
The Synchronous Approach
to Reactive and Real-Time Systems

_ _ ~

ALBERT BENVENISTE, FELLOW, IEEE, AND GERARD BERRY

Invited Paper

This special issue is devoted to the synchronous approach
to reactive and real-time programming. This introductory paper
presents and discusses the application fields and the principles of
synchronous programming. The major concern of the synchronous
approach is to base synchronous programming languages on math-
ematical models. This makes it possible to handle compilation,
logical correctness proofs, and verifications of real-time programs
in a formal way, leading to a clean and precise methodology for
design and programming.

1. INTRODUCTION: REAL-TIME AND REACTIVE SYSTEMS
It is commonly accepted to call real-time a program or

system that receives external interrupts or reads sensors
connected to the physical world and outputs commands to
it. Real-time programming is an essential industrial activ-
ity whose importance keeps increasing. Factories, plants,
transportation systems, cars, and a wide variety of everyday
objects are or will be computer controlled.

However, there is still little agreement about what the
precise definition of a real-time system should be. Here,
we propose to call reactive a system that maintains a
permanent interaction with its environment’ and to reserve
the word real-time for reactive systems that are in addition
subject to externally defined timing constraints. The broad
class of reactive applications, therefore, contains all real-
time applications as well as non-real-time applications
such as classical communication protocols, man-machine
interfaces, etc.

Safety is a crucial concern for reactive and real-time
programs. In this area, a simple bug can have extreme
consequences. Logical correctness is the respect of the
input/output specification; it is essential in all cases. Tem-
poral correctness is a further requirement of real-time
applications: a logically correct real-time program can fail
to adequately control its environment if its outputs are
not produced on time. Notice that the expressions “timing

Manuscript received September 15, 1990; revised March 9, 1991.
A. Benveniste is with IRISA-INRIA, Campus de Beaulieu, France.
G. Berry is with Ecole des Mines, Centre de MathCmatiques AppliquCes

IEEE Log Number 9102298.
’The notion of a reactive system was first introduced in [14], (231.

Sophia-Antipolis, France.

constraints” and “on time” should not be taken too literally,
since constraints are not necessarily expressed in terms of
physical time; for example, “stop in less than 30 meter” is
a timing constraint expressed by a distance.

Historically, reactive and real-time applications evolved
mostly from the use of analog machines and relay circuits
to the use of microprocessors and computers. They did not
benefit from the recent progress in programming technology
as much as did other fields. Although strongly technically
related, the various application fields are treated by different
groups of people having their own methods and vocabulary,
and little relation has been established between them. The
programming tools are still often low-level and specific.
For instance, one uses calls to specific operating systems
to monitor the communications between modules written
in standard languages, such as Assembly or C , and one
writes nonportable programs designed to drive very specific
hardware units.

The present situation must change rapidly. Modern appli-
cations will require strong interactions between application
fields that used to be separated, and specific vocabularies
or tools must be unified whenever possible to keep large
systems tractable. Low-level programming techniques will
not remain acceptable for large safety-critical programs,
since they make behavior understanding and analysis almost
impracticable. As in all other fields of computing, hardware
independence will be forced by the fact that software has
a much longer lifetime than hardware. Finally, it will be
necessary and sometimes even required to formally verify
the correctness of programs at least with respect to their
crucial safety properties. All these new requirements call
for rigorous concepts and programming tools and for the
use of automatic verification systems.

The goal of this special issue is to present the syn-
chronous approach to reactive and real-time systems, as
well as the associated software tools and verification tech-
niques. The synchronous approach is based on a relatively
small variety of concepts and methods based on deep,
elegant, but simple mathematical principles. Roughly, the
main idea is to first consider ideal systems that produce their

1270

0018-9219/91$01.00 0 1991 IEEE

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

~ _ _ _ ~

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

outputs synchronously with their inputs. Such synchronous
systems compose very well and turn out to be easier to
describe and analyze that asynchronous ones. Furthermore,
sophisticated algorithms can take advantage of the syn-
chrony hypothesis to produce highly efficient code. Of
course, the object codes are not really synchronous, but they
are often of predictable behavior unlike fully asynchronous
code (predictability is a key to correctly deal with speed is-
sues of actual implementation; we shall not study this point
here, referring to the specific papers). Automatic algorithms
can adapt the resulting code to distributed architectures.

The synchronous programming concept was first intro-
duced for software in [14]-[17], but one must say that it
bears many similarities with classical hardware concepts: in
a clocked digital circuit, communication between subcom-
ponents behaves as fully synchronous provided the clock is
not too fast. Clock speed is predictable and all CAD tools
can actually report to which clock speed a precise circuit
can work.

Before presenting synchronous programming, we shall
review the area of real-time systems and the presently
prevalent programming tools

11. REACTIVE AND REAL-TIME SYSTEMS:
EXAMPLES AND MAIN ISSUES

It is not our purpose to be exhaustive, but we feel it is
necessary to analyze some examples of how diverse reactive
and real-time systems can be. We shall first present the main
application areas. We shall then present two case studies in
more detail. Finally, we shall mention the main issues in
reactive and real-time system development.

A. Application Areas

complexity:
We list the applications areas in increasing order of

1. Pure task sequencers are typically encountered in
command boards, man-machine interfaces, or more
generally computer integrated manufacturing (CIM).
They deal with sequence of tasks such as

PUT-OB JECT-ON-BELT; B E L T - I N J I O T I O N ;

DETECT-OBJECT; GRASP-OBJECT.

Several elementary sequences may occur in parallel
and cooperate for instance via shared events
(PUT-OBJECT-ON-BELT can refer to events shared
by a robot and by a belt). Task sequencers can be
objects of high combinatorial complexity, so that the
main issue here is to provide a formal method to
convert a specification, i.e., a description that is easily
understandable, into an efficient implementation, for
instance the transition table of an automaton.

