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This special issue is devoted to the synchronous approach 
to reactive and real-time programming. This introductory paper 
presents and discusses the application fields and the principles of 
synchronous programming. The major concern of the synchronous 
approach is to base synchronous programming languages on math- 
ematical models. This makes it possible to handle compilation, 
logical correctness proofs, and verifications of real-time programs 
in a formal way, leading to a clean and precise methodology for 
design and programming. 

1. INTRODUCTION: REAL-TIME AND REACTIVE SYSTEMS 
It is commonly accepted to call real-time a program or 

system that receives external interrupts or reads sensors 
connected to the physical world and outputs commands to 
it. Real-time programming is an essential industrial activ- 
ity whose importance keeps increasing. Factories, plants, 
transportation systems, cars, and a wide variety of everyday 
objects are or will be computer controlled. 

However, there is still little agreement about what the 
precise definition of a real-time system should be. Here, 
we propose to call reactive a system that maintains a 
permanent interaction with its environment’ and to reserve 
the word real-time for reactive systems that are in addition 
subject to externally defined timing constraints. The broad 
class of reactive applications, therefore, contains all real- 
time applications as well as non-real-time applications 
such as classical communication protocols, man-machine 
interfaces, etc. 

Safety is a crucial concern for reactive and real-time 
programs. In this area, a simple bug can have extreme 
consequences. Logical correctness is the respect of the 
input/output specification; it is essential in all cases. Tem- 
poral correctness is a further requirement of real-time 
applications: a logically correct real-time program can fail 
to adequately control its environment if its outputs are 
not produced on time. Notice that the expressions “timing 

Manuscript received September 15, 1990; revised March 9, 1991. 
A. Benveniste is with IRISA-INRIA, Campus de Beaulieu, France. 
G. Berry is with Ecole des Mines, Centre de MathCmatiques AppliquCes 

IEEE Log Number 9102298. 
’The notion of a reactive system was first introduced in [14], (231. 

Sophia-Antipolis, France. 

constraints” and “on time” should not be taken too literally, 
since constraints are not necessarily expressed in terms of 
physical time; for example, “stop in less than 30 meter” is 
a timing constraint expressed by a distance. 

Historically, reactive and real-time applications evolved 
mostly from the use of analog machines and relay circuits 
to the use of microprocessors and computers. They did not 
benefit from the recent progress in programming technology 
as much as did other fields. Although strongly technically 
related, the various application fields are treated by different 
groups of people having their own methods and vocabulary, 
and little relation has been established between them. The 
programming tools are still often low-level and specific. 
For instance, one uses calls to specific operating systems 
to monitor the communications between modules written 
in standard languages, such as Assembly or C ,  and one 
writes nonportable programs designed to drive very specific 
hardware units. 

The present situation must change rapidly. Modern appli- 
cations will require strong interactions between application 
fields that used to be separated, and specific vocabularies 
or tools must be unified whenever possible to keep large 
systems tractable. Low-level programming techniques will 
not remain acceptable for large safety-critical programs, 
since they make behavior understanding and analysis almost 
impracticable. As in all other fields of computing, hardware 
independence will be forced by the fact that software has 
a much longer lifetime than hardware. Finally, it will be 
necessary and sometimes even required to formally verify 
the correctness of programs at least with respect to their 
crucial safety properties. All these new requirements call 
for rigorous concepts and programming tools and for the 
use of automatic verification systems. 

The goal of this special issue is to present the syn- 
chronous approach to reactive and real-time systems, as 
well as the associated software tools and verification tech- 
niques. The synchronous approach is based on a relatively 
small variety of concepts and methods based on deep, 
elegant, but simple mathematical principles. Roughly, the 
main idea is to first consider ideal systems that produce their 
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outputs synchronously with their inputs. Such synchronous 
systems compose very well and turn out to be easier to 
describe and analyze that asynchronous ones. Furthermore, 
sophisticated algorithms can take advantage of the syn- 
chrony hypothesis to produce highly efficient code. Of 
course, the object codes are not really synchronous, but they 
are often of predictable behavior unlike fully asynchronous 
code (predictability is a key to correctly deal with speed is- 
sues of actual implementation; we shall not study this point 
here, referring to the specific papers). Automatic algorithms 
can adapt the resulting code to distributed architectures. 

The synchronous programming concept was first intro- 
duced for software in [14]-[17], but one must say that it 
bears many similarities with classical hardware concepts: in 
a clocked digital circuit, communication between subcom- 
ponents behaves as fully synchronous provided the clock is 
not too fast. Clock speed is predictable and all CAD tools 
can actually report to which clock speed a precise circuit 
can work. 

Before presenting synchronous programming, we shall 
review the area of real-time systems and the presently 
prevalent programming tools 

11. REACTIVE AND REAL-TIME SYSTEMS: 
EXAMPLES AND MAIN ISSUES 

It is not our purpose to be exhaustive, but we feel it is 
necessary to analyze some examples of how diverse reactive 
and real-time systems can be. We shall first present the main 
application areas. We shall then present two case studies in 
more detail. Finally, we shall mention the main issues in 
reactive and real-time system development. 

A. Application Areas 

complexity: 
We list the applications areas in increasing order of 

1. Pure task sequencers are typically encountered in 
command boards, man-machine interfaces, or more 
generally computer integrated manufacturing (CIM). 
They deal with sequence of tasks such as 

PUT-OB JECT-ON-BELT; B E L T - I N J I O T I O N ;  

DETECT-OBJECT;  GRASP-OBJECT.  

