
The ESTEREL Language
FREDERIC BOUSSINOT AND ROBERT DE SIMONE

Invited Paper

We present the basics of the ESTEREL reactive model of syn-
chronous parallel systems. We illustrate the ESTEREL programming
style, based on “instantaneous communications and decisions ’’
through the example of a mouse handler. We briefly describe
the ESTEREL formal semantics and show how programs can be
compiled into finite states sequential machines for efJicient exe-
cution. The up to date implementation is described together with
the ESTEREL environment, including simulation, and verification
and validation tools. Finally, we report on some ESTEREL uses in
various contexts.

I. INTRODUCTION
The ESTEREL language is a member of the new family

of synchronous languages for reactive programming, which
also counts languages as LUSTRE [13], SIGNAL [17], SML
[181, and STATECHARTS [141.

ESTEREL originated from a joint INRIA-ENSMP project
on the semantics of parallelism. Better understanding of
real-time programming especially of temporal features such
as “watchdogs,” was the prime motivation. In the course
of the ESTEREL design, the necessity of a formal approach
became more and more clear: without mathematical seman-
tics ESTEREL would not exist. As a benefit of the formal
approach, ESTEREL programs can be compiled efficiently
into finite states machines and can generate efficient code.

In this paper we show the basic principles of the ESTEREL
reactive model and we give a flavor of the new program-
ming style that comes with it. We also give an idea of the
semantics and discuss how efficient code can be produced
from ESTEREL programs.

The paper is organized as follows: In the second section
we describe the ESTEREL basic assumptions and the under-
lying model. In the third section we give some examples
of ESTEREL programs. In the fourth section we detail the
most striking features of the ESTEREL formal semantics.
In the fifth section we describe the compiling process and
the ESTERELv3 system. In the sixth section we present
the ESTEREL existing environment including validation and
simulation tools. In the seventh section we discuss future
extensions to the present language. Finally, in the eighth

Manuscript received September 30, 1990; revised March 2, 1991
F. Boussinot is with ENSMP-CMA, F-06565-Valbonne, France.
R. de Simone is with INRIA-Sophia, F-06560-Valbonne, France.
IEEE Log Number 9102300.

3 activation

Fig. 1. A reactive system.

section we briefly summarize nowadays programming ex-
periences in ESTEREL.

11. THE UNDERLYING MODEL

following “equation”:
Motivations behind ESTEREL can be summed up by the

ESTEREL = reactivity
+ atomicity of reactions
+ instantaneous broadcast
+ determinism

We are going to justify now each component of this
equation.

A. Reactivity

The ESTEREL basic model is the reactive model in which
one considers communicating systems that continuously
interact with their environment [151. When activated with
an input’event, a reactive system reacts by producing an
output event. Reactive systems are seen as “black boxes”
that must be activated from outside in order to react; they
have input lines to receive input events from the outside,
and output lines to produce output events. A reactive
systems is shown in Fig. 1.

The life of a reactive system is divided into instants
that are the moments where it reacts. Accordingly, one can
speak of the first instant of a program, the second instant,
and so on. We call reactive statements, statements that are
defined by reference to instants. For example, in ESTEREL,
“await S” stops execution until the first instant the
signal S becomes present. The most basic ESTEREL reactive
statement is the watching statement that implements a
generalized watchdog. It will be described later on.

0018-9219/91/$01.00 0 1991 IEEE

PROCEEDINGS OF THE IEEE, VOL 79, NO 9, SEPTEMBER 1991 1293

-~ ~- . ~~ ~ _ _ _ _ _ ~ ~

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

I1 I2 I3 I4 I5 I6
activation A . . .

01 02 03 04 05 06

Fig. 2. Reactive system as history transducer.

To sum up, we can say that the reactive approach allows
one to reason in a logics of instants and to program using
reactive statements.

reactivity = instants t reactive statements

B. Atomicity of Reactions

The basic hypothesis of ESTEREL is called the perfect
synchrony hypothesis [3]: it says that reactions are in-
stantaneous so that activations and productions of output
are synchronous, as if programs were executed on an
infinitely fast machine. This idealized hypothesis can be
more practically expressed by saying that reactions are
atomic, that is, a particular reaction do not interfere with
the others reactions. In other words, program reactions
cannot overlap: there is no possibility to activate a system
while it is still reacting to the current activation. This
hypothesis simplifies the reasoning about reactive systems
as concurrency between reactions is not to be considered.
Without the atomicity assumption, this concurrency would
be a source of nondeterminism.

synchrony hypothesis atomicity of reactions.

Atomicity of reactions allows to speak of the basic clock of
activations. In other words, it allows to consider reactive
programs as history transducers: a reactive program is a
function that produces a sequence of output events from
a sequence of input events. Figure 2 shows an output

11,. . .,In,. ...
history 01,. . .,On,. . . produced from an input history

C. Instantaneous Broadcast

As other concurrent languages (Occam, for example),
ESTEREL has a parallelism operator, written 1 1 . With it,
one directly program parallel entities. In Ada these entities
that are called tasks, communicate and synchronize using
a “hand shaking” mechanism. This mechanism (sometimes
called “rendezvous”) is one-to-one: it only allows one entity
to communicate with another one, at a time. On the con-
trary, broadcast is the unique communication mechanism in
ESTEREL. Broadcast, in opposition to “hand shaking,” can
be seen as “hand raising”: when one wants to communicate,
one raises its hand, so everybody can see it. It is analogous
to radio communication where there are many receptors that
all receive the same information (this is a consequence of
the synchronous characteristics of the parallel operator that
we will describe later on).

