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We present the basics of the ESTEREL reactive model of syn- 
chronous parallel systems. We illustrate the ESTEREL programming 
style, based on “instantaneous communications and decisions ’’ 
through the example of a mouse handler. We briefly describe 
the ESTEREL formal semantics and show how programs can be 
compiled into finite states sequential machines for efJicient exe- 
cution. The up to date implementation is described together with 
the ESTEREL environment, including simulation, and verification 
and validation tools. Finally, we report on some ESTEREL uses in 
various contexts. 

I. INTRODUCTION 
The ESTEREL language is a member of the new family 

of synchronous languages for reactive programming, which 
also counts languages as LUSTRE [13], SIGNAL [17], SML 
[ 181, and STATECHARTS [ 141. 

ESTEREL originated from a joint INRIA-ENSMP project 
on the semantics of parallelism. Better understanding of 
real-time programming especially of temporal features such 
as “watchdogs,” was the prime motivation. In the course 
of the ESTEREL design, the necessity of a formal approach 
became more and more clear: without mathematical seman- 
tics ESTEREL would not exist. As a benefit of the formal 
approach, ESTEREL programs can be compiled efficiently 
into finite states machines and can generate efficient code. 

In this paper we show the basic principles of the ESTEREL 
reactive model and we give a flavor of the new program- 
ming style that comes with it. We also give an idea of the 
semantics and discuss how efficient code can be produced 
from ESTEREL programs. 

The paper is organized as follows: In the second section 
we describe the ESTEREL basic assumptions and the under- 
lying model. In the third section we give some examples 
of ESTEREL programs. In the fourth section we detail the 
most striking features of the ESTEREL formal semantics. 
In the fifth section we describe the compiling process and 
the ESTERELv3 system. In the sixth section we present 
the ESTEREL existing environment including validation and 
simulation tools. In the seventh section we discuss future 
extensions to the present language. Finally, in the eighth 
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Fig. 1. A reactive system. 

section we briefly summarize nowadays programming ex- 
periences in ESTEREL. 

11. THE UNDERLYING MODEL 

following “equation”: 
Motivations behind ESTEREL can be summed up by the 

ESTEREL = reactivity 
+ atomicity of reactions 
+ instantaneous broadcast 
+ determinism 

We are going to justify now each component of this 
equation. 

A. Reactivity 

The ESTEREL basic model is the reactive model in which 
one considers communicating systems that continuously 
interact with their environment [ 151. When activated with 
an input’event, a reactive system reacts by producing an 
output event. Reactive systems are seen as “black boxes” 
that must be activated from outside in order to react; they 
have input lines to receive input events from the outside, 
and output lines to produce output events. A reactive 
systems is shown in Fig. 1. 

The life of a reactive system is divided into instants 
that are the moments where it reacts. Accordingly, one can 
speak of the first instant of a program, the second instant, 
and so on. We call reactive statements, statements that are 
defined by reference to instants. For example, in ESTEREL, 
“await  S” stops execution until the first instant the 
signal S becomes present. The most basic ESTEREL reactive 
statement is the watching statement that implements a 
generalized watchdog. It will be described later on. 
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Fig. 2. Reactive system as history transducer. 

To sum up, we can say that the reactive approach allows 
one to reason in a logics of instants and to program using 
reactive statements. 

reactivity = instants t reactive statements 

B. Atomicity of Reactions 

The basic hypothesis of ESTEREL is called the perfect 
synchrony hypothesis [3]: it says that reactions are in- 
stantaneous so that activations and productions of output 
are synchronous, as if programs were executed on an 
infinitely fast machine. This idealized hypothesis can be 
more practically expressed by saying that reactions are 
atomic, that is, a particular reaction do not interfere with 
the others reactions. In other words, program reactions 
cannot overlap: there is no possibility to activate a system 
while it is still reacting to the current activation. This 
hypothesis simplifies the reasoning about reactive systems 
as concurrency between reactions is not to be considered. 
Without the atomicity assumption, this concurrency would 
be a source of nondeterminism. 

synchrony hypothesis atomicity of reactions. 

Atomicity of reactions allows to speak of the basic clock of 
activations. In other words, it allows to consider reactive 
programs as history transducers: a reactive program is a 
function that produces a sequence of output events from 
a sequence of input events. Figure 2 shows an output 

11,. . .,In,. ... 
history 01,. . .,On,. . .  produced from an input history 

C. Instantaneous Broadcast 

As other concurrent languages (Occam, for example), 
ESTEREL has a parallelism operator, written 1 1 .  With it, 
one directly program parallel entities. In Ada these entities 
that are called tasks, communicate and synchronize using 
a “hand shaking” mechanism. This mechanism (sometimes 
called “rendezvous”) is one-to-one: it only allows one entity 
to communicate with another one, at a time. On the con- 
trary, broadcast is the unique communication mechanism in 
ESTEREL. Broadcast, in opposition to “hand shaking,” can 
be seen as “hand raising”: when one wants to communicate, 
one raises its hand, so everybody can see it. It is analogous 
to radio communication where there are many receptors that 
all receive the same information (this is a consequence of 
the synchronous characteristics of the parallel operator that 
we will describe later on). 

