KT̄T · L2

i

∥∥2
)

18

• Geometric LSE:

T ∗ = min
T∈G

n∑
i=1

(∥∥nTi π (KT̄T · L1
i

)
+ di

∥∥2
+
∥∥nTi π (KT̄T · L2

i

)
+ di

∥∥2
)

4.1 2D-2D line correspondences

For most 2D cases (apart from the general homography of Sec. 2.12), the
geometric LSE is equivalent to the algebraic one. In fact, if the transformation
matrix has the form

T =
[
A t
0 1

]
then we have

nTπ
(
KT̄T · L

)
+ d = lT

(
KT̄T · L

)
= lTKT̄

(
AL̃ + t

1

)
where L̃ are the first two (non-homogeneous) coordinates of L. For sake of
clarity, in the following we will omit the ∼ sign, whenever the context avoids
ambiguity of interpretation.

The above equations clearly show how the two terms KT̄ can be removed
by pre-processing the lines l

l̄T = lTKT̄ = (n̄T , d̄)

Furthermore, if the parametrization of the group A(q), t(q) is linear in q, then
the problem becomes linear, and can be solved in one step via the SVD decom-
position.

For example, if we consider the general affine transform (Sec. 2.11), parametrized
by

q =
[
A11 A12 A21 A22 tx ty

]T
then we have

AL + t =
[
Lx Ly 0 0 1 0
0 0 Lx Ly 0 1

]
q = L̂q

so that the LSE problem becomes

q∗ = min
q∈<6

n∑
i=1

(∥∥∥n̄Ti L̂1
i · q + d̄i

∥∥∥2

+
∥∥∥n̄Ti L̂2

i · q + d̄i

∥∥∥2
)

= min
q∈<6

n∑
i=1

∥∥∥L̂i · q + d̄i
∥∥∥2

with

L̂i =
[

n̄Ti L̂1
i

n̄Ti L̂2
i

]
; d̄i =

[
d̄i
d̄i

]

19

A similar result can be obtained for the similarity case (uniform scale, ro-
tation and translation) with 4 parameters. In order to keep the linearity, we
parametrize it as

T =

 c −s tx
s c ty
0 0 1

with

q =
[
c s tx ty

]T
so that in this case

L̂ =
[
Lx −Ly 1 0
Ly Lx 0 1

]
and L̂i is computed from this expression.

However, the pure rotational cases (with c = cos(θ), s = sin(θ)) involve a
nonlinearity that, in the point-to-point case, had been dealt with by using the
Umeyama approach. In this case, we can simply estimate it as a similarity, and
afterwards remove the scale by simply dividing (c, s) by

√
c2 + s2.

5 Point and line correspondences

The most general case involves matching points and lines simultaneously. In
order to formulate it in an elegant way, we start from the result of the previous
Section, and add the point-related terms.

Concerning the geometric error term for a linear pose parametrization q, we
have

KT̄T (q) X− x̄ = KT̄ X̂ · q− x̄

where the X̂ matrix is defined in the same way as L̂ (for segments). The
pre-processing step for points (already been described in the related Section)
becomes

x̄ =
(
KT̄

)−1
x

that we can see as the “dual” version of the line pre-processing.
Therefore, for nl line and np point correspondences, we have3

q∗ = min
q∈<6

 nl∑
i=1

∥∥∥L̂i · q + d̄i
∥∥∥2

+
np∑
j=1

∥∥∥X̂j · q− x̄j
∥∥∥2

with L̂i, d̄i defined in the previous Section.

3Notice the − sign on the second terms.

20

A Derivation of the GP-DLT linear equations

In order to derive the linear LSE matrix Fi, we first consider the internal product

Ā
[
A (q) t (q)

]
Xi = WXi

with W = Ā
[
A (q) t (q)

]
a (3× 4) matrix. We express it row-wise

W =

 wT
1

wT
2

wT
3

where wj is the j − th row (transposed to a column vector). Therefore, we can
write it as a matrix-vector product

WXi =

 XT
i 0T 0T

0T XT
i 0T

0T 0T XT
i

 w1

w2

w3

which, after including the cross-product matrix [xi]×, becomes

Fi = X̂i

 w1

w2

w3

and

X̂i =

 0T −z̄iXT
i ȳiXT

i

z̄iXT
i 0T −x̄iXT

i

−ȳiXT
i x̄iXT

i 0T

Next, we consider again the W matrix

W = ĀP (q)
P (q) =

[
A (q) t (q)

]
each element of the product is given by

Whk = āThpk

Ā =

 āT1
āT2
āT3

 , P =
[

p1 p2 p3 p4

]
where Ā has been expressed row-wise, and P column-wise. Therefore, we have

wh =

āTh 0T 0T 0T

0T āTh 0T 0T

0T 0T āTh 0T

0T 0T 0T āTh

p (q)

21

where the vector p contains the 12 entries of P (column-wise), which are
parametrized by q.

By stacking the matrices Mh row-wise, we have

W = Âp (q)

where

Â =

ā1 0 0 0 ā2 0 0 0 ā3 0 0 0
0 ā1 0 0 0 ā2 0 0 0 ā3 0 0
0 0 ā1 0 0 0 ā2 0 0 0 ā3 0
0 0 0 ā1 0 0 0 ā2 0 0 0 ā3

T

Our assumption about the linear dependency on q can be expressed by

p (q) = Q · q + p0

with suitable values for the 12× dq matrix Q and the vector p0.
Therefore, in the linear case the l.h.s. becomes

[xi]× ĀP (q) Xi = X̂iÂ (Q · q + p0)

where last term of Fi does not depend on q, and therefore can be moved to the
right-hand side fi of the LSE. The r.h.s. term can be similarly developed:

[xi]×
[

03×3 t̄
]
Xi = X̂im

with
m =

[
0 0 0 t̄1 0 0 0 t̄2 0 0 0 t̄3

]T
so that, finally, the LSE problem becomes

q∗ = min
q∈<dq

n∑
i=1

‖Fi · q + fi‖2

where
Fi = X̂iÂQ

fi = X̂i

(
m− Âp0

)
References

[1] T. Drummond and R. Cipolla, “Visual tracking and control using lie alge-
bras,” cvpr, vol. 02, p. 2652, 1999.

[2] ——, “Real-time visual tracking of complex structures,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 24, no. 7, pp. 932–946, 2002.

[3] ——, “Real-time tracking of multiple articulated structures in multiple
views,” in ECCV ’00: Proceedings of the 6th European Conference on Com-
puter Vision-Part II. London, UK: Springer-Verlag, 2000, pp. 20–36.

22