Several elementary sequences may occur in parallel 
and cooperate for instance via shared events 
(PUT-OBJECT-ON-BELT can refer to events shared 
by a robot and by a belt). Task sequencers can be 
objects of high combinatorial complexity, so that the 
main issue here is to provide a formal method to 
convert a specification, i.e., a description that is easily 
understandable, into an efficient implementation, for 
instance the transition table of an automaton. 

2. Communication protocols are encountered in var- 
ious kinds of networks, and in particular in real- 
time local-area networks. Similar comments may be 
drawn as for tasks sequencers, in particular as far as 
combinatorial complexity is concerned. 

3. Low level signal processing of which sensor data 
processing and signal processing in digital communi- 
cation systems are typical instances. Digital filtering is 
here the basic item. At first sight, it can be considered 
as the direct adaptation of analog filtering to digital 
computing techniques. But the rapidly growing use 
of adaptive filtering makes digital signal processing 
evolve toward a computationally intensive real-time 
activity. The main issue is to achieve high throughput, 
so that it is desirable to handle both algorithm and 
architecture within the same framework. 

4. Industrial process control involves regulators that 
are supervised via internally or externally generated 
interruptions and sequential tasks. The main challenge 
is to provide a tool that is flexible enough to sup- 
port an easy specification, and powerful enough to 
guarantee that the actual implementation meets the 
specification. 

5. Complex signal processing systems such as radar 
and sonar involve preprocessing of signals, fol- 
lowed by drastic data-compression via detection- 
and-labeling, and then by logically complex data- 
processing modules (data fusion, decision handling, 
etc.). This results in computationally intensive real- 
time systems where many events are generated and 
further combined to fire new computations. The same 
remarks hold as for process control. The issue of 
speed becomes much more important. 

6. Complex Control-and-Monitoring systems govern 
aircraft and transportation systems as well as haz- 
ardous industrial plants. They can involve thousands 
of sensors, hundreds of actuators, and dozens of 
interconnected computer systems. Data can be pro- 
cessed in numerous operating modes, for example for 
maintenance or safety purposes. Heuristics of high 
combinatorial complexity typically may compose up 
to 90% of the application software code. Highly 
distributed target architectures must be considered. 
The safety constraints are obviously critical. 

7. C3-systems (Command-Control-Communicate) or 
even C31-systems (‘1’ for “~ntelligent”) are encoun- 
tered in military systems, in air traffic control systems, 
and also in large ground transportation systems. A 
further difficulty here is the highly distributed nature 
of the architecture supporting the real-time system: 
subsystems are moving, so that communication links 
cannot be considered as time-invariant. 

B. A First Case Study: Automobile Control 
Transportation systems involve numerous reactive sys- 

tems, some of which bear severe real-time constraints. Let 
us take an automobile as an example. 

There are or will be specific controllers for fuel injection, 
brakes, suspension, direction, etc. Each of those involves 
reactive programs that do numerical computations and 
have numerous functioning states, in particular because of 
hardware failure handling. 
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Fig. 1. A speech-to-phoneme recognition system. 

In the future, all these controllers will not stay indepen- 
dent of each other. They will have to be linked together for 
global coordination, for instance, to make cars lean inwards 
in curves. Coordination can be performed in two ways: 
either by distributing information from each controller to 
the other ones, thus making each of them much more 
complex, or by building a centralized controller that is 
itself a complex reactive system. In both approaches, there 
will be no easy solution and the safety problems will 
greatly increase. Linking the controllers together will be 
done by local area networks, involving themselves with 
fast protocols which are nontrivial reactive programs. 

At the user end, panels and man-machine interfaces will 
be computerized. Again, this will involve numerous reactive 
programs. Furthermore, one of the essential functions in car 
automation will be failure detection and reporting. This dif- 
ficult area is often underestimated: the messages to the user 
or repairer should be simple and should not involve dozen 
of individual failures. This will require a clever mixture of 
reactive programming, signal processing, and heuristics. 

Similar situations of course appear in almost all trans- 
portation systems. For automobiles, there is a rather strong 
additional constraint: the price of hardware should be as 
small as possible, which means that programs are also 
subject to severe size constraints. 

C. A Second Case Study: Speech Recognition Systems 
Speech recognition systems are do not bear hard real-time 

constraints: the time response between the input (spoken 
language) and the output (text on screen or input to some 
other system) may be only loosely constrained. Never- 
theless, the continuous speech signal must be processed 
on-line to avoid unbounded buffering. Hence, continuous 
speech recognition is a good prototype of application where 
high-speed numerical preprocessing as well as complex 
symbolic postprocessing is required. Similar examples are 
found in data communication, pattern recognition, military 
systems, process monitoring, and troubleshooting systems. 
We describe here briefly the speech-to-phoneme recognition 
system developed at IRISA [7]. Its overall organization is 
shown in the Fig. 1. The originality of this system lies in 
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its use of a segmentation of the continuous speech signal 
prior to any recognition. The automaton supervises the 
segmentation; it fires small modules to compute cepstra, 
a representation of the spectral characteristics of the sig- 
nal, associated with detected segments as well as some 
acousticlphonetic cues. All these modules are numerically 
oriented. Finally, high level processing is performed fol- 
lowing a technique close to Hidden-Markov Model (HMM) 
methods [22]: maximum likelihood decoding based on a 
stochastic automaton. This is again a numerically as well 
as logically oriented module. 

