Machine Learning Worksheet 1

Probability Theory

1 Refresher

Lots of questions regarding uncertainty in machine learning can be answered by the two elementary rules of probability, known as the sum rule and the product rule.

$$
\begin{gathered}
\text { sum rule } \quad p(X=x)=\sum_{y} p(X=x, Y=y) \\
\text { product rule } \quad p(X=x, y=Y)=p(Y=y \mid X=x) p(X=x)
\end{gathered}
$$

(X and Y are discrete random variables). From the product rule, one immediately obtains the so called Bayes' rule:

$$
p(Y=y \mid X=x)=\frac{p(X=y \mid Y=y) p(Y=y)}{p(X=x)}
$$

You also should be familiar with the expectation $\mathbb{E}[X]$ of a random variable X and its variance $\operatorname{var}[X]$:

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{x} x p(X=x) \\
\operatorname{var}[X] & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
\end{aligned}
$$

Note that we usually write $p(x)$ instead of $p(X=x)$.
In the case of continuous random variables, the summation in the above formulae is substituted by an integration with respect to the corresponding probability density.

2 Basic Probability

Problem 1. There are eleven urns labeled by $u \in\{0,1,2, \ldots, 10\}$, each containing ten balls. Urn u contains u black balls and $10-u$ white balls. Alice selects an urn u at random and draws N times with replacement from that urn, obtaining n_{B} black balls and $N-n_{B}$ white balls. If after $N=10$ draws $n_{B}=3$ black balls have been drawn, what is the probability that the urn Alice is using is urn u ?

Now, let Alice draw another ball from the same urn. What is the probability that the next drawn ball is black (show your work)?

Problem 2. Consider two variables X and Y with joint distribution $p(x, y)$. Prove the following two results:

$$
\begin{align*}
\mathbb{E}[X] & =\mathbb{E}_{Y}\left[\mathbb{E}_{X}[X \mid Y]\right] \tag{1}\\
\operatorname{var}[X] & =\mathbb{E}_{Y}\left[\operatorname{var}_{X}[X \mid Y]\right]+\operatorname{var}_{Y}\left[\mathbb{E}_{X}[X \mid Y]\right] \tag{2}
\end{align*}
$$

Here $\mathbb{E}_{X}[X \mid Y]$ denotes the expectation of X under the conditional distribution $p(x \mid y)$, with a similar notation for the conditional variance.

3 Probability Inequalities

Inequalities are useful for bounding quantities that might otherwise be hard to compute. We'll begin with a simple inequality, called the Markov inequality after Andrei A. Markov, a student of Pafnuty Chebyshev.

3.1 Markov Inequality

Let X be a non-negative, discrete random variable, and let $c>0$ be a positive constant.

Problem 3. Show that

$$
P(X>c) \leq \frac{\mathbb{E}[X]}{c}
$$

Now, consider flipping a fair coin n times. Using the Markov Inequality, what is the probability of getting more than $3 / 4 n$ heads?

3.2 Chebyshev Inequality

Apply the Markov Inequality to the deviation of a random variable from its mean, i.e. for a general random variable X we wish to bound the probability of the event $\{|X-\mathbb{E}[X]|>a\}$, which is the same as the event $\left\{(X-\mathbb{E}[X])^{2}>a^{2}\right\}$.

Problem 4. Prove that

$$
P(|X-\mathbb{E}[X]|>a) \leq \frac{\operatorname{var}(X)}{a^{2}}
$$

holds. Again, consider flipping a fair coin n times. Now use the Chebyshev Inequality to bound the probability of getting more than $3 / 4 n$ heads.

3.3 Jensen's Inequality

Let f be a convex function. If $\lambda_{1}, \ldots, \lambda_{n}$ are positive numbers with $\lambda_{1}+\cdots+\lambda_{n}=1$, then for any $x_{1}, \ldots, x_{n} \in I$:

$$
f\left(\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n}\right) \leq \lambda_{1} f\left(x_{1}\right)+\cdots+\lambda_{n} f\left(x_{n}\right)
$$

Problem 5. Prove this inequality by using induction on n.

Problem 6. Using Jensen's Inequality, show that for a finite random variable X (with n different values), its entropy is always bounded above by $\ln n$. Additionally, prove that the Kullback-Leibler divergence between any two discrete probability distributions is always non-negative.