In ESTEREL, communication is done using signals 
that can be emitted, tested for presence, and that can 
have a value with. Internal communication (between 

..............I.... 1 module \ 1 moctule I..:... j 1“ 
input 
signals 

........ 

output 
signals 

-. .................................... I 1 

Fig. 3. An ESTEREL module 

ESTEREL subprograms) and external communication 
(between ESTEREL programs and the external world) are 
unified in the same framework of signals: input and output 
lines are signals and input and output events are sets of 
signals. Figure 3 shows more precisely the architecture of 
an ESTEREL program made of several subprograms, called 
modules. In it, the doted lines denote signals, and the broken 
lines indicate that the basic clock of activations is shared 
by all submodules. 

Broadcast is limited to instants: the emission of a signal 
(using an emit statement) lasts for the current instant and 
the emitted signal is seen as present (for example, using 
a present statement) by all the receptors, during this 
instant. For example, consider: 

present S then emit T end 

emit S 

present S then emit U end 

I I  

I I  

The signal S is emitted by the emit S instruction. It 
is seen as present by both present instructions and both 
then branches are executed. So S, T, and U are all emitted 
during the same instant: they are synchronous. 

Notice that this program has one unique solution: we do 
not have to consider the case where S would be considered 
as absent by any of the receptors. In this respect, broadcast 
reduces the number of distinct possible communications. 

ESTEREL 
broadcast has an important characteristic: emissions and 
receptions do no terminate the current instant. In other 
words, there can be several signal emissions and receptions 
in sequence within the same instant. This characteristic 
allows to program so called “instantaneous decisions” that 
are specific to ESTEREL. Emission of a query and reception 
of the answer during the same instant is an example of in- 
stantaneous decision. Later we shall show an instantaneous 
decision in the program example of a mouse handler: 

As can be seen on the previous example, 

instantaneous broadcast + instantaneous decision. 

D. Determinism 

Nondeterminism is completely thrown out of ESTEREL. 
With traditional approaches, one has to choose between 
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parallelism and nondeterminism on one hand, or determin- 
ism but sequentiality on the other hand. On the contrary, 
ESTEREL parallelism is deterministic. 

Determinism is another way to simplify reactive pro- 
gramming. With deterministic programs, behaviors are re- 
producible, that simplifies program tests and validations (a 
faulty behavior can be replayed at will): 

ESTEREL= parallelism t determinism. 

111. ESTEREL PROGRAMMING 
We are not going to describe precisely the language (see 

[lo] for a complete presentation) but instead give the flavor 
of the ESTEREL programming style through some small 
examples. Actually, we advocate how ESTEREL programs 
can be seen in a way as very close to specifications: 

ESTERELprogram M specification. 

We first give some examples to illustrate the use of signals 
in ESTEREL and the watching statement; then we de- 
scribe a small mouse handler that exhibits an instantaneous 
decision. 

A. The Programming Style 

The watching statement is the basic ESTEREL reactive 
statement. watching statements have the syntax: “do 
body watching signal”. The semantics is that the body is 
“killed” as soon as the signal watched for becomes present. 

To illustrate the use of the watching statement, con- 
sider the following specification Specl: within a delay of 
one second, do an action once a button is pushed. In 
ESTEREL one may write: 

do 
await BUTTON; 
emit ACTION 

watching SECOND 

If SECOND is present before BUTTON or at the same instant, 
then ACTION is not emitted and the watching terminates. 
On the contrary, if BUTTON is present before SECOND, 
then ACTION is immediately emitted and the watching 
terminates. Otherwise, if neither SECOND nor BUTTON are 
present, nothing is done and the waiting for BUTTON and 
SECOND is postponed to the next instant. There is a special 
case at the first instant where in all cases, nothing is done. 
To extend to the first instant the previous behavior, one 
must use the “immediate” variant of the watching and 
await statements: 

do 
await immediate BUTTON; 
emit ACTION 

watching immediate SECOND 

Now consider the “opposite” specification Spec2: within 
a delay of one second, raise an alarm if a button is not 

pushed. One may simply write: 

do 
await SECOND: 
emit ALARM; 

watching BUTTON 

Suppose now that we want to extend Specl with the 
following: an alarm must be emitted when the button is 
not pressed within the one second delay. Notice that this 
extended specification Spec3 is partial (as also are Specl 
and S p e d ) :  it does no tell what to do when the button is 
pushed in exactly one second. 