In ESTEREL, communication is done using signals
that can be emitted, tested for presence, and that can
have a value with. Internal communication (between

..............I.... 1 module \ 1 moctule I..:... j 1“
input
signals

........

output
signals

-. I 1

Fig. 3. An ESTEREL module

ESTEREL subprograms) and external communication
(between ESTEREL programs and the external world) are
unified in the same framework of signals: input and output
lines are signals and input and output events are sets of
signals. Figure 3 shows more precisely the architecture of
an ESTEREL program made of several subprograms, called
modules. In it, the doted lines denote signals, and the broken
lines indicate that the basic clock of activations is shared
by all submodules.

Broadcast is limited to instants: the emission of a signal
(using an emit statement) lasts for the current instant and
the emitted signal is seen as present (for example, using
a present statement) by all the receptors, during this
instant. For example, consider:

present S then emit T end

emit S

present S then emit U end

I I

I I

The signal S is emitted by the emit S instruction. It
is seen as present by both present instructions and both
then branches are executed. So S, T, and U are all emitted
during the same instant: they are synchronous.

Notice that this program has one unique solution: we do
not have to consider the case where S would be considered
as absent by any of the receptors. In this respect, broadcast
reduces the number of distinct possible communications.

ESTEREL
broadcast has an important characteristic: emissions and
receptions do no terminate the current instant. In other
words, there can be several signal emissions and receptions
in sequence within the same instant. This characteristic
allows to program so called “instantaneous decisions” that
are specific to ESTEREL. Emission of a query and reception
of the answer during the same instant is an example of in-
stantaneous decision. Later we shall show an instantaneous
decision in the program example of a mouse handler:

As can be seen on the previous example,

instantaneous broadcast + instantaneous decision.

D. Determinism

Nondeterminism is completely thrown out of ESTEREL.
With traditional approaches, one has to choose between

1294 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

parallelism and nondeterminism on one hand, or determin-
ism but sequentiality on the other hand. On the contrary,
ESTEREL parallelism is deterministic.

Determinism is another way to simplify reactive pro-
gramming. With deterministic programs, behaviors are re-
producible, that simplifies program tests and validations (a
faulty behavior can be replayed at will):

ESTEREL= parallelism t determinism.

111. ESTEREL PROGRAMMING
We are not going to describe precisely the language (see

[lo] for a complete presentation) but instead give the flavor
of the ESTEREL programming style through some small
examples. Actually, we advocate how ESTEREL programs
can be seen in a way as very close to specifications:

ESTERELprogram M specification.

We first give some examples to illustrate the use of signals
in ESTEREL and the watching statement; then we de-
scribe a small mouse handler that exhibits an instantaneous
decision.

A. The Programming Style

The watching statement is the basic ESTEREL reactive
statement. watching statements have the syntax: “do
body watching signal”. The semantics is that the body is
“killed” as soon as the signal watched for becomes present.

To illustrate the use of the watching statement, con-
sider the following specification Specl: within a delay of
one second, do an action once a button is pushed. In
ESTEREL one may write:

do
await BUTTON;
emit ACTION

watching SECOND

If SECOND is present before BUTTON or at the same instant,
then ACTION is not emitted and the watching terminates.
On the contrary, if BUTTON is present before SECOND,
then ACTION is immediately emitted and the watching
terminates. Otherwise, if neither SECOND nor BUTTON are
present, nothing is done and the waiting for BUTTON and
SECOND is postponed to the next instant. There is a special
case at the first instant where in all cases, nothing is done.
To extend to the first instant the previous behavior, one
must use the “immediate” variant of the watching and
await statements:

do
await immediate BUTTON;
emit ACTION

watching immediate SECOND

Now consider the “opposite” specification Spec2: within
a delay of one second, raise an alarm if a button is not

pushed. One may simply write:

do
await SECOND:
emit ALARM;

watching BUTTON

Suppose now that we want to extend Specl with the
following: an alarm must be emitted when the button is
not pressed within the one second delay. Notice that this
extended specification Spec3 is partial (as also are Specl
and S p e d) : it does no tell what to do when the button is
pushed in exactly one second.

The Spec3 specification can be coded by adding a time-
out part to the watching statement:

do
await BUTTON;
emit ACTION

watching SECOND
timeout emit ALARM

The timeout part is executed only when the watched
signal becomes present and the body is not yet terminated.
So, the signal ALARM is emitted if SECOND is present
before BUTTON. Notice the deterministic behavior in case
SECOND and BUTTON are both present together: according
to the semantics of watching, the body is killed, so
ACTION is not emitted, and the timeout part is executed,
so ALARM is emitted.