To illustrate further how signal processing algorithms 
may give rise to reactive systems, let us give additional 
details on the segmentation module. The outcome of this 
processing is shown in the Fig. 2. The segmentation pro- 
cedure is mainly numerically oriented and is performed 
on-line. Detection of change occurs with a bounded delay, 
so that the speech signal must be reprocessed from the 
estimated change time. Furthermore, some local backward 
processing of the speech signal is also needed. Hence, while 
this is still a real-time processing of speech signal, its timing 
is far from being trivial. Therefore, writing a real-time 
oriented programming of this processing in C or FORTRAN 
is a tedious and error-prone task. 

To summarize, this example is a good prototype of a 
complex real-time signal processing application. It may be 
compared to radar systems for example. 

D. Reactive and Real-time Sys t ems4a jor  Issues 
Most reactive and real-time systems naturally decom- 

pose into communicating concurrent components. The pro- 
gramming architecture must follow this decomposition. 
Hence, all aspects related to concurrency are important: 
communication, synchronization, and organization of the 
computational flow. We shall refer to these aspects as 
qualitative ones. The timing constraints imposed on real- 
time systems also impose to consider quantitative aspects 
mostly related to the speed of computations. Here are the 
major issues related to these aspects: 

1. 

2. 

--- 

Use modular and formal techniques to specify, 
implement, and verify programs. The specification- 
implementation cycle is a major issue in the software 
life cycle. Modular programming is necessary to 
reflect the conceptual architecture into the programs 
themselves. Relying on a discipline of programming 
based on manual translations from specification to 
implementation is known not to guarantee enough 
safety. One should therefore provide modular tools 
that formally and inherently guarantee the equivalence 
preserving throughout the specification + implemen- 
tation process and give access to formal verifica- 
tion techniques. Notice that these tools must perform 
nontrivial transformations, since there is usually no 
perfect match between the functional architecture and 
the target computer architecture. 
Encompass within a single framework all reactive 
aspects, i.e., communication, synchronization, logic, 
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Fig. 2. The segmentation module. The detected segments are superimposed on the signal (top 
line). Subsequent lines show the behavior of several auxiliary quantities (the divergence tests) that 
are computed on-line to perform the segmentation. As a by-product of the processing, the auxiliary 
labels “v” and “nv” indicate voiced and unvoiced segments, respectively. 

and computational flow. Having to deal with several 
frameworks can break the coherence of the global 
chain. This constraint may be somewhat relaxed if the 
interface between frameworks is very cleanly defined 
and permits useful reasoning. 

3. Deal with distributed target architectures. The need 
for distributed architecture can come either from 
performance requirements or from geographical con- 
straints within the application. 

4. Preserve determinism whenever possible. A system 
is said to be deterministic if a given sequence of inputs 
always produces the same sequence of outputs. Any 
sensible functional description of the kind of real- 
time system we discussed (information processing, 
control, C3, etc.) should be obviously deterministic 
in this sense: there is no reason the engineer should 
want its procedure to behave in some unpredictable 
manner. Furthermore, even when the implementation 
of a complex system is globally nondeterministic, 
most parts of it are individually deterministic. Since 
deterministic programs are much simple to analyze 
and debug that nondeterministic ones, tools should 
not force nondeterminism unless specifically required 

to. There are obviously subtle trade-offs between 
determinism and concurrency when implementation 
issues are considered. 

5.  Consider issues of speed. In all cases, the executable 
codes should be efficient and avoid overheads due 
to unnecessary run-time communications. Execution 
times should be predictable whenever possible. For 
real-time systems, if object code efficiency is not 
enough to guarantee the respect of timing constraints, 
timing issues should be incorporated in the model. 

111. REAL-TIME PROGRAMMING: THE STATE OF THE ART 
We review the techniques classically used for real-time 

according to the previously mentioned issues (see [9] for a 
more complete presentation): 

1. Connecting classical programs by making them com- 
municate using OS primitives. This is the most com- 
mon way of doing things. There is presently a lot of 
experience of using this technique, but its drawbacks 
are rather numerous and severe. There is no single 
object to study, but a set of more or less loosely 
connected programs. Understanding, debugging, and 
maintaining applications is hard. For the same rea- 
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son, there is little room for clean automatic program 
behavior analysis, and therefore no way of formally 
guaranteeing safety properties. Last, operating sys- 
tems are generally somewhat nondeterministic, unless 
they are reduced to trivial sequencers, which in turn 
makes programming harder. 

2. Using finite-states machine, also called finite au- 
tomata. These objects have numerous advantages: 
they are deterministic, efficient, they can be auto- 
matically analyzed by numerous available verification 
systems. However, they have a severe drawback: 
they do not directly support hierarchical design and 
concurrency. A small change to a specification can 
provoke a complete transformation of an automaton. 
When they are put into cooperation, separately small 
and pretty automata can yield a big ugly one. As 
soon as they are large, automata become impossible 
to understand for human beings. 

3. Using Petri Nets or Petri-Net based formalisms such 

4. 

IV. 
AND 
AND 

as the GRAFCET [24], [ll]. Such formalisms are 
commonly used for comparatively small applications. 
They naturally support concurrency, but they lack 
modular structure and often lack determinism. They 
do not scale up well to big applications. 
Using classical Concurrent Programming Languages 
such as ADA [6] or OCCAM [13]. These languages 
take concurrency as a primary concern and support 
modularity. They permit their user to see a single 
program for a concurrent application. However, they 
are essentially asynchronous and nondeterministic: 
although a communication is seen as a synchroniza- 
tion between two processes, the time taken between 
the possibility of a communication and its actual 
achievement can be arbitrary and is unpredictable. 
When several communications can take place, their 
actual order is also unpredictable. For all these rea- 
sons, such languages are hardly adequate for real-time 
programming. Finally, automatic program verification 
is often not feasible since asynchrony makes the 
programs state spaces explode. See [9] for more 
details. 