The Spec3 specification can be coded by adding a time- 
out part to the watching statement: 

do 
await BUTTON; 
emit ACTION 

watching SECOND 
timeout emit ALARM 

The timeout part is executed only when the watched 
signal becomes present and the body is not yet terminated. 
So, the signal ALARM is emitted if SECOND is present 
before BUTTON. Notice the deterministic behavior in case 
SECOND and BUTTON are both present together: according 
to the semantics of watching, the body is killed, so 
ACTION is not emitted, and the timeout part is executed, 
so ALARM is emitted. 

The following program also satisfies the partial Spec3 
specification: 

do 
await SECOND; 
emit ALARM 

watching BUTTON 
timeout emit ACTION 

Now, when SECOND and BUTTON are both present at the 
same instant only ACTION is emitted. 

Finally, suppose one wants ACTION and ALARM to be 
both emitted when SECOND and BUTTON occur simulta- 
neously. One may write: 

trap END in 
await SECOND; 
emit ALARM; 
exit END 

await BUTTON; 
emit ACTION: 
exit END 

I I  

end 

The trap END statement defines a block that is instantly 
exited when “exit END” is executed. So, the “trap 
END” block is terminated as soon as SECOND or BUT- 
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TON or both, are present. Moreover, when SECOND and 
BUTTON are simultaneously present, ACTION and ALARM 
are both emitted as a consequence of the parallel operator 
semantics. 

B. A Mouse Handler 

We consider a mouse handler with two inputs: 
1) CLICK: a push button, 
2) TOP: a clock signal. 

The mouse handler has to figure the number of CLICK’S 
(none, one, or more than one) performed within a delay 
of five TOP’s. Accordingly, it outputs NONE, SINGLE, or 
MANY. 

We first define an auxiliary module Counter that counts 
occurrences of CLICK. When a signal RST is present, 
Counter emits a valued signal VAL whose value is the 
number of occurrences of CLICK. The ESTEREL program 
is the following: 

module Counter: 
input RST, CLICK; 
output VAL(integer); 

var v : integer in 

v := 0; 
do 

every immediate CLICK do 

end 
v := v+l; 

watching RST; 
emit VAL(v) 

end 

The “input RST , CLICK; ” declaration introduces 
two input signals; these signals are “pure”: they carry no 
value and only their presence or absence is significant. The 
“output VAL ( integer ) ; ” declaration introduces an 
output signal with an integer value. The statement “emit 
VAL(v)” emits the signal VAL with value v. Notice 
that the module Counter terminates at the instant RST 
becomes present (because of the watching semantics). 

Second, we define an auxiliary module Emission that 
processes the value of the valued signal VAL. Accordingly, 
it outputs NONE, SINGLE, or MANY. Emission begins to 
wait for VAL and then uses its value denoted by ?VAL. 

module Emission: 
input VAL(integer); 
output NONE, SINGLE, MANY; 

await VAL; 
if ?VAL = 0 then 

emit NONE 
else 

if ?VAL = 1 then 
emit SINGLE 

else 

emit MANY 
end 

end 

Finally, in the main module Mouse, within a global 
loop, one puts in parallel a copy of Counter and a copy 
of Emission (using the copymodule statement), and 
a statement that emits RST when five TOP’s have been 
received. 

module Mouse: 
input CLICK, TOP; 
output NONE, SINGLE, MANY; 

signal RST, VAL(integer) in 

copymodule Counter 

await 5 TOP; 
emit RST; 

copymodule Emission 

loop 

I I  

I I  
end 

end 

The signal keyword introduce the declaration of two 
local signals that correspond to those of Counter. The 
parallel statement terminates when its three branches ter- 
minate. It is the case when the fifth TOP is present, 
because then RST is emitted which forces Counter and 
Emission to terminate. The loop statement lets the 
behavior of Mouse cycle: the parallel statement is restarted 
immediately at the same instant it terminates. 

Notice the instantaneous communication and decision 
inside the parallel statement: the second branch emits the 
signal RST that is received by Counter in the first branch. 
Then at the same instant, Counter emits Val that is 
received and processed by Emission. 

IV. ESTEREL SEMANTICS 
The ESTEREL reactive approach gives rise to several 

specific problems, leading to undesirable programs. Some 
of them, involving signals, are called causality problems. 
They are akin to short-circuits in electronics and appear in 
all powerful synchronous languages. There is a need for a 
formal semantics to solve these problems. In this section 
we first describe the new class of problems and then we 
give some indications on the semantical approach that has 
been used to tackle them. 