The following program also satisfies the partial Spec3
specification:

do
await SECOND;
emit ALARM

watching BUTTON
timeout emit ACTION

Now, when SECOND and BUTTON are both present at the
same instant only ACTION is emitted.

Finally, suppose one wants ACTION and ALARM to be
both emitted when SECOND and BUTTON occur simulta-
neously. One may write:

trap END in
await SECOND;
emit ALARM;
exit END

await BUTTON;
emit ACTION:
exit END

I I

end

The trap END statement defines a block that is instantly
exited when “exit END” is executed. So, the “trap
END” block is terminated as soon as SECOND or BUT-

BOUSSINOT AND DE SIMONE: ESTEREL LANGUAGE 1295

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

TON or both, are present. Moreover, when SECOND and
BUTTON are simultaneously present, ACTION and ALARM
are both emitted as a consequence of the parallel operator
semantics.

B. A Mouse Handler

We consider a mouse handler with two inputs:
1) CLICK: a push button,
2) TOP: a clock signal.

The mouse handler has to figure the number of CLICK’S
(none, one, or more than one) performed within a delay
of five TOP’s. Accordingly, it outputs NONE, SINGLE, or
MANY.

We first define an auxiliary module Counter that counts
occurrences of CLICK. When a signal RST is present,
Counter emits a valued signal VAL whose value is the
number of occurrences of CLICK. The ESTEREL program
is the following:

module Counter:
input RST, CLICK;
output VAL(integer);

var v : integer in

v := 0;
do

every immediate CLICK do

end
v := v+l;

watching RST;
emit VAL(v)

end

The “input RST , CLICK; ” declaration introduces
two input signals; these signals are “pure”: they carry no
value and only their presence or absence is significant. The
“output VAL (integer) ; ” declaration introduces an
output signal with an integer value. The statement “emit
VAL(v)” emits the signal VAL with value v. Notice
that the module Counter terminates at the instant RST
becomes present (because of the watching semantics).

Second, we define an auxiliary module Emission that
processes the value of the valued signal VAL. Accordingly,
it outputs NONE, SINGLE, or MANY. Emission begins to
wait for VAL and then uses its value denoted by ?VAL.

module Emission:
input VAL(integer);
output NONE, SINGLE, MANY;

await VAL;
if ?VAL = 0 then

emit NONE
else

if ?VAL = 1 then
emit SINGLE

else

emit MANY
end

end

Finally, in the main module Mouse, within a global
loop, one puts in parallel a copy of Counter and a copy
of Emission (using the copymodule statement), and
a statement that emits RST when five TOP’s have been
received.

module Mouse:
input CLICK, TOP;
output NONE, SINGLE, MANY;

signal RST, VAL(integer) in

copymodule Counter

await 5 TOP;
emit RST;

copymodule Emission

loop

I I

I I
end

end

The signal keyword introduce the declaration of two
local signals that correspond to those of Counter. The
parallel statement terminates when its three branches ter-
minate. It is the case when the fifth TOP is present,
because then RST is emitted which forces Counter and
Emission to terminate. The loop statement lets the
behavior of Mouse cycle: the parallel statement is restarted
immediately at the same instant it terminates.

Notice the instantaneous communication and decision
inside the parallel statement: the second branch emits the
signal RST that is received by Counter in the first branch.
Then at the same instant, Counter emits Val that is
received and processed by Emission.

IV. ESTEREL SEMANTICS
The ESTEREL reactive approach gives rise to several

specific problems, leading to undesirable programs. Some
of them, involving signals, are called causality problems.
They are akin to short-circuits in electronics and appear in
all powerful synchronous languages. There is a need for a
formal semantics to solve these problems. In this section
we first describe the new class of problems and then we
give some indications on the semantical approach that has
been used to tackle them.

A. Specific Problems

Instantaneous Loops: Instantaneous loops are loops
whose body terminate at the instant they are executed for
the first time. Such loops must be rejected as they do not
allow to agree on completion of the instant. An example of

1296 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

instantaneous loop using a variable x is:

loop x:=x+1 end

Causality Problems: ESTEREL programs communicate
via signals which are instantaneously broadcast. ESTEREL
communication is powerful but, we have to pay for it: there
can be so-called “causality problems” [4]. There are two
kinds of causality problems. First, consider the following
program CausalO:

signal S in

end
present S else emit S end

This program has no solution: if one supposes that the local
signal S is absent, then it is emitted; on the other hand, we
cannot suppose it is present as then, it would be not emitted.
In other words, Causal0 is incoherent, as it violates the
ESTEREL broadcast communication mechanism.

Causal2:
Second, consider the following program

signal S1, S 2 in
present S1 else emit S2 end

present S2 else emit S 1 end
I I
end

This program has two solutions: in the first solution S 1
is absent and S 2 is present; conversely, in the second
solution S 2 is absent and S1 is present. So, Causal2 is
nondeterministic and the ESTEREL determinism hypothesis
is violated.

Valued Signals: Some problems are specific to valued
signals. For example, consider:

emit S (? S + 1)

This is a kind of “positive feedback” effect: the value of S
denoted by ?S, must verify: ? S = ?S + 1, which clearly
has no solution.