THE SYNCHRONOUS APPROACH TO REACTIVE 
REAL-TIME SYSTEMS SPECIFICATION, DESIGN, 
IMPLEMENTATION 

We now turn to the synchronous approach and show 
that it reconciles all aspects discussed in the previous 
sections: it makes deterministic hierarchical concurrent 
specification and programming possible, it leads to efficient 
and controllable object code, and it makes it possible to use 
automatic verification tools by avoiding or at least reducing 
the state space explosion problem. 

The basic idea is very simple: we consider ideal reactive 
systems that produce their outputs synchronously with their 
inputs, their reaction taking no observable time. This is akin 
to the instantaneous interaction hypothesis of Newtonian 
mechanics or standard electricity, a hypothesis which is 
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well-known to make life simple and to be valid in most 
practical cases. The main simplification lies in the fact 
that sets of ideal systems compose very well into other 
ideal systems. In the synchronous model, a system can be 
decomposed into concurrent subcomponents at will without 
affecting its observable behavior even with respect to timing 
issues. 

To illustrate the synchrony hypothesis, we shall start from 
two extreme examples. First, we discuss the case of sequen- 
tial tasks. Then, we discuss the case of regulators in process 
control or adaptive filtering in signal processing. Based on 
the first example we introduce the synchronous model as 
an idealization of reactive systems where internal actions 
and communications are instantaneous. Based on the second 
example, we introduce the synchronous model as dealing 
with systems of interconnected dynamical equations (the 
block-diagrams of signal processing or control sciences), 
or, equivalently, as a description of the traces. Then we 
show how both points of view may be interchanged or 
mixed together, leading to an idealized picture of general 
real-time systems. 

Note that it is not our purpose to be formal in this 
introductory paper. We simply present an intuitive picture 
of the synchronous style of modeling we want to promote. 
Information on related formal models and their properties 
can be found in the subsequent papers and references 
therein. 

A. A First Example: Clicking on a Mouse 
We consider a mouse handler that has two inputs: 
1. CLICK: a push-button; 
2. TICK: a clock signal. 

A first CLICK fires the GO module that watches for the 
elapsed time to decide whether a SINGLE, or a DOUBLE 
CLICK has been received (on the diagram of Fig. 3 the 
maximum elapsed time is 4). The end of the enabling period 
where the CLICKS are watched for is indicated by the signal 
RELAX. 

Obvious modularity considerations lead to consider this 
small system as the composition of two communicating 
subsystems, namely: 

1. a module GO that is fired by the first click and delivers 
RELAX at the end of the enabling period; 

2. a module SIMPLENOUSE that outputs signals SIN- 
GLE, or DOUBLE according to the above specification 
when it receives RELAX. 

Both modules and their resulting communication we call 
MOUSE are shown in the modular state transition diagram 
of Fig. 3. This figure should be read as follows. Each of the 
two modules contains a state transition diagram; transitions 
are labeled with words that list the events which must 
occur simultaneously with the considered transition. When 
two different words are assigned to a transition, then any 
one of them may cause the transition to occur. The two 
modules share RELAX as a common event, which means 
that each time one module executes a transition involving 
RELAX, then the other one must execute simultaneously 
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The modules GO, SIMPLEJlOUSE, and their communi- 

some transition involving the same event. This presentation 
roughly follows the STATECHARTS style [3].  

Such a specification of this toy system can be intuitively 
accepted by the reader. This diagram, however, should be 
interpreted according to the following rules. 

1. Changes of state in each of the modules should be 
considered as synchronous (or simultaneous) with the 
reception of the mentioned input signals. 

2. The emission of output signals in each of the modules 
should be considered as synchronous (or simultane- 
ous) with the associated change of state. 

3. The communications follow the principle of “instan- 
taneous broadcast” of the signals emitted by the 
modules, which means that their reception is syn- 
chronous (or simultaneous) with their emission. 

4. The output behavior of MOUSE is entirely fixed when- 
ever the global interleaving of the two input signals 
TICK, CLICK is given by the environment. 

internal actions 
and communications are instantaneous. As a by-product, 
outputs are synchronous with inputs as requested above. 
The fourth point follows and implies that determinism is 
preserved by synchronous concurrent composition. 

An example of a global interleaving is given in the 
following chronogram, where signals written on the same 
column are simultaneous and events are ordered from left 
to right: 

To summarize the three first points, 

1 TICK 1 TICK 1 TICK 1 TICK I I TICK I TICK 1 
CLICK CLICK 

This chronogram must be understood as a discrete event 
one. Only the global ordering makes sense, the interval 
between successive events does not need to be constant 
with respect to some externally given notion of absolute 
time. Actually, no physical notion of time is referred to 
in the mouse specification, although in practice the TICK 
input will often be generated by actual quartz clocks. 

The synchronous model does nof specify how an input 
chronogram is generated by the environment. This relies 
on the actual implementation of the mouse as an electronic 
device, using simple sensors and A/D converters. Then 
providing a global input interleaving can depend on some 
comparison of the actual instants of arrival of physical 
signals actually bound to continuous time. 