2. Communication protocols are encountered in var-
ious kinds of networks, and in particular in real-
time local-area networks. Similar comments may be
drawn as for tasks sequencers, in particular as far as
combinatorial complexity is concerned.

3. Low level signal processing of which sensor data
processing and signal processing in digital communi-
cation systems are typical instances. Digital filtering is
here the basic item. At first sight, it can be considered
as the direct adaptation of analog filtering to digital
computing techniques. But the rapidly growing use
of adaptive filtering makes digital signal processing
evolve toward a computationally intensive real-time
activity. The main issue is to achieve high throughput,
so that it is desirable to handle both algorithm and
architecture within the same framework.

4. Industrial process control involves regulators that
are supervised via internally or externally generated
interruptions and sequential tasks. The main challenge
is to provide a tool that is flexible enough to sup-
port an easy specification, and powerful enough to
guarantee that the actual implementation meets the
specification.

5. Complex signal processing systems such as radar
and sonar involve preprocessing of signals, fol-
lowed by drastic data-compression via detection-
and-labeling, and then by logically complex data-
processing modules (data fusion, decision handling,
etc.). This results in computationally intensive real-
time systems where many events are generated and
further combined to fire new computations. The same
remarks hold as for process control. The issue of
speed becomes much more important.

6. Complex Control-and-Monitoring systems govern
aircraft and transportation systems as well as haz-
ardous industrial plants. They can involve thousands
of sensors, hundreds of actuators, and dozens of
interconnected computer systems. Data can be pro-
cessed in numerous operating modes, for example for
maintenance or safety purposes. Heuristics of high
combinatorial complexity typically may compose up
to 90% of the application software code. Highly
distributed target architectures must be considered.
The safety constraints are obviously critical.

7. C3-systems (Command-Control-Communicate) or
even C31-systems (‘1’ for “~ntelligent”) are encoun-
tered in military systems, in air traffic control systems,
and also in large ground transportation systems. A
further difficulty here is the highly distributed nature
of the architecture supporting the real-time system:
subsystems are moving, so that communication links
cannot be considered as time-invariant.

B. A First Case Study: Automobile Control
Transportation systems involve numerous reactive sys-

tems, some of which bear severe real-time constraints. Let
us take an automobile as an example.

There are or will be specific controllers for fuel injection,
brakes, suspension, direction, etc. Each of those involves
reactive programs that do numerical computations and
have numerous functioning states, in particular because of
hardware failure handling.

BENVENISTE AND BERRY: APPROACH TO REAL-TIME SYSTEMS 1271

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

(string of phones1

t

acoustic-phonetic
cues

[speech signal(

Fig. 1. A speech-to-phoneme recognition system.

In the future, all these controllers will not stay indepen-
dent of each other. They will have to be linked together for
global coordination, for instance, to make cars lean inwards
in curves. Coordination can be performed in two ways:
either by distributing information from each controller to
the other ones, thus making each of them much more
complex, or by building a centralized controller that is
itself a complex reactive system. In both approaches, there
will be no easy solution and the safety problems will
greatly increase. Linking the controllers together will be
done by local area networks, involving themselves with
fast protocols which are nontrivial reactive programs.

At the user end, panels and man-machine interfaces will
be computerized. Again, this will involve numerous reactive
programs. Furthermore, one of the essential functions in car
automation will be failure detection and reporting. This dif-
ficult area is often underestimated: the messages to the user
or repairer should be simple and should not involve dozen
of individual failures. This will require a clever mixture of
reactive programming, signal processing, and heuristics.

Similar situations of course appear in almost all trans-
portation systems. For automobiles, there is a rather strong
additional constraint: the price of hardware should be as
small as possible, which means that programs are also
subject to severe size constraints.

C. A Second Case Study: Speech Recognition Systems
Speech recognition systems are do not bear hard real-time

constraints: the time response between the input (spoken
language) and the output (text on screen or input to some
other system) may be only loosely constrained. Never-
theless, the continuous speech signal must be processed
on-line to avoid unbounded buffering. Hence, continuous
speech recognition is a good prototype of application where
high-speed numerical preprocessing as well as complex
symbolic postprocessing is required. Similar examples are
found in data communication, pattern recognition, military
systems, process monitoring, and troubleshooting systems.
We describe here briefly the speech-to-phoneme recognition
system developed at IRISA [7]. Its overall organization is
shown in the Fig. 1. The originality of this system lies in

1272

its use of a segmentation of the continuous speech signal
prior to any recognition. The automaton supervises the
segmentation; it fires small modules to compute cepstra,
a representation of the spectral characteristics of the sig-
nal, associated with detected segments as well as some
acousticlphonetic cues. All these modules are numerically
oriented. Finally, high level processing is performed fol-
lowing a technique close to Hidden-Markov Model (HMM)
methods [22]: maximum likelihood decoding based on a
stochastic automaton. This is again a numerically as well
as logically oriented module.

To illustrate further how signal processing algorithms
may give rise to reactive systems, let us give additional
details on the segmentation module. The outcome of this
processing is shown in the Fig. 2. The segmentation pro-
cedure is mainly numerically oriented and is performed
on-line. Detection of change occurs with a bounded delay,
so that the speech signal must be reprocessed from the
estimated change time. Furthermore, some local backward
processing of the speech signal is also needed. Hence, while
this is still a real-time processing of speech signal, its timing
is far from being trivial. Therefore, writing a real-time
oriented programming of this processing in C or FORTRAN
is a tedious and error-prone task.

To summarize, this example is a good prototype of a
complex real-time signal processing application. It may be
compared to radar systems for example.

D. Reactive and Real-time Sys t ems4a jor Issues
Most reactive and real-time systems naturally decom-

pose into communicating concurrent components. The pro-
gramming architecture must follow this decomposition.
Hence, all aspects related to concurrency are important:
communication, synchronization, and organization of the
computational flow. We shall refer to these aspects as
qualitative ones. The timing constraints imposed on real-
time systems also impose to consider quantitative aspects
mostly related to the speed of computations. Here are the
major issues related to these aspects:

1.