It is important to notice that instantaneous loops and
causality problems are detected by ESTEREL compilers.
Causality problems are the synchronous counterpart of
asynchronous deadlocks. More precisely, causality prob-
lems can be seen as instantaneous deadlocks. For example,
in Causal2, one needs to assume the presence status of
S1 to decide of the emission of S2, and vice-versa. The
difference with general deadlocks is that causality problems
can be detected at compile time instead of being undetected
at run-time.

ESTEREL 3 static detection of instantaneous deadlocks.

Of course, noninstantaneous deadlocks exist in ESTEREL
and are not statically detected. It is the case for example, in:

await SI; emit S2

await S2; emit S1
I I
end

This statement is correct in ESTEREL, but it never termi-
nates and does nothing at all.

B. Mathematical Semantics

The goal of formal semantics is to describe without
ambiguity how programs behave. The formal approach is
the guide line for compiler or validation tools designers.

There exist several distinct levels of description of
ESTEREL formal semantics, expressed either denotationally
or operationally. They are presented and connected in [12].

The most fruitful of these semantics is the behavioral
semantics, presented in the so called “Structural Opera-
tional Semantics” framework [22]. It provides an abstract
vision of the reactive structure of programs and allows
simple reasoning. It accepts more programs than any other
semantics: only programs without solution, as CausalO, are
rejected (but nondeterministic programs, such as CausaM,
are accepted).

The Behavioral Semantics: The behavioral semantics
we are going to describe now, manipulates operational
transitions of the following general format :’

Inputloutput
Program - Newprogram

Terminated

This transition is read as follows: at the first instant and
with Input as input event, the program Program reacts
by producing the output event Output. Newprogram is
the residual program to be executed at the next instant.
Moreover, the boolean Terminated is true if and only if
Program has terminated its execution. For example, the
semantics of the emit statement is given by

I l { S)
emit S -nothing

true

The Semantics of compound statements are constructed out
from the semantics of their components, using inference
rules. To give an idea, the semantics of the full ESTEREL
language needs approximatively thirty such rules. The
semantics of watching is given by the two following
rules:

I I O

P 4

true
I I O

do p watching S ,nothing

true

signal S1, S2 in
’ Slightly simplified, as we do not take t r a p and exit constructs into

account.

BOUSSINOT AND DE SIMONE: ESTEREL LANGUAGE 1291

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

110
lJ +q

false
110

d o p w a t c h i n g S L p r e s e n t S e l s e do q watching S end

false

The first, rule is read as following: one can conclude
that, under the hypothesis that execution of the body
p terminates, the watching statement terminates too,
with nothing as residual program (q, the residual of p
disappears in the conclusion, as execution is terminated).
Moreover, emitted signals are those emitted by p . The
second rule holds in case p does not terminate. Then, S will
be tested for presence next instant, deciding upon whether
to execute the body.

The semantics of the parallel operator is given by the
unique rule:

I IO I IO

bi b2

PI - 41 P2 - 4 2

The parallel operator is synchronous: its two branches are
working at each instant. It terminates as soon as both its
branches terminate (because of the and connective).

These rules give only a flavor of the behavioral semantics.
Notice that in the rule of the parallel operator, both subterms
p l and p:! share the same input I . The more complex seman-
tics of local signals declarations has to verify the coherency
between signals emissions and receptions. Actually, in the
behavioral semantics, this coherency must be verified after
making hypothesis about local signals presence or absence.
Sequential implementations of the behavioral semantics
necessary need some kind of backtracking.

The Execution Semantics: The purpose of the execution
semantics is twofold:

First, to reject nondeterministic programs as well as
programs without solution.
Second, to give an efficient implementation, avoiding
hypothesis to be possibly negated later on and leading
to backtracks.

The execution semantics is based on a so-calledpotential
function [121, that syntactically forecast which signals may
or may not be further emitted inside the instant. These
informations are used to order the processing of signals:
one execute presence tests on a given signal only when
the signal is not in the potential anymore. When one
cannot find any order to process signals, one detects a
causality problem. For example, the previous Causal2
program is rejected by the execution semantics: no good
order exists as both signals S1 and S2 are in the potential
of the parallel statement. Unfortunately, as the potential
function is syntactically defined, the execution semantics
is only an approximation of the semantics where exactly
programs with an unique solution are accepted: there exist
programs that have an unique transition for each input,

1298

with the behavioral semantics, but that are rejected by the
execution’s.

V. ESTEREL IMPLEMENTATIONS
In this section we describe the ESTEREL compiling

technics, code production and the current ESTERELv3 im-
plementation.

A. Compiling into Automata
Perhaps the most striking characteristics of ESTEREL is

the ability toproduce a finite state machine, also called
automaton. The construction follows the execution se-
mantics in a symbolic evaluation. The execution rules
provide a transition from a state, for each input event.
The automaton is constructed by merely gathering those
transitions, identifying states with successive residuals. The
key point here is that there are only finitely many such
residual terms for an ESTEREL program.