The mouse example reveals a fundamental feature of 
our approach to real-time programming: thanks to the 
above idealization of synchrony, the reactive part of our 
system is made implementation independent, and only a 
relatively very small part-building the global interleav- 
ing-is implementation dependent and bound to physical 
time. Most programming difficulties actually arise in the 
reactive part in actual reactive problems. Later on, we shall 
see that powerful formal reasoning can be performed on the 
implementation-independent part, while some formal rea- 
soning can be still also performed on the implementation- 
dependent depending on the cases.2 

We must recognize that we left aside the issue of com- 
putation speed in this discussion, since we assumed an 
infinitely fast machine was at hand. But it turns out that 
this is too dogmatic an interpretation of the synchronous 
model and that we can be more flexible. As an illustration, 
consider again the chronogram above augmented with the 
outputs corresponding to each input: 

CLICK 

START 
RELAX 
DOUBLE 

Now, assume the mouse system has been actually imple- 
mented in some environment subject to physical continuous 
“real” time, and that the real time unit is plotted on the 
horizontal axis. A realistic picture is to consider that the 
separating vertical lines are elastic ones, i.e., that they may 
be redrawn as oblique curves, provided that causality be 
preserved (outputs must follow inputs). This is exactly what 
is done when considering clock cycles in digital circuits. In 
some cases, we can even make slots overlap to perform 
pipelining. Taking into account physical time consumption 
at the implementation level amounts to reason about such 
a flexibility. 

2For instance, we may prove here that any global interleaving is a 
possible input to this system. 
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Fig. 4. A second order filter 

U 0  t I 

Altogether, we hope to haveconvinced the reader that 
there are two distinct issues: implementation-independent 
logical synchronization and qualitative timing on the one 
hand and implementation-dependent physical time con- 
sumption on the other hand. We further discuss this point 
in the Section V. It should be remembered that our syn- 
chronous model deals only with qualitative timing and 
synchronization and not physical time consumption. Our 
claim is that one should stay within the ideal synchronous 
model as much as possible and consider actual timing 
dependencies only when needed and where needed. 

second 

order 

filter 

B. A Second Example: Digital Filtering 
The signal flow graph of a “second order digital filter” 

in the classical direct form [21] is shown in Fig. 4. At 
the nodes of this graph, incoming signals are added and 
their result is broadcast along the outgoing branches. The 
labels 2-l and ai ,  bj  on the arcs denote a shift register and a 
multiplication by the mentioned constant gain, respectively. 
Accordingly, the signal flow graph of Fig. 4 is a coding of 
the following formula: 

where n denotes the time index. A little algebra yields 
equivalently: 

We can read this mathematical expression as describing a 
machine which performs the specified filtering according 
to the principles 1, 2, and 3 of synchronicity we have 
introduced while discussing the mouse. This is certainly 
a well-accepted idealization of a digital filter. 

A slightly more subtle example is the signal flow graph 
of Fig. 5 ,  which represents a two-port filter derived from 
the preceding one. It corresponds to the formula 

where U is a second input signal. Two input ports are needed 
at the interface, as in the MOUSE example, and principle 4 
applies here. But, what is new here is that not every global 

V 

P 

Fig. 5. A two-port filter. 

V 

~ 

Fig. 6. A two port filter: modular specification. 

interleaving is allowed for the two input signals u,u: to 
each sample of U must correspond a unique sample of U. 

Now, interconnecting digital filters is usually specified 
by linking graphs, or equivalently by writing systems of 
equations. For instance, the filter of Fig. 5 may be redrawn 
in a modular way as shown in Fig. 6. But this corresponds 
to replacing (dynamical or recurrent) ( 1 )  by a system of 
equations in the usual mathematical sense: 

zn = alYn-1+ a2yn-2 + boun + blUn-1+ b 2 ~ n - 2  

Yn = zn + Un 

where common names denote the same signal. 

C. Toward the Synchronous Modeling Approach 
The mouse example was naturally described using state 

transition diagrams. The digital filter example was naturally 
described in the mathematical framework of systems of 
recurrent equations. Formal models corresponding to these 
different frameworks can be shown equivalent. We find it 
illustrative to perform the following exercise on these two 
examples: crisscross the models, i.e., describe the digital 
filter via a state transition diagram and the mouse via a 
system of recurrent equations. 

A state transition diagram for the digital filter. To 
simplify our presentation, we shall replace the filter (1) by 
the simpler one 

Yn = alYn-1+ a 2 ~ n - 2  + Un (2) 

Introduce the vector 

PROCEEDINGS OF 

signal 

x,= [ yn ] 
Yn-1 
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a 

Fig. 7. State transition diagram of the filter. 

and rewrite (2) in the “state space” form 

Y n  = [I OIXn. (3) 

One time step of the system (3) would be written as follows 
in a standard sequential programming language: 

X := [Y 3 X  + [XI; (4) 

y := [l O]X ( 5 )  

This program is of the form (4);(5), i.e., it is composed 
of two instructions separated by the PASCAL-like sequencer 
“;”. Denote by CY the action performed by this program. 
Then the state transition diagram corresponding to the 
system (3) is shown in Fig. 7. 

In this diagram, the state just counts the occurrences of 
the input signal. The task is in fact entirely summarized 
by the a label of the action (4);(5) which corresponds to a 
single iteration of the recurrent equation. 