2.

Use modular and formal techniques to specify,
implement, and verify programs. The specification-
implementation cycle is a major issue in the software
life cycle. Modular programming is necessary to
reflect the conceptual architecture into the programs
themselves. Relying on a discipline of programming
based on manual translations from specification to
implementation is known not to guarantee enough
safety. One should therefore provide modular tools
that formally and inherently guarantee the equivalence
preserving throughout the specification + implemen-
tation process and give access to formal verifica-
tion techniques. Notice that these tools must perform
nontrivial transformations, since there is usually no
perfect match between the functional architecture and
the target computer architecture.
Encompass within a single framework all reactive
aspects, i.e., communication, synchronization, logic,

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

i p s 1 d‘entree
et frontieres

seuil variable

est de divergem
(sens d i r e c t)

s a i l variable

est de divergeni
(sens direct)

seui1 f i x e

est de divergem
sms retrograde:

I
-

V

ni
V

3
-

V

. i m a l d’entree
retour-arr iere (au backward) 0 on

ordre des modeles v^ 16

HORLOGES

test de Divergence 2 on
t e s t voise-non w i s e 0 o f f

t e s t de Divergence f i l t r e G a f f

PAS A PhS

Fig. 2. The segmentation module. The detected segments are superimposed on the signal (top
line). Subsequent lines show the behavior of several auxiliary quantities (the divergence tests) that
are computed on-line to perform the segmentation. As a by-product of the processing, the auxiliary
labels “v” and “nv” indicate voiced and unvoiced segments, respectively.

and computational flow. Having to deal with several
frameworks can break the coherence of the global
chain. This constraint may be somewhat relaxed if the
interface between frameworks is very cleanly defined
and permits useful reasoning.

3. Deal with distributed target architectures. The need
for distributed architecture can come either from
performance requirements or from geographical con-
straints within the application.

4. Preserve determinism whenever possible. A system
is said to be deterministic if a given sequence of inputs
always produces the same sequence of outputs. Any
sensible functional description of the kind of real-
time system we discussed (information processing,
control, C3, etc.) should be obviously deterministic
in this sense: there is no reason the engineer should
want its procedure to behave in some unpredictable
manner. Furthermore, even when the implementation
of a complex system is globally nondeterministic,
most parts of it are individually deterministic. Since
deterministic programs are much simple to analyze
and debug that nondeterministic ones, tools should
not force nondeterminism unless specifically required

to. There are obviously subtle trade-offs between
determinism and concurrency when implementation
issues are considered.

5. Consider issues of speed. In all cases, the executable
codes should be efficient and avoid overheads due
to unnecessary run-time communications. Execution
times should be predictable whenever possible. For
real-time systems, if object code efficiency is not
enough to guarantee the respect of timing constraints,
timing issues should be incorporated in the model.

111. REAL-TIME PROGRAMMING: THE STATE OF THE ART
We review the techniques classically used for real-time

according to the previously mentioned issues (see [9] for a
more complete presentation):

1. Connecting classical programs by making them com-
municate using OS primitives. This is the most com-
mon way of doing things. There is presently a lot of
experience of using this technique, but its drawbacks
are rather numerous and severe. There is no single
object to study, but a set of more or less loosely
connected programs. Understanding, debugging, and
maintaining applications is hard. For the same rea-

BENVENISTE AND BERRY: APPROACH TO REAL-TIME SYSTEMS 1273

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

son, there is little room for clean automatic program
behavior analysis, and therefore no way of formally
guaranteeing safety properties. Last, operating sys-
tems are generally somewhat nondeterministic, unless
they are reduced to trivial sequencers, which in turn
makes programming harder.

2. Using finite-states machine, also called finite au-
tomata. These objects have numerous advantages:
they are deterministic, efficient, they can be auto-
matically analyzed by numerous available verification
systems. However, they have a severe drawback:
they do not directly support hierarchical design and
concurrency. A small change to a specification can
provoke a complete transformation of an automaton.
When they are put into cooperation, separately small
and pretty automata can yield a big ugly one. As
soon as they are large, automata become impossible
to understand for human beings.

3. Using Petri Nets or Petri-Net based formalisms such

4.

IV.
AND
AND

as the GRAFCET [24], [ll]. Such formalisms are
commonly used for comparatively small applications.
They naturally support concurrency, but they lack
modular structure and often lack determinism. They
do not scale up well to big applications.
Using classical Concurrent Programming Languages
such as ADA [6] or OCCAM [13]. These languages
take concurrency as a primary concern and support
modularity. They permit their user to see a single
program for a concurrent application. However, they
are essentially asynchronous and nondeterministic:
although a communication is seen as a synchroniza-
tion between two processes, the time taken between
the possibility of a communication and its actual
achievement can be arbitrary and is unpredictable.
When several communications can take place, their
actual order is also unpredictable. For all these rea-
sons, such languages are hardly adequate for real-time
programming. Finally, automatic program verification
is often not feasible since asynchrony makes the
programs state spaces explode. See [9] for more
details.

THE SYNCHRONOUS APPROACH TO REACTIVE
REAL-TIME SYSTEMS SPECIFICATION, DESIGN,
IMPLEMENTATION

We now turn to the synchronous approach and show
that it reconciles all aspects discussed in the previous
sections: it makes deterministic hierarchical concurrent
specification and programming possible, it leads to efficient
and controllable object code, and it makes it possible to use
automatic verification tools by avoiding or at least reducing
the state space explosion problem.