A.  Specific Problems 

Instantaneous Loops: Instantaneous loops are loops 
whose body terminate at the instant they are executed for 
the first time. Such loops must be rejected as they do not 
allow to agree on completion of the instant. An example of 
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instantaneous loop using a variable x is: 

loop x:=x+1 end 

Causality Problems: ESTEREL programs communicate 
via signals which are instantaneously broadcast. ESTEREL 
communication is powerful but, we have to pay for it: there 
can be so-called “causality problems” [4]. There are two 
kinds of causality problems. First, consider the following 
program CausalO: 

signal S in 

end 
present S else emit S end 

This program has no solution: if one supposes that the local 
signal S is absent, then it is emitted; on the other hand, we 
cannot suppose it is present as then, it would be not emitted. 
In other words, Causal0 is incoherent, as it violates the 
ESTEREL broadcast communication mechanism. 

Causal2: 
Second, consider the following program 

signal S1, S 2  in 
present S1 else emit S2 end 

present S2 else emit S 1  end 
I I  
end 

This program has two solutions: in the first solution S 1  
is absent and S 2  is present; conversely, in the second 
solution S 2  is absent and S1 is present. So, Causal2 is 
nondeterministic and the ESTEREL determinism hypothesis 
is violated. 

Valued Signals: Some problems are specific to valued 
signals. For example, consider: 

emit S ( ? S  + 1 )  

This is a kind of “positive feedback” effect: the value of S 
denoted by ?S, must verify: ? S  = ?S + 1, which clearly 
has no solution. 

It is important to notice that instantaneous loops and 
causality problems are detected by ESTEREL compilers. 
Causality problems are the synchronous counterpart of 
asynchronous deadlocks. More precisely, causality prob- 
lems can be seen as instantaneous deadlocks. For example, 
in Causal2, one needs to assume the presence status of 
S1 to decide of the emission of S2, and vice-versa. The 
difference with general deadlocks is that causality problems 
can be detected at compile time instead of being undetected 
at run-time. 

ESTEREL 3 static detection of instantaneous deadlocks. 

Of course, noninstantaneous deadlocks exist in ESTEREL 
and are not statically detected. It is the case for example, in: 

await SI; emit S2 

await S2; emit S1 
I I  
end 

This statement is correct in ESTEREL, but it never termi- 
nates and does nothing at all. 

B. Mathematical Semantics 

The goal of formal semantics is to describe without 
ambiguity how programs behave. The formal approach is 
the guide line for compiler or validation tools designers. 

There exist several distinct levels of description of 
ESTEREL formal semantics, expressed either denotationally 
or operationally. They are presented and connected in [12]. 

The most fruitful of these semantics is the behavioral 
semantics, presented in the so called “Structural Opera- 
tional Semantics” framework [22]. It provides an abstract 
vision of the reactive structure of programs and allows 
simple reasoning. It accepts more programs than any other 
semantics: only programs without solution, as CausalO, are 
rejected (but nondeterministic programs, such as CausaM, 
are accepted). 

The Behavioral Semantics: The behavioral semantics 
we are going to describe now, manipulates operational 
transitions of the following general format :’ 

Inputloutput 
Program - Newprogram 

Terminated 

This transition is read as follows: at the first instant and 
with Input as input event, the program Program reacts 
by producing the output event Output. Newprogram is 
the residual program to be executed at the next instant. 
Moreover, the boolean Terminated is true if and only if 
Program has terminated its execution. For example, the 
semantics of the emit statement is given by 

I l { S )  
emit S -nothing 

true 

The Semantics of compound statements are constructed out 
from the semantics of their components, using inference 
rules. To give an idea, the semantics of the full ESTEREL 
language needs approximatively thirty such rules. The 
semantics of watching is given by the two following 
rules: 

I I O  

P 4 

true 
I I O  

do p watching S ,nothing 

true 

signal S1, S2 in 
’ Slightly simplified, as we do not take t r a p  and exit constructs into 

account. 
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110 
lJ +q 

false 
110 

d o p w a t c h i n g S  L p r e s e n t  S e l s e  do q watching S end 

false 

The first, rule is read as following: one can conclude 
that, under the hypothesis that execution of the body 
p terminates, the watching statement terminates too, 
with nothing as residual program (q, the residual of p 
disappears in the conclusion, as execution is terminated). 
Moreover, emitted signals are those emitted by p .  The 
second rule holds in case p does not terminate. Then, S will 
be tested for presence next instant, deciding upon whether 
to execute the body. 