For example, consider the “do halt watching S”
statement, where halt is the statement that never termi-
nates. The semantics of halt is given by the transition:

I IO
halt -halt

false

We denote by T the program

T = present S else do halt watching S end

Accordingly to the semantics of watching, for all input
I , one has:

I IO
do halt watching S -T

false

Consider now, the residual program T . For all input I such
that S $ I , one shows that:

I 1 0
T -T

false

The proof is given by the following proof tree:

I IO
halt - halt

false
110 S $ I

do halt watching s - T

false
I IO

T-T
false

Conversely, for all input I such that S E I , one has:

I I O
T -nothing

true

PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

do halt watching S

/ # is)/#
present S else

/ # do halt watching S

”’ nothing

Fig. 4. Automaton associated to an ESTEREL program.

Finally, the semantics of nothing is of course, given by:

I I O
nothing - nothing

true

Now, remark that the signal S is the only significant signal
in all the programs we consider. Identifying states with
residual programs, we obtain the three states automaton
drawn in Fig. 4. This example shows that “await S”
and “do halt watching S” are equivalent as their
semantics produce the same automaton.

In the resulting automaton, both parallelism and local
signal communications have disappeared: they are compiled
away and sequentialized inside each instant transition. For
example, the automaton produced from the module Mouse
has two states and correspond to the following sequential
textual description:2

State 0
v3 := 5; v := 0;

v := v+l;
goto 1

if CLICK then

end;
goto 1

State 1
if TOP then

if V3 then
v2 := v;
if V2=0 then

v3 := 5; v := 0;
if CLICK then
v := (v+l); emit NONE;
goto 1

end:
emit NONE ;
goto 1

end:
if V2=1 then

v3 := 5; v := 0;
if CLICK then

v := (v+l); emit SINGLE;
goto 1

2This text is actually generated by the ESTERELV~ compiler with the
pretty printing -debug option.

end:
emit SINGLE;
goto 1

end;
v3 := 5; v := 0;
if CLICK then

v := (v+l); emit MANY;
goto 1

end;
emit MANY;
goto 1

end;
if CLICK then

v := (v+l):
goto 1

end:
goto 1

end;
if CLICK then

v := (v+l);
goto 1

end:
goto 1

In this text, V2 is the value of the signal VAL and V 3 is
used to count five TOP’S. Notice that in state 1, CLICK is
always processed even in the case TOP is also present.

The automaton produced is deterministic; parallelism and
communications that appear in the ESTEREL source code
have been compiled to produce sequential code. In particu-
lar, the instantaneous communication in the module Mouse
has completely disappeared. In a sense, this justifies the
synchrony hypothesis: the communication is infinitely fast
since there is nothing to execute as no code is generated!

Compiling ESTEREL programs into automata offers many
advantages:

EfJiciency: Automata can be efficiently executed. As
no parallelism appear in automata any more, there is no
time overhead resulting from run-time tasks or processes
management, or from run-time communication or synchro-
nization. On the contrary, suppose we have to implement
the mouse system in Ada using a task Counter. Then we
have to pay for task management and communication. This
is often why only the sequential part of Ada is used for
real-time programming.

Predictability: The maximum transition time of an au-
tomaton is predictable. This is especially important when
one want to code real-time systems.

ESTEREL =compilation of parallelism
and output as automaton

B. The ESTERELV~ System
The ESTERELV~ system is based on a very efficient

compiling algorithm described in [121. It rejects nondeter-
ministic programs and programs with causality problems
or instantaneous loops. As a benchmark, it takes about four

BOUSSINOT AND DE SIMONE: ESTEREL LANGUAGE 1299

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

Fig. 5. The lift automaton shown by Autograph.

seconds to compile on a Sun3 the wristwatch program of
[2] that generates a 41 states automaton.

The ESTERELv3 system is written in C++ [24],runs on
several machine^,^ and produces automata in an output
code format common with the LUSTRE project [7]. This
format can be translated into several target languages: C,
Ada,4 LeLisp, etc. The C language is the default target:
when one types esterel f i c h . strl the ESTERELv3
compiler generates a f i c h . c C file. The C executable
code produced from the mouse program by the ESTEREL
compiler, is a direct implementation of the sequential
pseudo-code described in Section V-A.

ESTEREL = efficient implementation

VI. THE ESTEREL ENVIRONMENT
The ESTEREL environment tools are divided into two

groups:
Verification and Validation Tools: Those tools consider

the internal structure of the compiled automata. They allow
comparisons with specifications, as well as total or partial
visualization of states and transitions.

Simulation and Development Tools: Those tools con-
sider ESTEREL programs as reactive boxes. They allow
the user to activate them interactively, and record the
corresponding reactions.

A. Verification

Down the ESTEREL programming lines, one produces,
simulates, executes and validates automata. This approach
complies with the Berry’s WYPIWYE (“What You Prove
Is What You Execute”) principle [3]. Automata can be
analyzed using several systems, in particular Auto[25]
developed in the same INRIA-ENSMP project as ESTEREL.