The basic idea is very simple: we consider ideal reactive
systems that produce their outputs synchronously with their
inputs, their reaction taking no observable time. This is akin
to the instantaneous interaction hypothesis of Newtonian
mechanics or standard electricity, a hypothesis which is

1274

well-known to make life simple and to be valid in most
practical cases. The main simplification lies in the fact
that sets of ideal systems compose very well into other
ideal systems. In the synchronous model, a system can be
decomposed into concurrent subcomponents at will without
affecting its observable behavior even with respect to timing
issues.

To illustrate the synchrony hypothesis, we shall start from
two extreme examples. First, we discuss the case of sequen-
tial tasks. Then, we discuss the case of regulators in process
control or adaptive filtering in signal processing. Based on
the first example we introduce the synchronous model as
an idealization of reactive systems where internal actions
and communications are instantaneous. Based on the second
example, we introduce the synchronous model as dealing
with systems of interconnected dynamical equations (the
block-diagrams of signal processing or control sciences),
or, equivalently, as a description of the traces. Then we
show how both points of view may be interchanged or
mixed together, leading to an idealized picture of general
real-time systems.

Note that it is not our purpose to be formal in this
introductory paper. We simply present an intuitive picture
of the synchronous style of modeling we want to promote.
Information on related formal models and their properties
can be found in the subsequent papers and references
therein.

A. A First Example: Clicking on a Mouse
We consider a mouse handler that has two inputs:
1. CLICK: a push-button;
2. TICK: a clock signal.

A first CLICK fires the GO module that watches for the
elapsed time to decide whether a SINGLE, or a DOUBLE
CLICK has been received (on the diagram of Fig. 3 the
maximum elapsed time is 4). The end of the enabling period
where the CLICKS are watched for is indicated by the signal
RELAX.

Obvious modularity considerations lead to consider this
small system as the composition of two communicating
subsystems, namely:

1. a module GO that is fired by the first click and delivers
RELAX at the end of the enabling period;

2. a module SIMPLENOUSE that outputs signals SIN-
GLE, or DOUBLE according to the above specification
when it receives RELAX.

Both modules and their resulting communication we call
MOUSE are shown in the modular state transition diagram
of Fig. 3. This figure should be read as follows. Each of the
two modules contains a state transition diagram; transitions
are labeled with words that list the events which must
occur simultaneously with the considered transition. When
two different words are assigned to a transition, then any
one of them may cause the transition to occur. The two
modules share RELAX as a common event, which means
that each time one module executes a transition involving
RELAX, then the other one must execute simultaneously

PROCEEDINGS OF THE IEEE, VOL. 19, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

CLICK :

SIMPLE-MOUSE
CLICK?.RELAX?.DOUBLE’

CLICK?. START ’

CLICK?.RELAX? DOUBLE’

1 c MOUSE

SINGLE DOUBLE
-

Fig. 3.
cation MOUSE.

The modules GO, SIMPLEJlOUSE, and their communi-

some transition involving the same event. This presentation
roughly follows the STATECHARTS style [3].

Such a specification of this toy system can be intuitively
accepted by the reader. This diagram, however, should be
interpreted according to the following rules.

1. Changes of state in each of the modules should be
considered as synchronous (or simultaneous) with the
reception of the mentioned input signals.

2. The emission of output signals in each of the modules
should be considered as synchronous (or simultane-
ous) with the associated change of state.

3. The communications follow the principle of “instan-
taneous broadcast” of the signals emitted by the
modules, which means that their reception is syn-
chronous (or simultaneous) with their emission.

4. The output behavior of MOUSE is entirely fixed when-
ever the global interleaving of the two input signals
TICK, CLICK is given by the environment.

internal actions
and communications are instantaneous. As a by-product,
outputs are synchronous with inputs as requested above.
The fourth point follows and implies that determinism is
preserved by synchronous concurrent composition.

An example of a global interleaving is given in the
following chronogram, where signals written on the same
column are simultaneous and events are ordered from left
to right:

To summarize the three first points,

1 TICK 1 TICK 1 TICK 1 TICK I I TICK I TICK 1
CLICK CLICK

This chronogram must be understood as a discrete event
one. Only the global ordering makes sense, the interval
between successive events does not need to be constant
with respect to some externally given notion of absolute
time. Actually, no physical notion of time is referred to
in the mouse specification, although in practice the TICK
input will often be generated by actual quartz clocks.

The synchronous model does nof specify how an input
chronogram is generated by the environment. This relies
on the actual implementation of the mouse as an electronic
device, using simple sensors and A/D converters. Then
providing a global input interleaving can depend on some
comparison of the actual instants of arrival of physical
signals actually bound to continuous time.

The mouse example reveals a fundamental feature of
our approach to real-time programming: thanks to the
above idealization of synchrony, the reactive part of our
system is made implementation independent, and only a
relatively very small part-building the global interleav-
ing-is implementation dependent and bound to physical
time. Most programming difficulties actually arise in the
reactive part in actual reactive problems. Later on, we shall
see that powerful formal reasoning can be performed on the
implementation-independent part, while some formal rea-
soning can be still also performed on the implementation-
dependent depending on the cases.2

We must recognize that we left aside the issue of com-
putation speed in this discussion, since we assumed an
infinitely fast machine was at hand. But it turns out that
this is too dogmatic an interpretation of the synchronous
model and that we can be more flexible. As an illustration,
consider again the chronogram above augmented with the
outputs corresponding to each input:

CLICK

START
RELAX
DOUBLE

Now, assume the mouse system has been actually imple-
mented in some environment subject to physical continuous
“real” time, and that the real time unit is plotted on the
horizontal axis. A realistic picture is to consider that the
separating vertical lines are elastic ones, i.e., that they may
be redrawn as oblique curves, provided that causality be
preserved (outputs must follow inputs). This is exactly what
is done when considering clock cycles in digital circuits. In
some cases, we can even make slots overlap to perform
pipelining. Taking into account physical time consumption
at the implementation level amounts to reason about such
a flexibility.