The semantics of the parallel operator is given by the 
unique rule: 

I IO I IO 

bi b2 

PI - 41 P2 - 4 2  

The parallel operator is synchronous: its two branches are 
working at each instant. It terminates as soon as both its 
branches terminate (because of the and connective). 

These rules give only a flavor of the behavioral semantics. 
Notice that in the rule of the parallel operator, both subterms 
p l  and p:! share the same input I .  The more complex seman- 
tics of local signals declarations has to verify the coherency 
between signals emissions and receptions. Actually, in the 
behavioral semantics, this coherency must be verified after 
making hypothesis about local signals presence or absence. 
Sequential implementations of the behavioral semantics 
necessary need some kind of backtracking. 

The Execution Semantics: The purpose of the execution 
semantics is twofold: 

First, to reject nondeterministic programs as well as 
programs without solution. 
Second, to give an efficient implementation, avoiding 
hypothesis to be possibly negated later on and leading 
to backtracks. 

The execution semantics is based on a so-calledpotential 
function [ 121, that syntactically forecast which signals may 
or may not be further emitted inside the instant. These 
informations are used to order the processing of signals: 
one execute presence tests on a given signal only when 
the signal is not in the potential anymore. When one 
cannot find any order to process signals, one detects a 
causality problem. For example, the previous Causal2 
program is rejected by the execution semantics: no good 
order exists as both signals S1 and S2 are in the potential 
of the parallel statement. Unfortunately, as the potential 
function is syntactically defined, the execution semantics 
is only an approximation of the semantics where exactly 
programs with an unique solution are accepted: there exist 
programs that have an unique transition for each input, 

1298 

with the behavioral semantics, but that are rejected by the 
execution’s. 

V. ESTEREL IMPLEMENTATIONS 
In this section we describe the ESTEREL compiling 

technics, code production and the current ESTERELv3 im- 
plementation. 

A. Compiling into Automata 
Perhaps the most striking characteristics of ESTEREL is 

the ability toproduce a finite state machine, also called 
automaton. The construction follows the execution se- 
mantics in a symbolic evaluation. The execution rules 
provide a transition from a state, for each input event. 
The automaton is constructed by merely gathering those 
transitions, identifying states with successive residuals. The 
key point here is that there are only finitely many such 
residual terms for an ESTEREL program. 

For example, consider the “do halt watching S” 
statement, where halt is the statement that never termi- 
nates. The semantics of halt is given by the transition: 

I IO 
halt -halt 

false 

We denote by T the program 

T = present S else do halt watching S end 

Accordingly to the semantics of watching, for all input 
I ,  one has: 

I IO 
do halt watching S -T 

false 

Consider now, the residual program T .  For all input I such 
that S $ I ,  one shows that: 

I 1 0  
T -T 

false 

The proof is given by the following proof tree: 

I IO 
halt - halt 

false 
110 S $ I  

do halt watching s - T 

false 
I IO 

T-T 
false 

Conversely, for all input I such that S E I ,  one has: 

I I O  
T -nothing 

true 
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do halt watching S 

# / #  is)/# 
present S else 

/ #  do halt watching S 

”’ nothing 

Fig. 4. Automaton associated to an ESTEREL program. 

Finally, the semantics of nothing is of course, given by: 

I I O  
nothing - nothing 

true 

Now, remark that the signal S is the only significant signal 
in all the programs we consider. Identifying states with 
residual programs, we obtain the three states automaton 
drawn in Fig. 4. This example shows that “await S” 
and “do halt watching S” are equivalent as their 
semantics produce the same automaton. 

In the resulting automaton, both parallelism and local 
signal communications have disappeared: they are compiled 
away and sequentialized inside each instant transition. For 
example, the automaton produced from the module Mouse 
has two states and correspond to the following sequential 
textual description:2 

State 0 
v3 := 5; v := 0; 

v := v+l; 
goto 1 

if CLICK then 

end; 
goto 1 

State 1 
if TOP then 

if V3 then 
v2 := v; 
if V2=0 then 

v3 := 5; v := 0; 
if CLICK then 
v := (v+l); emit NONE; 
goto 1 

end: 
emit NONE ; 
goto 1 

end: 
if V2=1 then 

v3 := 5; v := 0; 
if CLICK then 

v := (v+l); emit SINGLE; 
goto 1 

2This text is actually generated by the ESTERELV~ compiler with the 
pretty printing -debug option. 

end: 
emit SINGLE; 
goto 1 

end; 
v3 := 5; v := 0; 
if CLICK then 

v := (v+l); emit MANY; 
goto 1 

end; 
emit MANY; 
goto 1 

end; 
if CLICK then 

v := (v+l): 
goto 1 

end: 
goto 1 

end; 
if CLICK then 

v := (v+l); 
goto 1 

end: 
goto 1 

In this text, V2 is the value of the signal VAL and V 3  is 
used to count five TOP’S. Notice that in state 1, CLICK is 
always processed even in the case TOP is also present. 

