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Machine Learning Worksheet 2

Linear Regression

1 Parameter Estimation

Consider n samples x1, . . . , xn drawn independently and identically (i.i.d.) from a given distribution
P (X|θ). This distribution is usually parametrized (e.g. one parameter representing its mean, one its
variance, etc.); these parameters are denoted by θ. One wants to find accurate estimates for these
parameters using the n samples only. Maximum Likelihood Estimation (MLE) finds estimates for the
various parameters at hand by maximizing the likelihood P (x1, x2, . . . , xn|θ) = Πn

i=1P (xi|θ). (i.e. the
probability of observing the n samples at hand). Note that usually one considers the log likelihood,
logP (x1, . . . , xn|θ)).

1.1 Coins

Let X be a Bernoulli random variable. The Bernoulli distribution is only parametrized by one parameter,
θ = P (X = 1).

Problem 1. For n i.i.d. observations of X determine the MLE for θ. You might want to use P (X =
x|θ) = θx(1− θ)1−x.

Now we look at slightly more complex distribution, the binomial distribution.

Problem 2. ? Consider a binomial random variable X, with prior distribution for µ given by the beta
distribution, and suppose we have observed m occurences of X = 1 and l occurences of X = 0. Show that
the posterior mean value of µ lies between the prior mean of µ and the maximum likelihood estimate for
µ. To do this, show that the posterior mean can be written as λ times the prior mean plus (1− λ) times
the maximum likelihood estimate, with 0 ≤ λ ≤ 1. This illustrates the concept of the posterior mean
being a compromise between the prior distribution and the maximum likelihood solution.

Note: The binomial distribution is defined as follows:

p(x = m|N,µ) =
(
N

m

)
µm(1− µ)N−m

1.2 Poisson distribution

Let X be Poisson distributed.

Problem 3. Again, for n i.i.d. samples from X, determine the maximum likelihood estimate for λ. Show
that this estimate is unbiased!
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2 Weighted Linear Regression

Consider a linear regression problem in which we want to “weight” different training examples differently.
Specifically, suppose we want to minimize

E(w) =
1
2

N∑
θn

(
tn −wTφ(xn)

)2
Problem 4. We already worked out what happens for the case where all the weights θn are the same.
In this problem, we will generalize some of those ideas to the weighted setting, and also implement the
locally weighted linear regression algorithm.

1. Show that E(w) can also be written

E(w) = (T −Φw)T Θ(T −Φw) (1)

for an appropriate diagonal matrix Θ, and where Φ and T are as defined in class. State clearly
what Θ is.

2. Now let all the θn equal 1. By differentiating Eq. 1 with respect to w, derive the normal equations
for the least squares problem, as given in class.

3. Generalize the normal equations to the case of arbitrary θns.

4. Suppose we have a training set (xn, tn);n = 1, . . . , N of N independent examples, but in which the
tn were observed with differing variances. Specifically, suppose that

p(tn|xn,w) = N (tn|wT Φ(xn), σ2
n)

where the σn are fixed, known, constants. Show that finding the maximum likelihood estimate of
w reduces to solving a weighted linear regression problem. State clearly what the θn are in terms
of the σn.

3 Basisfunctions

Problem 5. Show that the tanh function and the logistic sigmoid function are related by

tanh(x) = 2σ(2x)− 1

Thus, show that a general linear combination of logistic sigmoid functions of the form

y(x,w) = w0 +
M∑

j=1

wjσ

(
x− µj

s

)
is equivalent to a linear combination of tanh functions of the form

y(x,u) = u0 +
M∑

j=1

uj tanh
(
x− µj

2s

)
and find expressions to relate the new parameters {u0, . . . , uM} to the original parameters {w0, . . . , wM}.

Prof. Dr. J. Schmidhuber, TUM Informatik 6
Dr. A. Graves, C. Osendorfer, T. Rückstieß, F. Sehnke

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics



Machine Learning 1 — WS09/10 — Module IN2064 Sheet 2 · Page 3

Problem 6. Show that that the least square solution for linear regression corresponds to an orthogonal
projection of the vector T onto the manifold S as shown in Figure 1. There, the subspace S is spanned by
the basis functions φj(x) in which each basis function is viewed as a vector ϕj of length N with elements
φj(xn). (Hint: You might want consider what Φ(ΦT Φ)−1ΦT resembles, e.g. how does it relate to the
maximum likelihood solution for linear regression.)

Figure 1: The projection property of Φ(ΦT Φ)−1ΦT .

4 Bayesian Linear Regression

Problem 7. ? We have seen that, as the size of a data set increases, the uncertainty associated with
the posterior distribution over model parameters decreases (see worksheet 1). Prove the following matrix
identity

(M + vvT )−1 = M−1 − (M−1v)(vTM−1)
1 + vTM−1v

and, using it, show that the uncertainty σ2
N (x) associated with the bayesian linear regression function

given by eq. (33) in the slides satisfies
σ2

N+1(x) ≤ σ2
N (x)
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