2For instance, we may prove here that any global interleaving is a
possible input to this system.

BENVENISTE AND BERRY: APPROACH TO REM-TIME SYSTEMS 1275

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

Fig. 4. A second order filter

U 0 t I

Altogether, we hope to haveconvinced the reader that
there are two distinct issues: implementation-independent
logical synchronization and qualitative timing on the one
hand and implementation-dependent physical time con-
sumption on the other hand. We further discuss this point
in the Section V. It should be remembered that our syn-
chronous model deals only with qualitative timing and
synchronization and not physical time consumption. Our
claim is that one should stay within the ideal synchronous
model as much as possible and consider actual timing
dependencies only when needed and where needed.

second

order

filter

B. A Second Example: Digital Filtering
The signal flow graph of a “second order digital filter”

in the classical direct form [21] is shown in Fig. 4. At
the nodes of this graph, incoming signals are added and
their result is broadcast along the outgoing branches. The
labels 2-l and ai , bj on the arcs denote a shift register and a
multiplication by the mentioned constant gain, respectively.
Accordingly, the signal flow graph of Fig. 4 is a coding of
the following formula:

where n denotes the time index. A little algebra yields
equivalently:

We can read this mathematical expression as describing a
machine which performs the specified filtering according
to the principles 1, 2, and 3 of synchronicity we have
introduced while discussing the mouse. This is certainly
a well-accepted idealization of a digital filter.

A slightly more subtle example is the signal flow graph
of Fig. 5 , which represents a two-port filter derived from
the preceding one. It corresponds to the formula

where U is a second input signal. Two input ports are needed
at the interface, as in the MOUSE example, and principle 4
applies here. But, what is new here is that not every global

V

P

Fig. 5. A two-port filter.

V

~

Fig. 6. A two port filter: modular specification.

interleaving is allowed for the two input signals u,u: to
each sample of U must correspond a unique sample of U.

Now, interconnecting digital filters is usually specified
by linking graphs, or equivalently by writing systems of
equations. For instance, the filter of Fig. 5 may be redrawn
in a modular way as shown in Fig. 6. But this corresponds
to replacing (dynamical or recurrent) (1) by a system of
equations in the usual mathematical sense:

zn = alYn-1+ a2yn-2 + boun + blUn-1+ b 2 ~ n - 2

Yn = zn + Un

where common names denote the same signal.

C. Toward the Synchronous Modeling Approach
The mouse example was naturally described using state

transition diagrams. The digital filter example was naturally
described in the mathematical framework of systems of
recurrent equations. Formal models corresponding to these
different frameworks can be shown equivalent. We find it
illustrative to perform the following exercise on these two
examples: crisscross the models, i.e., describe the digital
filter via a state transition diagram and the mouse via a
system of recurrent equations.

A state transition diagram for the digital filter. To
simplify our presentation, we shall replace the filter (1) by
the simpler one

Yn = alYn-1+ a 2 ~ n - 2 + Un (2)

Introduce the vector

PROCEEDINGS OF

signal

x,= [yn]
Yn-1

1276 THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

a

Fig. 7. State transition diagram of the filter.

and rewrite (2) in the “state space” form

Y n = [I OIXn. (3)

One time step of the system (3) would be written as follows
in a standard sequential programming language:

X := [Y 3 X + [XI; (4)

y := [l O]X (5)

This program is of the form (4);(5), i.e., it is composed
of two instructions separated by the PASCAL-like sequencer
“;”. Denote by CY the action performed by this program.
Then the state transition diagram corresponding to the
system (3) is shown in Fig. 7.

In this diagram, the state just counts the occurrences of
the input signal. The task is in fact entirely summarized
by the a label of the action (4);(5) which corresponds to a
single iteration of the recurrent equation.

A system of recurrent equations for the mouse. To
simplify our discussion, we shall only consider the
SIMPLENOUSE. We shall term an event the occurrence
of at least one of the input signals CLICK and RELAX.
Events will be indexed using the integers N = (1 ,2 ,3 , . . .}.
Then, we denote the subsequences of events where
CLICK and RELAX are respectively received by c =
{CllC2 , . . . , Cm,. ..} and R = (R1,R2 , . . . Rk , . . . }.
This simple mouse can be specified by the following system
of equations, where the running index n denotes the current
event:

N = C U R (6)
X , = if n E R, then 0 else min(2, X,-1 + l} (7)

M R ~ = if Rk E c, then m i n { 2 , X ~ , - 1 + 1)

else X R ~ -l (8)
if Rk E c, then X R ~ - ~ # 0 (9)

Equation (6) specifies that events consist of the occur-
rence of at least one of the inputs CLICK, RELAX.
X denotes the internal state of the counter. Equation
(7) expresses that X is reset to 0 whenever RELAX is
received and incremented whenever CLICK is received
but not RELAX. Note that the specification (6) is used
for (7) to be correct: since, according to (6), the index

n of events is incremented only if at least one input
signal has been delivered, the “else” in equation (7)
means n $! R and thus n E C.
The integer M R ~ , whose possible values are 1 , 2 is the
output. Equation (8) specifies that the output M has the
same index as R; the value carried by M is either the
previous value of the state (when RELAX is received
alone), or the previous value of the state incremented
by one (when both CLICK, RELAX are received).
Finally, equation (9) asserts that RELAX cannot occur
when the counter is in its initial state 0.

Hence we should call this a Multiple Clocked Recur-
rent System (MCRS), since different time indices are used
here. Obviously, handling more than 3 different indexes
in such a pedestrian way becomes intractable. The model
(6,7,8,9) also reveals clearly that the two subsequences
Cl,Cz, ... and R I , R2, ... are used. But knowing these
consists precisely in knowing the global interleaving of the
two input signals: this is precisely point 4 of the principles
of synchronicity. Again, no physical notion of time is used
here. Finally the model (6,7,8,9) consists of describing
relations between various signals rather than constructing
a machine whose behavior represents that of the desired
mouse. In particular, (9) specifies a constraint on the input
signal RELAX.