A system of recurrent equations for the mouse. To 
simplify our discussion, we shall only consider the 
SIMPLENOUSE. We shall term an event the occurrence 
of at least one of the input signals CLICK and RELAX. 
Events will be indexed using the integers N = (1 ,2 ,3 ,  . . .}. 
Then, we denote the subsequences of events where 
CLICK and RELAX are respectively received by c = 
{CllC2 , . . . ,  Cm,.  ..} and R = (R1,R2 , . . .  Rk , . . .  }. 
This simple mouse can be specified by the following system 
of equations, where the running index n denotes the current 
event: 

N = C U R  (6) 
X ,  = if n E R, then 0 else min(2, X,-1 + l} (7) 

M R ~  = if Rk E c, then m i n { 2 , X ~ , - 1  + 1) 

else X R ~  -l (8) 
if Rk E c, then X R ~ - ~  # 0 (9) 

Equation (6) specifies that events consist of the occur- 
rence of at least one of the inputs CLICK, RELAX. 
X denotes the internal state of the counter. Equation 
(7) expresses that X is reset to 0 whenever RELAX is 
received and incremented whenever CLICK is received 
but not RELAX. Note that the specification (6) is used 
for (7) to be correct: since, according to (6), the index 

n of events is incremented only if at least one input 
signal has been delivered, the “else” in equation (7) 
means n $! R and thus n E C.  
The integer M R ~ ,  whose possible values are 1 , 2  is the 
output. Equation (8) specifies that the output M has the 
same index as R; the value carried by M is either the 
previous value of the state (when RELAX is received 
alone), or the previous value of the state incremented 
by one (when both CLICK, RELAX are received). 
Finally, equation (9) asserts that RELAX cannot occur 
when the counter is in its initial state 0. 

Hence we should call this a Multiple Clocked Recur- 
rent System (MCRS), since different time indices are used 
here. Obviously, handling more than 3 different indexes 
in such a pedestrian way becomes intractable. The model 
(6,7,8,9) also reveals clearly that the two subsequences 
Cl,Cz, ... and R I ,  R2, ... are used. But knowing these 
consists precisely in knowing the global interleaving of the 
two input signals: this is precisely point 4 of the principles 
of synchronicity. Again, no physical notion of time is used 
here. Finally the model (6,7,8,9) consists of describing 
relations between various signals rather than constructing 
a machine whose behavior represents that of the desired 
mouse. In particular, (9) specifies a constraint on the input 
signal RELAX. 

D. Summary of the Synchronous Model 
The discussion above illustrates that two different in style 

but equivalent forms of synchronous modeling may be used. 
Both specify an ideal real-time machine with the following 
features: 

1. Output is synchronous with input, internal actions 
are instantaneous, communications are performed via 
instantaneous broadcasting, 

2.  The global interleaving of the external communica- 
tions may be partially chosen by the environment and 
is essential in analyzing the behavior of the system. 

The two styles are: 
State based formalisms. In the mouse example, we used 

state transition diagrams where arrows were labeled by 
communication actions. The Statecharts generalize this kind 
of presentation. The CSML and ESTEREL formalisms have 
a fairly similar but more implicit notion of state based 
on control positions in an imperative program. All these 
formalisms will be presented in this special issue. The 
corresponding formal models are discussed in the papers 
above or in the references therein. 

Multiple Clocked Recurrent Systems (MCRS ’s). They 
are a way to describe the legal traces of a system and are 
generalizations of the usual models of dynamical systems 
used in digital signal processing or control. This generaliza- 
tion is needed to handle different timings and their relations, 
which naturally arise in complex real-time applications. The 
languages LUSTRE and SIGNAL, [4], [5] presented in this 
special issue section mainly rely on this style of modeling; 
proper references to corresponding formal models can be 
found in these articles. 
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State-based formalisms are easy and natural to use in 
problems where control flow is prevalent, for example for 
systems that often jump between many distinct functioning 
modes (man-machine interfaces, protocols, control panels, 
etc.). Writing concurrent components is easy at a syntactic 
level, but defining the behavior of a concurrent composi- 
tion is not easy: broadcasting signals has the effect that 
concurrent components constrain each other in a nontrivial 
way at each reaction. The overall behavior is given by a 
fixpoint of a set of constraints, generally computed using 
formal semantics given in Plotkin’s Structural Operational 
Semantics inference-rules based style. Roughly speaking, 
SOS are the convenient framework to handle state-based 
formalisms in a modular style, just as if they were systems 
of equations. 

MRCS are clearly well-adapted to problems where data 
flow is prevalent, signal processing being an obvious ex- 
ample. The composition of MRCS is very easy to define 
since they are standard mathematical equation systems. 
Conversely, MRCS are weak where state-based approaches 
are strong, that is when the complexity is in functioning 
mode changes. Then the user must handle explicit control 
variables to record the current mode, not an easy task. 

It is shown in [SI, [12] that both styles allow to describe 
the reactive aspects of all real-time system. In practice, 
each style tends to be weak where the other one is strong. 
Since we do not know yet how to combine both styles in a 
common formalism nor whether this makes sense, we need 
to use both in real applications, depending on the style of 
individual parts. There is some present work not reported 
in this special issue to make both styles as compatible as 
possible, for example at the object code level. 

E. Solving Communication Equations 

approach, communication equations may have: 
Be it in the state-based approach or in the MCRS 

no solution: the constraints contradict each other, or 
cycles of causality may exist that cannot be solved 
using finite algorithms. Such contradictions or dead- 
locks may involve the whole system, or only a sub- 
system of it. 
infinitely many solutions: the timing of the various 
signals is not completely determined by the given 
inputs, we get nondeterminism. 
a single solution which is also an input-output map: 
our program is deterministic, and is thus a suitable 
candidate for proper execution. 