Verification is a broad topic. Classically, it consists in
confronting a program with a set of specifications, where
each of these specification takes into account only partial
aspects of the whole system. Specifications can be provided

3Vax, Sun3, Sun4, Hp9000, GouldPN9000 at the date of writing.
4 0 f course, only the sequential part of Ada is used.

either operationally, in an automaton fashion, or logically,
using so-called temporal logics.

Auto is an automatic verification tool dedicated to anal-
ysis of finite automata, and therefore focuses on the first
approach. Its primary method is abstraction, which reduces
a large global automaton with respect to those behaviors
which are considered relevant. The reduced automaton
can be more readily checked for validity. Reductions im-
plemented in Auto are semantically grounded, based on
process calculi theory notions such as bisimulations [191
and observation criteria [6].

In most cases, one can even do without an explicit
specification, by just inspecting the reduced automaton.
This requires visualization of automata, before or after
reduction. The Autograph [23] graphical interface of Auto
allows exactly this. It allows also to directly draw the
operational specifications as automata.

As an illustration, we shall consider a simple lift program,
slightly more complicated than the mouse handler. The full
automaton produced by ESTEREL compilation is shown in
Fig. 5 in its Autograph postscript output. Labeling actions
are compound and each one represents a full reaction: input
signals are suffixed by “?” and output signals by “!”. For
example, the action on the arrow connecting state e0 to e l
indicates that FLOOR-STOP and OPEN-DOOR-COMMAND
are both emitted on reception of OPEN-DOOR.

We now want to establish that the lift may not travel
with the door open. But already for this simple program,
the result is rather big, so that this property is not obvi-
ous to check. We shall thus abstract the automaton and
only consider the actions OPEN-DOOR, DOOR-CLOSED,
LIFT-STARTED, and LIFTSTOPPED. Indeed, the lift
is supposed to be in motion in between LIFT-STARTED
and LIFTSTOPPED, while the door is open in between
OPEN-DOOR and DOOR-CLOSED. The other signals are
irrelevant to the considered property.

Using Auto, we perform both the hiding of irrelevant
signals and the reduction (with respect to bisimulation)
of the lift in Fig. 5. The result is displayed in Fig. 6. It
is smaller, more manageable and more directly related to
the property. Indeed, OPEN-DOOR cannot be performed in

1300 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

DOOR-CLOSED?
n

OPEN-DOOR?

LIFT-STOPPED?

tau I 6-6 LIFT-STARTED?

Fig. 6. The reduced lift automaton.

the state labeled by e7 . Notice the remaining hidden t a u
action. It indicates an internal change of state to which
bisimulation is sensible:

ESTEREL = possibilities of proofs and validations
and WYPIWYE.

B. Simulation
Simulation tools execute the ESTEREL program instants

by instants, most often by running on its compiled automa-
ton. There exists textual as well as graphical simulators.
The Basic Simulator: It is obtained with the -simul

option of the esterel command. An instrumented C code
is generated. It can be linked with a C standard library,
which allows interactive simulation on the keyboard. This
simulator prompts the user to type signal names which build
the next input event, and then lets the program react. As
an answer, names and carried values of output signals are
printed.
The X-Window Graphical Simulator: It uses the same

instrumented code as the basic simulator, but when linked
with a X-window graphical library, it provides the user a
signals menu to build input events. When an output signal
is emitted back in reaction, an icon is lit up.
The Sahara Environment: With the Sahara environment

[ll], one can easily and quickly build graphical control
panels to interface with ESTEREL programs. Sahara con-
tains a full blown language for describing these control
panels which are structured and organized at the user’s
will. Execution can be semiautomatic: some signals can
be automatically and periodically raised by the executing
computer itself. Figure 7 shows a control panel for the lift
program built with Sahara.

ESTEREL = graphical simulation

VII. ESTEREL USE

There are several ways to design systems made of
ESTEREL reactive parts. The simplest way is to use only
one such part embedded into a larger system. One has to
define how the automaton corresponding to the reactive
part is interfaced with the overall system. This calls for
defining how input and output signals are processed and
how and when the automaton is executed. This leads to the
architecture of Fig. 8.

Fig. 7. Lift panel control obtained with Sahara.

/
Fig. 8. A simple architecture.

operating

\ 3 N /

/ \
Fig. 9. A more complex architecture

On the other hand, one can put several reactive sys-
tems together and make them communicate through asyn-
chronous channels (first-in/first-out files, for example). It
is the case for example, when one has to code distributed
systems that synchronously communicate and synchronize.
In these cases, ESTEREL is useful to code individual reac-
tive parts of the overall system and both synchronous and
asynchronous approaches must be used together. For exam-
ple, the Fig. 9 shows two reactive systems put together in
a larger system and communicating through two channels.

Moreover, there are situations where, while staying in a
reactive and synchronous framework, a single automaton

BOUSSINOT AND DE SIMONE: ESTEREL LANGUAGE 1301

7-

I

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

ABS ABS ABS ABS

Fig. 10. Presently unimplementable specification.

would be too big an object. Notice that big automata are
easy to produce. For example, the ESTEREL statement:

await SI I I await ~2 1 1 . . . 1 1 await Sn
produces a 2” states automaton. The cascade approach
consists in producing several automata and giving a way
to execute them as if there were an unique automaton.
The ESTERELv3 system offers a possibility of automatized
cascading in a restricted case where automata can be
executed in a fixed order independent of the instants.