D. Summary of the Synchronous Model
The discussion above illustrates that two different in style

but equivalent forms of synchronous modeling may be used.
Both specify an ideal real-time machine with the following
features:

1. Output is synchronous with input, internal actions
are instantaneous, communications are performed via
instantaneous broadcasting,

2. The global interleaving of the external communica-
tions may be partially chosen by the environment and
is essential in analyzing the behavior of the system.

The two styles are:
State based formalisms. In the mouse example, we used

state transition diagrams where arrows were labeled by
communication actions. The Statecharts generalize this kind
of presentation. The CSML and ESTEREL formalisms have
a fairly similar but more implicit notion of state based
on control positions in an imperative program. All these
formalisms will be presented in this special issue. The
corresponding formal models are discussed in the papers
above or in the references therein.

Multiple Clocked Recurrent Systems (MCRS ’s). They
are a way to describe the legal traces of a system and are
generalizations of the usual models of dynamical systems
used in digital signal processing or control. This generaliza-
tion is needed to handle different timings and their relations,
which naturally arise in complex real-time applications. The
languages LUSTRE and SIGNAL, [4], [5] presented in this
special issue section mainly rely on this style of modeling;
proper references to corresponding formal models can be
found in these articles.

BENVENISTE AND BERRY: APPROACH TO REAL-TIME SYSTEMS 1277

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

State-based formalisms are easy and natural to use in
problems where control flow is prevalent, for example for
systems that often jump between many distinct functioning
modes (man-machine interfaces, protocols, control panels,
etc.). Writing concurrent components is easy at a syntactic
level, but defining the behavior of a concurrent composi-
tion is not easy: broadcasting signals has the effect that
concurrent components constrain each other in a nontrivial
way at each reaction. The overall behavior is given by a
fixpoint of a set of constraints, generally computed using
formal semantics given in Plotkin’s Structural Operational
Semantics inference-rules based style. Roughly speaking,
SOS are the convenient framework to handle state-based
formalisms in a modular style, just as if they were systems
of equations.

MRCS are clearly well-adapted to problems where data
flow is prevalent, signal processing being an obvious ex-
ample. The composition of MRCS is very easy to define
since they are standard mathematical equation systems.
Conversely, MRCS are weak where state-based approaches
are strong, that is when the complexity is in functioning
mode changes. Then the user must handle explicit control
variables to record the current mode, not an easy task.

It is shown in [SI, [12] that both styles allow to describe
the reactive aspects of all real-time system. In practice,
each style tends to be weak where the other one is strong.
Since we do not know yet how to combine both styles in a
common formalism nor whether this makes sense, we need
to use both in real applications, depending on the style of
individual parts. There is some present work not reported
in this special issue to make both styles as compatible as
possible, for example at the object code level.

E. Solving Communication Equations

approach, communication equations may have:
Be it in the state-based approach or in the MCRS

no solution: the constraints contradict each other, or
cycles of causality may exist that cannot be solved
using finite algorithms. Such contradictions or dead-
locks may involve the whole system, or only a sub-
system of it.
infinitely many solutions: the timing of the various
signals is not completely determined by the given
inputs, we get nondeterminism.
a single solution which is also an input-output map:
our program is deterministic, and is thus a suitable
candidate for proper execution.

All languages presented in this special issue have specific
algorithms to check these properties. In particular determin-
ism can be checked and guaranteed, an important feature
as we have discussed before.

F. Program Verification
In most reactive or real-time applications, it is important

to be able to formally verify program properties: liveness of
safety properties, respect of total or partial specifications.
There are various available software tools to perform such

verifications for the formalisms described in this special
issue. Some use model checkers to compare the infinite
sequence of events of a given program with a list of spec-
ified properties that are stated using a different formalism,
see for instance [1], [3] where temporal logic is used for
this purpose, and also [2]. Some other tools provide the
user with abstractions of the program, i.e., with reduced
programs that behave as the original one but involve only a
(small) subset of signals, see [2], [4] for such an approach.
Finally, in MCRS formalisms such as SIGNAL [5] and
LUSTRE [4], constraints or properties can be specified just
as further dynamical equations that must be implied by the
given system. Then there is no deep distinction between
program and safety properties and the standard program
compilers can act as verifiers.

V. SYNCHRONOUS MODELS VERSUS
ASYNCHRONOUS SYSTEMS

Actual machines for which the ideal synchronous model
is realistic do exist. For instance, strongly synchronized
hardware or VLSI architectures are such that internal ac-
tions and communications occur within a clock cycle, that
is within a “tick” in our sense. The only difference is
that outputs are given to the environment at the end of
the cycle and not synchronously with the inputs. Since
the cycle time is very short, say 100 ns, this is the best
approximation we can get. The language CSML [l] or the
hardware implementation of ESTEREL and LUSTRE [101
implement this point of view.

However, most of the machines used to support the
applications we listed in the Section I should be cer-
tainly considered as asynchronous in any reasonable sense.
Furthermore, real-time systems are often implemented on
distributed architecture, that is on sets of processors con-
nected by asynchronous means. Synchronous models as
introduced before can hardly be considered as realistic for
such target architectures.

In this section, we discuss implementation issues when
asynchronism must be considered. We first consider the
case of the digital filter and exhibit different realistic
implementations for which we can prove equivalence with
the original specification. Then, we consider a simple
example of token-based architecture as an instance of
asynchronous machine and show how reasoning on its
synchronization may be performed via considering an as-
sociated synchronous model.

A. Implementing the Digital Filter
An infinitely fast machine implementing (3) is certainly a

correct implementation of the digital filter of Fig. 7, but it is
obviously an unrealistic one. We shall discuss two relevant
alternatives.