All languages presented in this special issue have specific 
algorithms to check these properties. In particular determin- 
ism can be checked and guaranteed, an important feature 
as we have discussed before. 

F. Program Verification 
In most reactive or real-time applications, it is important 

to be able to formally verify program properties: liveness of 
safety properties, respect of total or partial specifications. 
There are various available software tools to perform such 

verifications for the formalisms described in this special 
issue. Some use model checkers to compare the infinite 
sequence of events of a given program with a list of spec- 
ified properties that are stated using a different formalism, 
see for instance [1], [3] where temporal logic is used for 
this purpose, and also [2]. Some other tools provide the 
user with abstractions of the program, i.e., with reduced 
programs that behave as the original one but involve only a 
(small) subset of signals, see [2], [4] for such an approach. 
Finally, in MCRS formalisms such as SIGNAL [ 5 ]  and 
LUSTRE [4], constraints or properties can be specified just 
as further dynamical equations that must be implied by the 
given system. Then there is no deep distinction between 
program and safety properties and the standard program 
compilers can act as verifiers. 

V. SYNCHRONOUS MODELS VERSUS 
ASYNCHRONOUS SYSTEMS 

Actual machines for which the ideal synchronous model 
is realistic do exist. For instance, strongly synchronized 
hardware or VLSI architectures are such that internal ac- 
tions and communications occur within a clock cycle, that 
is within a “tick” in our sense. The only difference is 
that outputs are given to the environment at the end of 
the cycle and not synchronously with the inputs. Since 
the cycle time is very short, say 100 ns, this is the best 
approximation we can get. The language CSML [l] or the 
hardware implementation of ESTEREL and LUSTRE [ 101 
implement this point of view. 

However, most of the machines used to support the 
applications we listed in the Section I should be cer- 
tainly considered as asynchronous in any reasonable sense. 
Furthermore, real-time systems are often implemented on 
distributed architecture, that is on sets of processors con- 
nected by asynchronous means. Synchronous models as 
introduced before can hardly be considered as realistic for 
such target architectures. 

In this section, we discuss implementation issues when 
asynchronism must be considered. We first consider the 
case of the digital filter and exhibit different realistic 
implementations for which we can prove equivalence with 
the original specification. Then, we consider a simple 
example of token-based architecture as an instance of 
asynchronous machine and show how reasoning on its 
synchronization may be performed via considering an as- 
sociated synchronous model. 

A. Implementing the Digital Filter 
An infinitely fast machine implementing (3) is certainly a 

correct implementation of the digital filter of Fig. 7, but it is 
obviously an unrealistic one. We shall discuss two relevant 
alternatives. 

A purely sequential implementation can be derived 
from the signal flow graph of Fig. 5 in the following 
classical way. First consider the associated dependency 
graph obtained by cutting the branches labeled with a delay 
2-l as shown in Fig. 8. 

1278 PROCEEDINGS OF THE IEEE, VOL 79, NO. 9, SEPTEMBER 1991 - 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:45 from IEEE Xplore.  Restrictions apply. 



1 T input: TI 

F input: FL 

boolean: true false 

output: TI Fz 

Fig. 8. The dependency graph corresponding to Fig. 5 

. . .  

. . .  

. . .  

. . .  

We get an acyclic directed graph. Peeling this graph by 
removing first the input nodes and then subsequent ones 
yields a sequential execution scheme of each single time 
step of the system. This is depicted in Fig. 9. 

A data-flow (asynchronous) execution can be simply 
derived by interpreting each node and branch in the graph 
of Fig. 5 according to the data-flow mechanism shown in 
Fig. 10. 

What is important here is that we know before execu- 
tion that this token mechanism will be nonblocking and 
with bounded files. This property is well-known; it is 
already used to guarantee well-behaved executions for 
simple data-flow machines, see [19]. Note that similar 
arguments can be used to justify asynchronous executions 
i la Petri net of this filter. 

This ability to validate asynchronous executions of our 
synchronous ideal machines generalizes to the f i l l y  general 
reactive systems we can model with our approach. It is 
beyond the scope of this paper to formally justify this claim 
in a general fashion. We just present a simple example 
and show how to associate a synchronous model with a 
“generalized” data-flow machine [20] to validate it. 

B. Validating Asynchronous Machines with 
Synchronous Models 

Figure 11 depicts the data-flow actors introduced in 
[20].’ Let us concentrate on the SELECT operator, and 
consider the run depicted in Fig. 12. We construct a 

global “time indexing” of the tokens which is be consistent 
in the following sense: the tokens that are consumed or 
produced in a given firing must have the same time index. 
By inspecting the run of Fig. 12, one easily checks that the 
time indexing shown in Fig. 13 is consistent in the above 
sense. 

Let us collect the tokens with the same label into succes- 
sive slots. We get a global interleaving of the four signals 
involved in this actor shown as follows: 
What we have derived here is a synchronous model asso- 
ciated with the data-flow actor. Generally speaking, given 
a data-flow graph built with the above primitive actors, 
we can automatically build a synchronous model as an 
interconnection of synchronous subsystems associated with 
each actor. Then any of the formal verification methods 
presented in this special issue can be applied to the obtained 
synchronous model. It turns out that correctness of this 
synchronous model4 guarantees a satisfactory execution of 
the original data-flow graph for any input data sequence. 