The automaton produced is deterministic; parallelism and 
communications that appear in the ESTEREL source code 
have been compiled to produce sequential code. In particu- 
lar, the instantaneous communication in the module Mouse 
has completely disappeared. In a sense, this justifies the 
synchrony hypothesis: the communication is infinitely fast 
since there is nothing to execute as no code is generated! 

Compiling ESTEREL programs into automata offers many 
advantages: 

EfJiciency: Automata can be efficiently executed. As 
no parallelism appear in automata any more, there is no 
time overhead resulting from run-time tasks or processes 
management, or from run-time communication or synchro- 
nization. On the contrary, suppose we have to implement 
the mouse system in Ada using a task Counter. Then we 
have to pay for task management and communication. This 
is often why only the sequential part of Ada is used for 
real-time programming. 

Predictability: The maximum transition time of an au- 
tomaton is predictable. This is especially important when 
one want to code real-time systems. 

ESTEREL =compilation of parallelism 
and output as automaton 

B. The ESTERELV~ System 
The ESTERELV~ system is based on a very efficient 

compiling algorithm described in [ 121. It rejects nondeter- 
ministic programs and programs with causality problems 
or instantaneous loops. As a benchmark, it takes about four 
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Fig. 5. The lift automaton shown by Autograph. 

seconds to compile on a Sun3 the wristwatch program of 
[2] that generates a 41 states automaton. 

The ESTERELv3 system is written in C++ [24],runs on 
several  machine^,^ and produces automata in an output 
code format common with the LUSTRE project [7]. This 
format can be translated into several target languages: C, 
Ada,4 LeLisp, etc. The C language is the default target: 
when one types esterel f i c h .  strl the ESTERELv3 
compiler generates a f i c h . c  C file. The C executable 
code produced from the mouse program by the ESTEREL 
compiler, is a direct implementation of the sequential 
pseudo-code described in Section V-A. 

ESTEREL = efficient implementation 

VI. THE ESTEREL ENVIRONMENT 
The ESTEREL environment tools are divided into two 

groups: 
Verification and Validation Tools: Those tools consider 

the internal structure of the compiled automata. They allow 
comparisons with specifications, as well as total or partial 
visualization of states and transitions. 

Simulation and Development Tools: Those tools con- 
sider ESTEREL programs as reactive boxes. They allow 
the user to activate them interactively, and record the 
corresponding reactions. 

A. Verification 

Down the ESTEREL programming lines, one produces, 
simulates, executes and validates automata. This approach 
complies with the Berry’s WYPIWYE (“What You Prove 
Is What You Execute”) principle [3]. Automata can be 
analyzed using several systems, in particular Auto[25] 
developed in the same INRIA-ENSMP project as ESTEREL. 

Verification is a broad topic. Classically, it consists in 
confronting a program with a set of specifications, where 
each of these specification takes into account only partial 
aspects of the whole system. Specifications can be provided 

3Vax, Sun3, Sun4, Hp9000, GouldPN9000 at the date of writing. 
4 0 f  course, only the sequential part of Ada is used. 

either operationally, in an automaton fashion, or logically, 
using so-called temporal logics. 

Auto is an automatic verification tool dedicated to anal- 
ysis of finite automata, and therefore focuses on the first 
approach. Its primary method is abstraction, which reduces 
a large global automaton with respect to those behaviors 
which are considered relevant. The reduced automaton 
can be more readily checked for validity. Reductions im- 
plemented in Auto are semantically grounded, based on 
process calculi theory notions such as bisimulations [ 191 
and observation criteria [6]. 

In most cases, one can even do without an explicit 
specification, by just inspecting the reduced automaton. 
This requires visualization of automata, before or after 
reduction. The Autograph [23] graphical interface of Auto 
allows exactly this. It allows also to directly draw the 
operational specifications as automata. 

As an illustration, we shall consider a simple lift program, 
slightly more complicated than the mouse handler. The full 
automaton produced by ESTEREL compilation is shown in 
Fig. 5 in its Autograph postscript output. Labeling actions 
are compound and each one represents a full reaction: input 
signals are suffixed by “?” and output signals by “!”. For 
example, the action on the arrow connecting state e0 to e l  
indicates that FLOOR-STOP and OPEN-DOOR-COMMAND 
are both emitted on reception of OPEN-DOOR. 