A purely sequential implementation can be derived
from the signal flow graph of Fig. 5 in the following
classical way. First consider the associated dependency
graph obtained by cutting the branches labeled with a delay
2-l as shown in Fig. 8.

1278 PROCEEDINGS OF THE IEEE, VOL 79, NO. 9, SEPTEMBER 1991 -

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

1 T input: TI

F input: FL

boolean: true false

output: TI Fz

Fig. 8. The dependency graph corresponding to Fig. 5

. . .

. . .

. . .

. . .

We get an acyclic directed graph. Peeling this graph by
removing first the input nodes and then subsequent ones
yields a sequential execution scheme of each single time
step of the system. This is depicted in Fig. 9.

A data-flow (asynchronous) execution can be simply
derived by interpreting each node and branch in the graph
of Fig. 5 according to the data-flow mechanism shown in
Fig. 10.

What is important here is that we know before execu-
tion that this token mechanism will be nonblocking and
with bounded files. This property is well-known; it is
already used to guarantee well-behaved executions for
simple data-flow machines, see [19]. Note that similar
arguments can be used to justify asynchronous executions
i la Petri net of this filter.

This ability to validate asynchronous executions of our
synchronous ideal machines generalizes to the f i l l y general
reactive systems we can model with our approach. It is
beyond the scope of this paper to formally justify this claim
in a general fashion. We just present a simple example
and show how to associate a synchronous model with a
“generalized” data-flow machine [20] to validate it.

B. Validating Asynchronous Machines with
Synchronous Models

Figure 11 depicts the data-flow actors introduced in
[20].’ Let us concentrate on the SELECT operator, and
consider the run depicted in Fig. 12. We construct a

global “time indexing” of the tokens which is be consistent
in the following sense: the tokens that are consumed or
produced in a given firing must have the same time index.
By inspecting the run of Fig. 12, one easily checks that the
time indexing shown in Fig. 13 is consistent in the above
sense.

Let us collect the tokens with the same label into succes-
sive slots. We get a global interleaving of the four signals
involved in this actor shown as follows:
What we have derived here is a synchronous model asso-
ciated with the data-flow actor. Generally speaking, given
a data-flow graph built with the above primitive actors,
we can automatically build a synchronous model as an
interconnection of synchronous subsystems associated with
each actor. Then any of the formal verification methods
presented in this special issue can be applied to the obtained
synchronous model. It turns out that correctness of this
synchronous model4 guarantees a satisfactory execution of
the original data-flow graph for any input data sequence.

C. The Synchronous Approach to Asynchronous
Implementations

1. When feasible, strictly synchronous executions of
synchronous systems are certainly valid (cf. VLSI and
hardware).

2. Verification and proofs of correct synchronization and
logic are available in the synchronous approach to
real-time programming,

3. A sequential execution scheme can be derived at
compile time for any synchronous system.

3They were in fact inspired by the primitive operators of the SIGNAL
synchronous language we present in this special issue. ?cf. The remark at the very end of the Section 4

44 ‘ 3 etc ...

Fig. 9. Peeling the graph of Fig. 8.

BENVENISTE AND BERRY: APPROACH TO REAL-TIME SYSTEMS 1279

~

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

/ U

Fig. 10. Data-flow mechanisms for the graph of Fig. 5 .

ENABLED

I ENABLED

+
+

Fig. *F< 11. WABLED The data-flow actors introduced -q+< in [20].

4. The idealized strict synchronicity hypothesis can be
relaxed to yield fully asynchronous executions of
synchronous systems that are guaranteed correct.

5. The formal verification tools based on the synchronous
approach provide a way to validate asynchronous
executions.

Since both purely sequential (e.g., Von Neumann) and
purely asynchronous execution schemes cam be associ-
ated with synchronous systems, it is easy to believe that
mixed sequentiallasynchronous execution schemes cam be
derived as well. To conclude, using the synchronous and
asynchronous frameworks in the above suggested way
yields a much cleaner treatment of the specification +

implementation process. Again, we should point out that

12x0

Fig. 12. A run of SELECT.

T F

or. better: dy2 0 : absence

Fig. 13. A consistent time indexing of the tokens.

issues of physical time consumption are not considered here
as such; however, we think that our approach facilitates
their proper handling. This special issue reports various
experiments along this line.

VI.
ON THE ACTIVITY OF REAL-TIME PROGRAMMING

POSSIBLE IMPACT OF THE SYNCHRONOUS APPROACH

The techniques we presented here are clearly novel. This
has some consequences we discuss now.

The synchronous formalisms are based on very advanced
and powerful concepts and have clean mathematical seman-
tics. This is clearly a big progress compared to previous
tools. However, two questions are still largely open: that of
user interfaces and that of programming methodology.

Consider first user-interfaces. Some formalisms are purely
graphical (Statecharts), some are purely textual (CSML,

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

ESTEREL), and others can use both graphical and tex-
tual presentations indifferently (SIGNAL, LUSTRE). Speaking
first of graphical interfaces, STATECHARTS are state-oriented
while the block-diagram interface of SIGNAL is data-flow
oriented. None of these two choices covers the whole area
of reactive and real-time systems: state-oriented diagrams
are poor for signal processing and block-diagrams are poor
for state machines. When using textual formalisms, one
often needs to draw pictures to explain program archi-
tectures, but there is yet no clear way to make these
drawings formal rather than simply explanatory. Therefore,
while the principles of the synchronous approach have a
wide applicability, this is hardly the case for the particular
user interfaces available so far. The development of rich
and well-targeted user interfaces for synchronous languages
must be a technical priority.

Let us now turn to methodology. At least in the area
of real-time systems most potential users have a process-
oriented background5 rather than a computer science ori-
ented one. Furthermore, most of them are used to a par-
ticular way of thinking, say for example to state-based
reasoning rather than to equation manipulation. Since the
synchronous approach yields new design and programming
styles, one should develop methodologies that make these
styles easy to master. Such methodologies do not really
exist yet and their development will take some time.
They should of course be based on elaborate software
development environments and on fancy user-interfaces.

