Machine Learning Worksheet 2

Linear Regression

1 Parameter Estimation

Consider n samples x_{1}, \ldots, x_{n} drawn independently and identically (i.i.d.) from a given distribution $P(X \mid \theta)$. This distribution is usually parametrized (e.g. one parameter representing its mean, one its variance, etc.); these parameters are denoted by θ. One wants to find accurate estimates for these parameters using the n samples only. Maximum Likelihood Estimation (MLE) finds estimates for the various parameters at hand by maximizing the likelihood $P\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\Pi_{i=1}^{n} P\left(x_{i} \mid \theta\right)$. (i.e. the probability of observing the n samples at hand). Note that usually one considers the log likelihood, $\left.\log P\left(x_{1}, \ldots, x_{n} \mid \theta\right)\right)$.

1.1 Coins

Let X be a Bernoulli random variable. The Bernoulli distribution is only parametrized by one parameter, $\theta=P(X=1)$.

Problem 1. For n i.i.d. observations of X determine the MLE for θ. You might want to use $P(X=$ $x \mid \theta)=\theta^{x}(1-\theta)^{1-x}$.

Now we look at slightly more complex distribution, the binomial distribution.

Problem 2. \star Consider a binomial random variable X, with prior distribution for μ given by the beta distribution, and suppose we have observed m occurences of $X=1$ and l occurences of $X=0$. Show that the posterior mean value of μ lies between the prior mean of μ and the maximum likelihood estimate for μ. To do this, show that the posterior mean can be written as λ times the prior mean plus $(1-\lambda)$ times the maximum likelihood estimate, with $0 \leq \lambda \leq 1$. This illustrates the concept of the posterior mean being a compromise between the prior distribution and the maximum likelihood solution.

Note: The binomial distribution is defined as follows:

$$
p(x=m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{N-m}
$$

1.2 Poisson distribution

Let X be Poisson distributed.

Problem 3. Again, for n i.i.d. samples from X, determine the maximum likelihood estimate for λ. Show that this estimate is unbiased!

2 Weighted Linear Regression

Consider a linear regression problem in which we want to "weight" different training examples differently. Specifically, suppose we want to minimize

$$
E(\boldsymbol{w})=\frac{1}{2} \sum^{N} \theta_{n}\left(t_{n}-\boldsymbol{w}^{T} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)\right)^{2}
$$

Problem 4. We already worked out what happens for the case where all the weights θ_{n} are the same. In this problem, we will generalize some of those ideas to the weighted setting, and also implement the locally weighted linear regression algorithm.

1. Show that $E(\boldsymbol{w})$ can also be written

$$
\begin{equation*}
E(\boldsymbol{w})=(\boldsymbol{T}-\boldsymbol{\Phi} \boldsymbol{w})^{T} \boldsymbol{\Theta}(\boldsymbol{T}-\boldsymbol{\Phi} \boldsymbol{w}) \tag{1}
\end{equation*}
$$

for an appropriate diagonal matrix $\boldsymbol{\Theta}$, and where $\boldsymbol{\Phi}$ and \boldsymbol{T} are as defined in class. State clearly what $\boldsymbol{\Theta}$ is.
2. Now let all the θ_{n} equal 1 . By differentiating Eq. 1 with respect to \mathbf{w}, derive the normal equations for the least squares problem, as given in class.
3. Generalize the normal equations to the case of arbitrary $\theta_{n} \mathrm{~s}$.
4. Suppose we have a training set $\left(\boldsymbol{x}_{n}, t_{n}\right) ; n=1, \ldots, N$ of N independent examples, but in which the t_{n} were observed with differing variances. Specifically, suppose that

$$
p\left(t_{n} \mid \boldsymbol{x}_{n}, \boldsymbol{w}\right)=\mathcal{N}\left(t_{n} \mid \boldsymbol{w}^{T} \Phi\left(\boldsymbol{x}_{n}\right), \sigma_{n}^{2}\right)
$$

where the σ_{n} are fixed, known, constants. Show that finding the maximum likelihood estimate of \boldsymbol{w} reduces to solving a weighted linear regression problem. State clearly what the θ_{n} are in terms of the σ_{n}.

3 Basisfunctions

Problem 5. Show that the tanh function and the logistic sigmoid function are related by

$$
\tanh (x)=2 \sigma(2 x)-1
$$

Thus, show that a general linear combination of logistic sigmoid functions of the form

$$
y(x, \boldsymbol{w})=w_{0}+\sum_{j=1}^{M} w_{j} \sigma\left(\frac{x-\mu_{j}}{s}\right)
$$

is equivalent to a linear combination of tanh functions of the form

$$
y(x, \boldsymbol{u})=u_{0}+\sum_{j=1}^{M} u_{j} \tanh \left(\frac{x-\mu_{j}}{2 s}\right)
$$

and find expressions to relate the new parameters $\left\{u_{0}, \ldots, u_{M}\right\}$ to the original parameters $\left\{w_{0}, \ldots, w_{M}\right\}$.

Problem 6. Show that that the least square solution for linear regression corresponds to an orthogonal projection of the vector \boldsymbol{T} onto the manifold S as shown in Figure 1. There, the subspace S is spanned by the basis functions $\phi_{j}(\boldsymbol{x})$ in which each basis function is viewed as a vector $\boldsymbol{\varphi}_{j}$ of length N with elements $\phi_{j}\left(\boldsymbol{x}_{n}\right)$. (Hint: You might want consider what $\boldsymbol{\Phi}\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T}$ resembles, e.g. how does it relate to the maximum likelihood solution for linear regression.)

Figure 1: The projection property of $\boldsymbol{\Phi}\left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{T}$.

4 Bayesian Linear Regression

Problem 7. \star We have seen that, as the size of a data set increases, the uncertainty associated with the posterior distribution over model parameters decreases (see worksheet 1). Prove the following matrix identity

$$
\left(\boldsymbol{M}+\boldsymbol{v} \boldsymbol{v}^{T}\right)^{-1}=\boldsymbol{M}^{-1}-\frac{\left(\boldsymbol{M}^{-1} \boldsymbol{v}\right)\left(\boldsymbol{v}^{T} \boldsymbol{M}^{-1}\right)}{1+\boldsymbol{v}^{T} \boldsymbol{M}^{-1} \boldsymbol{v}}
$$

and, using it, show that the uncertainty $\sigma_{N}^{2}(\boldsymbol{x})$ associated with the bayesian linear regression function given by eq. (33) in the slides satisfies

$$
\sigma_{N+1}^{2}(\boldsymbol{x}) \leq \sigma_{N}^{2}(\boldsymbol{x})
$$