We now want to establish that the lift may not travel 
with the door open. But already for this simple program, 
the result is rather big, so that this property is not obvi- 
ous to check. We shall thus abstract the automaton and 
only consider the actions OPEN-DOOR, DOOR-CLOSED, 
LIFT-STARTED, and LIFTSTOPPED. Indeed, the lift 
is supposed to be in motion in between LIFT-STARTED 
and LIFTSTOPPED, while the door is open in between 
OPEN-DOOR and DOOR-CLOSED. The other signals are 
irrelevant to the considered property. 

Using Auto, we perform both the hiding of irrelevant 
signals and the reduction (with respect to bisimulation) 
of the lift in Fig. 5.  The result is displayed in Fig. 6. It 
is smaller, more manageable and more directly related to 
the property. Indeed, OPEN-DOOR cannot be performed in 
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DOOR-CLOSED? 
n 

OPEN-DOOR? 

LIFT-STOPPED? 

tau I 6-6 LIFT-STARTED? 

Fig. 6. The reduced lift automaton. 

the state labeled by e7 .  Notice the remaining hidden t a u  
action. It indicates an internal change of state to which 
bisimulation is sensible: 

ESTEREL = possibilities of proofs and validations 
and WYPIWYE. 

B. Simulation 
Simulation tools execute the ESTEREL program instants 

by instants, most often by running on its compiled automa- 
ton. There exists textual as well as graphical simulators. 
The Basic Simulator: It is obtained with the -simul 

option of the esterel command. An instrumented C code 
is generated. It can be linked with a C standard library, 
which allows interactive simulation on the keyboard. This 
simulator prompts the user to type signal names which build 
the next input event, and then lets the program react. As 
an answer, names and carried values of output signals are 
printed. 
The X-Window Graphical Simulator: It uses the same 

instrumented code as the basic simulator, but when linked 
with a X-window graphical library, it provides the user a 
signals menu to build input events. When an output signal 
is emitted back in reaction, an icon is lit up. 
The Sahara Environment: With the Sahara environment 

[ll], one can easily and quickly build graphical control 
panels to interface with ESTEREL programs. Sahara con- 
tains a full blown language for describing these control 
panels which are structured and organized at the user’s 
will. Execution can be semiautomatic: some signals can 
be automatically and periodically raised by the executing 
computer itself. Figure 7 shows a control panel for the lift 
program built with Sahara. 

ESTEREL = graphical simulation 

VII. ESTEREL USE 

There are several ways to design systems made of 
ESTEREL reactive parts. The simplest way is to use only 
one such part embedded into a larger system. One has to 
define how the automaton corresponding to the reactive 
part is interfaced with the overall system. This calls for 
defining how input and output signals are processed and 
how and when the automaton is executed. This leads to the 
architecture of Fig. 8. 

Fig. 7. Lift panel control obtained with Sahara. 

/ 
Fig. 8. A simple architecture. 

operating 

\ 3 N / 

/ \ 
Fig. 9. A more complex architecture 

On the other hand, one can put several reactive sys- 
tems together and make them communicate through asyn- 
chronous channels (first-in/first-out files, for example). It 
is the case for example, when one has to code distributed 
systems that synchronously communicate and synchronize. 
In these cases, ESTEREL is useful to code individual reac- 
tive parts of the overall system and both synchronous and 
asynchronous approaches must be used together. For exam- 
ple, the Fig. 9 shows two reactive systems put together in 
a larger system and communicating through two channels. 

Moreover, there are situations where, while staying in a 
reactive and synchronous framework, a single automaton 

BOUSSINOT AND DE SIMONE: ESTEREL LANGUAGE 1301 

7- 

I 

Authorized licensed use limited to: T U MUENCHEN. Downloaded on November 9, 2009 at 15:47 from IEEE Xplore.  Restrictions apply. 



ABS ABS ABS ABS 

Fig. 10. Presently unimplementable specification. 

would be too big an object. Notice that big automata are 
easy to produce. For example, the ESTEREL statement: 

await SI I I await ~2 1 1  . . .  1 1  await Sn 
produces a 2” states automaton. The cascade approach 
consists in producing several automata and giving a way 
to execute them as if there were an unique automaton. 
The ESTERELv3 system offers a possibility of automatized 
cascading in a restricted case where automata can be 
executed in a fixed order independent of the instants. 

