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Machine Learning Worksheet 1

Probability Theory

1 Refresher

Lots of questions regarding uncertainty in machine learning can be answered by the two elementary rules
of probability, known as the sum rule and the product rule.

sum rule p(X = x) =
∑

y

p(X = x, Y = y)

product rule p(X = x, y = Y ) = p(Y = y|X = x)p(X = x)

(X and Y are discrete random variables). From the product rule, one immediately obtains the so called
Bayes’ rule:

p(Y = y|X = x) =
p(X = y|Y = y)p(Y = y)

p(X = x)
You also should be familiar with the expectation E[X] of a random variable X and its variance var[X]:

E[X] =
∑

x

xp(X = x)

var[X] = E[(X − E[X])2]

Note that we usually write p(x) instead of p(X = x).

In the case of continuous random variables, the summation in the above formulae is substituted by an
integration with respect to the corresponding probability density.

2 Basic Probability

Problem 1. There are eleven urns labeled by u ∈ {0, 1, 2, . . . , 10}, each containing ten balls. Urn u
contains u black balls and 10− u white balls. Alice selects an urn u at random and draws N times with
replacement from that urn, obtaining nB black balls and N − nB white balls. If after N = 10 draws
nB = 3 black balls have been drawn, what is the probability that the urn Alice is using is urn u?

Now, let Alice draw another ball from the same urn. What is the probability that the next drawn ball is
black (show your work)?

Problem 2. Consider two variables X and Y with joint distribution p(x, y). Prove the following two
results:

E[X] = EY [EX [X|Y ]] (1)
var[X] = EY [varX [X|Y ]] + varY [EX [X|Y ]] (2)

Here EX [X|Y ] denotes the expectation of X under the conditional distribution p(x|y), with a similar
notation for the conditional variance.
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3 Probability Inequalities

Inequalities are useful for bounding quantities that might otherwise be hard to compute. We’ll begin
with a simple inequality, called the Markov inequality after Andrei A. Markov, a student of Pafnuty
Chebyshev.

3.1 Markov Inequality

Let X be a non-negative, discrete random variable, and let c > 0 be a positive constant.

Problem 3. Show that
P (X > c) ≤ E[X]

c
.

Now, consider flipping a fair coin n times. Using the Markov Inequality, what is the probability of getting
more than 3/4n heads?

3.2 Chebyshev Inequality

Apply the Markov Inequality to the deviation of a random variable from its mean, i.e. for a general
random variable X we wish to bound the probability of the event {|X − E[X]| > a}, which is the same
as the event {(X − E[X])2 > a2}.

Problem 4. Prove that
P (|X − E[X]| > a) ≤ var(X)

a2

holds. Again, consider flipping a fair coin n times. Now use the Chebyshev Inequality to bound the
probability of getting more than 3/4n heads.

3.3 Jensen’s Inequality

Let f be a convex function. If λ1, . . . , λn are positive numbers with λ1 + · · · + λn = 1, then for any
x1, . . . , xn ∈ I:

f(λ1x1 + · · · + λnxn) ≤ λ1f(x1) + · · · + λnf(xn)

Problem 5. Prove this inequality by using induction on n.

Problem 6. Using Jensen’s Inequality, show that for a finite random variable X (with n different values),
its entropy is always bounded above by lnn. Additionally, prove that the Kullback-Leibler divergence
between any two discrete probability distributions is always non-negative.
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