Several systems have been programmed in ESTEREL. We
can cite:

A digital watch [2]. This program can be automati-
cally cascaded with the ESTERELv3 system. The fixed
automata execution order is natural: first, the button
handler, second the watch and finally the display
handler.
A “minitel” modem [16]. The produced code has been
plugged into a real-time environment.
Several communication protocols, in particular, an
HDLC protocol [5] , a terminal call protocol [20] and
a local area network protocol [18].
A car Antilock Braking System, that has needed a
manual cascade of automata.
A robotics application [9]. ESTEREL is used to ensure
control sequencing for robots. The exec primitive
described in the next paragraph, has been widely used
in this application.
Other applications, in avionics, in hardware drivers, in
process controllers [l], for example.

clared and it is always present5 The signal tick defines
the clock of step activations. Using tick, the previous
specification can be coded by the following module:

module FUTURE:
input PRES;
output ABS;

every tick do

end.
present PRES else emit ABS end

Note that we could equivalently introduce a new statement
stop that stops execution for the current instant. For
example, with this new statement, the specification is coded
by:

module FUTURE:
input PRES;
output ABS;

loop
present PRES else emit ABS end;
stop

end

In fact, stop can be simulated by “await tick.” Con-
versely, a signal TICK simulating tick can be generated
by:

loop
emit TICK:
stop

end

B. Boolean Conditions on Signals

With the third extension, one will be able to directly use
boolean conditions on signals. For example, to wait for A
or B one will simply write “await A or B.” Control
over the next instant, is necessary to be able to express the
boolean negation not corresponding to signal absence. F~~
example, the previous FUTURE be written as:

VIII. NEW EXTENSIONS FOR ESTEREL
In this section we describe three new extensions for

ESTEREL, which will be incorporated in the next version of
the ESTEREL system. The extensions concern the abilities
to program by referring to the basic instants clock and to
code boolean conditions on signals, on one hand; on the
other hand, it concerns a restricted form of asynchrony,
based on a new primitive called exec [21].

A. The Next Instant

In the actual ESTEREL language there is no possibility to
have direct control over instants: at least one of the input
signals must be present at each reaction (except at the very
first instant). There is no possibility to code the simple
following specification: at every instant, the signal ABS is
emitted if the signal PRES is not in the input event. This
specification is shown in Fig. 10.

To have direct control over instants, a new input signal
named tick is introduced. This signal is implicitly de-

module FUTURE:
input PRES;
output ABS;

every not PRES do emit ABS end

C. Asynchrony in ESTEREL
With the exec primitive, one can use asynchronous tasks

in ESTEREL. A task is a sequential code that is not
instantaneous: it does not terminate in the same instant
it is started. Tasks introduce only a restricted form of

51t is analog to the constant “true” of LUSTRE [13].

1302 PROCEEDINGS OF THE IEEE, VOL. 79, NO. 9, SEPTEMBER 1991

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

I data I
processor

\ -
system

Output start

operating
system

Fig. 11. Interfacing the exec primitive

asynchrony: a task is allowed to synchronize only when it
terminates its execution. Moreover, tasks are not allowed to
communicate. A task can be started with some arguments.
When it terminates, results are returned to the calling
ESTEREL program. Tasks can also be killed, for example
by a watching statement. Consider:

do
exec Move (returnstatus)

goalposition)
(initialposition,

watching LIMIT-TIME

The task Move is started with initialposition and
goalposition as arguments. It must terminate before
LIMIT-TIME becomes present. If it is the case, the task
sets the returnstatus result variable. Otherwise, the
task Move is killed and returnstatus is not set. Note
that a task can be killed and then started with new ar-
guments in the same instant. The interface of the exec
primitive is shown in Fig. 11.

IX. CONCLUSION
The ESTEREL language introduces a new programming

style extremely natural for coding reactive systems. Sepa-
rating a program into parallel components for better mod-
ularity and adding signals for synchronization incur no
run-time overhead as they are compiled away.

ESTEREL is especially useful when an unique automaton
is to be produced. In this case, we have a complete
method: the ESTEREL high level program can be seen as
the automaton specification; it can be graphically simulated
and proved using verification systems; it can be translated
into several sequential languages and executed with great
efficiency. This is of special interest for real-time system
kernels, when efficiency and proofs are required. Another
use of ESTEREL that seems very promising is to produce
code for electronic circuits.

However, ESTEREL can be useful in larger context when
one has to produce several automata that must cooperate.
It is the case for two main reasons: first, when an unique
automaton would be too big an object. Second, when one
has to mix synchronous and asynchronous approaches. The

ESTEREL system gives a partial response in the first case
with the -cascade option. However, work has to be done
to extend the cascade method for more general cases (in
other words, only a restricted form of separate compiling
is available presently).