Tools that are considered as user-friendly in a particular
application domain do exist: we can cite for example the
GRAFCET. However, their associated formalisms definitely
lack precise semantics. While this can be accepted in simple
situations, it becomes unacceptable when safety is critical.
There might actually be a reasonable way to make a smooth
transition from existing tools to really rigorous ones: to
build programming environments externally based on ex-
isting formalisms but internally based on the synchronous
approach and on rigorous semantics.

Finally, it is important to note that synchronous languages
are not completely bound to nondeterminism. Some of the
synchronous languages perfectly well accept nondetermin-
istic programs as modules, although they refuse to produce
deterministic code out of them. Nondeterministic modules
can be useful to model the environment or the controlled
physical process. This might be the basis for a design
methodology of real-time software based on a joint handling
of the application and of a model of the physical process.
Such an approach is standard in control systems design; it is
interesting to note that it might become valid for real-time
programming as well.

VII. CONCLUSION
We have first discussed the major issues in the area of

reactive and real-time programming, insisting particularly
on safety constraints. We have then informally presented the

SThey are typically chemical, mechanical, aircraft, control engineers,
etc.

new synchronous programming approach. Based on simple
examples, we have discussed two orthogonal synchronous
styles and their semantics: a state-based style and a data-
flow based style. Each style applies to a particular class
of problems; complex applications will certainly require
the cooperation of both. We have briefly discussed how to
verify program properties and how to make asynchronous
implementations look like synchronous ones.

The other papers in this Special Issue will present the
existing specific synchronous formalisms and the associ-
ated software tools for program simulation, compiling, and
verification. They will support our general claim that syn-
chronous programming opens a new path toward powerful,
rigorous, and usable methodologies for reactive and real-
time programming.

ACKNOWLEDGMENT
The authors are indebted to several reviewers who pointed

out misleading and obscure claims in the first version. They
would like to thank especially E. Clarke for his careful
reading and criticism of the manuscript.

REFERENCES

CSML, see this issue.
ESTLREL, see this issue.
STATECHARTS, see this issue.
LUSTRE, see this issue.
SIGNAL, see this issue.
ADA, The Programming Language ADA Reference Manual.
New York: Springer Verlag, LNCS 155, 1983.
R. Andrk-Obrecht, “A new statistical approach for the auto-
matic segmentation of continuous speech signals,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 36, pp. 29-40, 1988.
A. Benveniste, P. Le Guernic, Y. Sorel, and M. Sorine, “A
denotational theory of synchronous communicating systems,”
Inform. Comput., to be published.
G. Berry, “Real time programming: Special purpose languages
or general purpose languages,” presented at the 11th IFIP World
Congress, San Francisco, CA, 1989.
-, “A hardware implementation of pure Esterel,” in Proc.
Workshop on Formal Methods in VLSI Design, Miami, FL,
1991.
M. Blanchard, Comprendre, maitriser et appliquer le GRAFCET.
Cepadues Editions, 1979.
P. Caspi, “Clocks in data-flow languages,” Theoretical Comp.
Sci., 1990.
Inmos Ltd., The OCCAM Programming Manual. Englewood
Cliffs, NJ: Prentice-Hall, 1984.
D. Harel and A. Pnueli, “On the development of reactive
systems” in Logics and Models of Concurrent Svstems. NATO - ,
AS1 Series, vol. 13, K. R. Apt, Ed. New York: Springer-
Verlag, pp. 477-498, 1985.
G. Berry, S . Moisan, and J-P. Rigault, “Esterel: Toward a
synchronous and semantically sound high level language for
real time applications,” in Proc. IEEE Real Time Systems Symp.,
1983.
J.-L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud, and E.
Pilaud, “Outline of a real-time data-flow language,” in I985
Real-Time Symp., San Diego, CA, 1985.
P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier,
“SIGNAL: A data-flow oriented language for signal processing,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34,

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.
Sherman, A. Shtul-Trauring, and M. Trakhtenbrot, “STATE-
MATE: A working environment for the development of com-
plex 14 systems,” IEEE Trans. Software Eng. vol. 16, pp.

pp. 362-374, 1986.

403-414. 1990.

BENVENISTE AND BERRY: APPROACH TO REAL-TIME SYSTEMS 1281

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

[19] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous data flow programs for digital signal processing,”
IEEE Trans. Computers, vol. C-36, Jan. 1987.

[20] E. A. Lee, “Consistency in data-flow graphs”, Research Re-
port UCBERL M891125, Electronics Research Lab., College
of Eng., U. C. Berkeley, 1989; also, IEEE Trans. Parallel
Distributed Syst., vol. 2, pp. 223-235, Apr. 1991.

[21] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal
Processing.

[22] J. Picone, “Continuous speech recognition using hidden Markov
models,” IEEE ASSP Mag., vol. 7, pp. 26-41, 1990.

[23] A. Pnueli, “Applications of temporal logic to the specification
and verification of reactive systems: A survey of current trends”,

Englewood Cliffs, NJ: Prentice Hall, 1989.

1282

in Current Trends in Concurrency, de Bakker et al., Eds.,
Lecture Notes in Comput. Sci., vol. 224, Berlin, Germany:
Springer-Verlag, pp. 510-584, 1986.

[24] W. Reisig, Petri Nets. New York: Springer, 1985.

Albert Benveniste (Fellow, IEEE), for a photograph and biography please
see page 1269 of this issue.

GCrard Berry, for a photograph and biography please see page 1269 of
this issue.

PROCEEDINGS OF THE IEEE. VOL. 79, NO. 9, SEPTEMBER 1991

7-
,

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore. Restrictions apply.