C. The Synchronous Approach to Asynchronous 
Implementations 

1. When feasible, strictly synchronous executions of 
synchronous systems are certainly valid (cf. VLSI and 
hardware). 

2. Verification and proofs of correct synchronization and 
logic are available in the synchronous approach to 
real-time programming, 

3. A sequential execution scheme can be derived at 
compile time for any synchronous system. 

3They were in fact inspired by the primitive operators of the SIGNAL 
synchronous language we present in this special issue. ?cf. The remark at the very end of the Section 4 

44  ‘ 3  etc ... 

Fig. 9. Peeling the graph of Fig. 8. 
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/ U 

Fig. 10. Data-flow mechanisms for the graph of Fig. 5 .  

ENABLED 

I ENABLED 

+ 
+ 

Fig. *F< 11. WABLED The data-flow actors introduced -q+< in [20]. 

4. The idealized strict synchronicity hypothesis can be 
relaxed to yield fully asynchronous executions of 
synchronous systems that are guaranteed correct. 

5. The formal verification tools based on the synchronous 
approach provide a way to validate asynchronous 
executions. 

Since both purely sequential (e.g., Von Neumann) and 
purely asynchronous execution schemes cam be associ- 
ated with synchronous systems, it is easy to believe that 
mixed sequentiallasynchronous execution schemes cam be 
derived as well. To conclude, using the synchronous and 
asynchronous frameworks in the above suggested way 
yields a much cleaner treatment of the specification + 

implementation process. Again, we should point out that 

12x0 

Fig. 12. A run of SELECT. 

T F  

or. better: dy2 0 : absence 

Fig. 13. A consistent time indexing of the tokens. 

issues of physical time consumption are not considered here 
as such; however, we think that our approach facilitates 
their proper handling. This special issue reports various 
experiments along this line. 

VI. 
ON THE ACTIVITY OF REAL-TIME PROGRAMMING 

POSSIBLE IMPACT OF THE SYNCHRONOUS APPROACH 

The techniques we presented here are clearly novel. This 
has some consequences we discuss now. 

The synchronous formalisms are based on very advanced 
and powerful concepts and have clean mathematical seman- 
tics. This is clearly a big progress compared to previous 
tools. However, two questions are still largely open: that of 
user interfaces and that of programming methodology. 

Consider first user-interfaces. Some formalisms are purely 
graphical (Statecharts), some are purely textual (CSML, 
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ESTEREL), and others can use both graphical and tex- 
tual presentations indifferently (SIGNAL, LUSTRE). Speaking 
first of graphical interfaces, STATECHARTS are state-oriented 
while the block-diagram interface of SIGNAL is data-flow 
oriented. None of these two choices covers the whole area 
of reactive and real-time systems: state-oriented diagrams 
are poor for signal processing and block-diagrams are poor 
for state machines. When using textual formalisms, one 
often needs to draw pictures to explain program archi- 
tectures, but there is yet no clear way to make these 
drawings formal rather than simply explanatory. Therefore, 
while the principles of the synchronous approach have a 
wide applicability, this is hardly the case for the particular 
user interfaces available so far. The development of rich 
and well-targeted user interfaces for synchronous languages 
must be a technical priority. 

Let us now turn to methodology. At least in the area 
of real-time systems most potential users have a process- 
oriented background5 rather than a computer science ori- 
ented one. Furthermore, most of them are used to a par- 
ticular way of thinking, say for example to state-based 
reasoning rather than to equation manipulation. Since the 
synchronous approach yields new design and programming 
styles, one should develop methodologies that make these 
styles easy to master. Such methodologies do not really 
exist yet and their development will take some time. 
They should of course be based on elaborate software 
development environments and on fancy user-interfaces. 

Tools that are considered as user-friendly in a particular 
application domain do exist: we can cite for example the 
GRAFCET. However, their associated formalisms definitely 
lack precise semantics. While this can be accepted in simple 
situations, it becomes unacceptable when safety is critical. 
There might actually be a reasonable way to make a smooth 
transition from existing tools to really rigorous ones: to 
build programming environments externally based on ex- 
isting formalisms but internally based on the synchronous 
approach and on rigorous semantics. 

Finally, it is important to note that synchronous languages 
are not completely bound to nondeterminism. Some of the 
synchronous languages perfectly well accept nondetermin- 
istic programs as modules, although they refuse to produce 
deterministic code out of them. Nondeterministic modules 
can be useful to model the environment or the controlled 
physical process. This might be the basis for a design 
methodology of real-time software based on a joint handling 
of the application and of a model of the physical process. 
Such an approach is standard in control systems design; it is 
interesting to note that it might become valid for real-time 
programming as well. 

VII. CONCLUSION 
We have first discussed the major issues in the area of 

reactive and real-time programming, insisting particularly 
on safety constraints. We have then informally presented the 

SThey are typically chemical, mechanical, aircraft, control engineers, 
etc. 

new synchronous programming approach. Based on simple 
examples, we have discussed two orthogonal synchronous 
styles and their semantics: a state-based style and a data- 
flow based style. Each style applies to a particular class 
of problems; complex applications will certainly require 
the cooperation of both. We have briefly discussed how to 
verify program properties and how to make asynchronous 
implementations look like synchronous ones. 

The other papers in this Special Issue will present the 
existing specific synchronous formalisms and the associ- 
ated software tools for program simulation, compiling, and 
verification. They will support our general claim that syn- 
chronous programming opens a new path toward powerful, 
rigorous, and usable methodologies for reactive and real- 
time programming. 
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