REFERENCES

C. AndrC, L. Fancelli, “A mixed implementation of a real-
time system,” presented at Euromicro’90, Amsterdam, The
Netherlands, 1990.
G. Berry, Programming a Digital Watch in EsTERELv3,
ESTERELV3 Programming Examples, Ecole des Mines, Centre
de Mathtmatiques AppliquCes, Sophia-Antipolis, 1989.
-, Real time programming: special purpose or general
purpose languages, Information Processing 89, G.X. Ritter
(Ed.), Elsevier Science Publishers B.V. (North Holland), 1989.
G. Berry and G. Gonthier, “The ESTEREL synchronous program-
ming language: Design, semantics, implementation,” INRIA
Rep. 842, to appear in Science of Computer Programming,
1988.
__, Incremental Development of an HDLC Protocol in
ESTERELV3, ESTERELV3 Programming Examples, Ecole des
Mines, Centre de Mathtmatiques Appliqutes, Sophia-Antipolis,
1989.
G. Boudol, V. Roy, R. de Simone, and D. Vergamini, “Process
algebras and systems of communicating processes,” in Proc.
of the Automatic Verification Methods for Finite State Systems,
LNCS 407, Springer-Verlag, 1990.
P. CouronnC, J. Plaice, and J-B. Saint, “The ESTEREL-LUSTRE
Oc Portable Format,” Tech. Rep., Ecole des Mines / INRIA,
Sophia-Antipolis, 1988.
E. M. Clarke, D. E. Long, and K. L. McMillan, A Language
for Compositional Specification and Verification of Finite State
Hardware Controllers, this volume.
B. Espiau and E. Coste-Manitre, “A synchronous approach for
control sequencing in robotics application,” in Proc. IEEE Int.
Workshop on Intelligent Motion Control, Istanbul, Turkey, 1990.
ESTERELV3 manuals, Ecole des Mines, Centre de MathCmatiques
Appliqutes, Sophia-Antipolis, 1988.
G. M. Gherardi and J.P. Paris, “Manuel d’utilisation de Sahara,”
Internal Rep., ENSMP-CMA, 1990.
G. Gonthier, “Stmantiques et Modtles d’ExCcution des Lan-
gages Rtactifs Synchrones; Application B ESTEREL,” Thtse de
Doctorat en Informatique, Univ. d’Orsay, 1988.
N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous dataflow programming language LUSTRE, this volume.
D. Harel, STATECHARTS: A Visual Approach to Complex Systems,
Science of Computer programming, 8-3, pp. 231-275, 1987.
D. Harel and A. Pnueli, On the Development of Reactive
Systems, Logic and Models of Concurrent Systems, Springer-
Verlag, pp. 477498, 1985.
V. Lecompte and F. Boussinot, “Une application de la program-
mation synchrone: le modem du minitel en ESTEREL,” rapport
C2A, 3, 1989.
P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire,
Programming Real Time Applications with SicNAL, this volume.
M. C. Mejia Olvera, Contribution a la Conception d’un Reseau
Local Temps Rtel pour la Robotique, Thtse de Docteur-
Ingtnieur, Universitt de Rennes, 1989.
R. Milner, A Calculus of Communicating Systems, LNCS 92,
Springer-Verlag, 1980.
G. Murakami and R. Sethi, “Terminal call processing in
ESTEREL,” Res. Rep. 150, AT&T Bell Labs., 1990.
J.P. Paris, “Communications synchrones asynchrones,” Appli-
cation B ESTEREL. thesis, to appear in 1991.
G.D. Plotkin, “A structural approach to operational semantics,”
Lectures Notes, Aarhus Univ., 1981.
V. Roy, “AUTOGRAPH, Un Outil de Visualisation pour les
Calculs de Processus,” Thtse de Doctorat en Informatique,
UniversitC de Nice, 1990.
B. Stroustrup, The C+ + Programming Language. Reading,
MA: Addison-Wesley, 1986.
D. Vergamini, “Verification by means of observational equiva-
lence on automata,” INRIA Rep. 501, 1986.

BOUSSINOT AND DE SIMONE: ESTEREL LANGUAGE 1303

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

Frederic Boussinot received the Doctorate The-
sis in 1981 from the Jussieu Paris 7 University.

From 1979 to 1984 he was a Research Engi-
neer at Thomson CSF-LCR. In 1984 he joined
the Applied Mathematics Center Laboratory of
the Ecole des Mines de Paris as a Senior Re-
searcher. His research and teaching interests
include semantics of parallelism, reactive for-
malisms, and their implementation.

1304

-1

Robert de Simone received the Doctorate The-
sis in 1984 from the Jussieu Paris 7 University.

In June 1984 he became a Fellow Researcher
at INRIA-Sophis Antipolis and in 1990 he then
became Research Director. He spent the aca-
demic year of 1986 on leave as a Teaching
Assistant to the Ecole Normale Superieure de
Paris. His research and teaching interests include
algebraic models of parallelism, semantics, and
verification.

PROCEEDINGS OF THE IEEE, VOL 79, NO 9, SEPTEMBER 1991

_ _ _ ~ ~ - - - ~ -~

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore. Restrictions apply.