Several systems have been programmed in ESTEREL. We 
can cite: 

A digital watch [2]. This program can be automati- 
cally cascaded with the ESTERELv3 system. The fixed 
automata execution order is natural: first, the button 
handler, second the watch and finally the display 
handler. 
A “minitel” modem [16]. The produced code has been 
plugged into a real-time environment. 
Several communication protocols, in particular, an 
HDLC protocol [5] ,  a terminal call protocol [20] and 
a local area network protocol [18]. 
A car Antilock Braking System, that has needed a 
manual cascade of automata. 
A robotics application [9]. ESTEREL is used to ensure 
control sequencing for robots. The exec primitive 
described in the next paragraph, has been widely used 
in this application. 
Other applications, in avionics, in hardware drivers, in 
process controllers [l], for example. 

clared and it is always present5 The signal tick defines 
the clock of step activations. Using tick, the previous 
specification can be coded by the following module: 

module FUTURE: 
input PRES; 
output ABS; 

every tick do 

end. 
present PRES else emit ABS end 

Note that we could equivalently introduce a new statement 
stop that stops execution for the current instant. For 
example, with this new statement, the specification is coded 
by: 

module FUTURE: 
input PRES; 
output ABS; 

loop 
present PRES else emit ABS end; 
stop 

end 

In fact, stop can be simulated by “await tick.” Con- 
versely, a signal TICK simulating tick can be generated 
by: 

loop 
emit TICK: 
stop 

end 

B. Boolean Conditions on Signals 

With the third extension, one will be able to directly use 
boolean conditions on signals. For example, to wait for A 
or B one will simply write “await A or  B.” Control 
over the next instant, is necessary to be able to express the 
boolean negation not corresponding to signal absence. F~~ 
example, the previous FUTURE be written as: 

VIII. NEW EXTENSIONS FOR ESTEREL 
In this section we describe three new extensions for 

ESTEREL, which will be incorporated in the next version of 
the ESTEREL system. The extensions concern the abilities 
to program by referring to the basic instants clock and to 
code boolean conditions on signals, on one hand; on the 
other hand, it concerns a restricted form of asynchrony, 
based on a new primitive called exec [21]. 

A. The Next Instant 

In the actual ESTEREL language there is no possibility to 
have direct control over instants: at least one of the input 
signals must be present at each reaction (except at the very 
first instant). There is no possibility to code the simple 
following specification: at every instant, the signal ABS is 
emitted if the signal PRES is not in the input event. This 
specification is shown in Fig. 10. 

To have direct control over instants, a new input signal 
named tick is introduced. This signal is implicitly de- 

module FUTURE: 
input PRES; 
output ABS; 

every not PRES do emit ABS end 

C. Asynchrony in ESTEREL 
With the exec primitive, one can use asynchronous tasks 

in ESTEREL. A task is a sequential code that is not 
instantaneous: it does not terminate in the same instant 
it is started. Tasks introduce only a restricted form of 

51t is analog to the constant “true” of LUSTRE [13]. 
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Fig. 11. Interfacing the exec primitive 

asynchrony: a task is allowed to synchronize only when it 
terminates its execution. Moreover, tasks are not allowed to 
communicate. A task can be started with some arguments. 
When it terminates, results are returned to the calling 
ESTEREL program. Tasks can also be killed, for example 
by a watching statement. Consider: 

do 
exec Move (returnstatus) 

goalposition) 
(initialposition, 

watching LIMIT-TIME 

The task Move is started with initialposition and 
goalposition as arguments. It must terminate before 
LIMIT-TIME becomes present. If it is the case, the task 
sets the returnstatus result variable. Otherwise, the 
task Move is killed and returnstatus is not set. Note 
that a task can be killed and then started with new ar- 
guments in the same instant. The interface of the exec 
primitive is shown in Fig. 11. 

IX. CONCLUSION 
The ESTEREL language introduces a new programming 

style extremely natural for coding reactive systems. Sepa- 
rating a program into parallel components for better mod- 
ularity and adding signals for synchronization incur no 
run-time overhead as they are compiled away. 

ESTEREL is especially useful when an unique automaton 
is to be produced. In this case, we have a complete 
method: the ESTEREL high level program can be seen as 
the automaton specification; it can be graphically simulated 
and proved using verification systems; it can be translated 
into several sequential languages and executed with great 
efficiency. This is of special interest for real-time system 
kernels, when efficiency and proofs are required. Another 
use of ESTEREL that seems very promising is to produce 
code for electronic circuits. 

However, ESTEREL can be useful in larger context when 
one has to produce several automata that must cooperate. 
It is the case for two main reasons: first, when an unique 
automaton would be too big an object. Second, when one 
has to mix synchronous and asynchronous approaches. The 

ESTEREL system gives a partial response in the first case 
with the -cascade option. However, work has to be done 
to extend the cascade method for more general cases (in 
other words, only a restricted form of separate compiling 
is available presently). 
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