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Machine Learning Worksheet 4

Feed Forward Neural Networks

1 Activation functions

Problem 1. Consider a two-layer network function of the form in which the hidden-unit nonlinear
activation functions g(-) are given by logistic sigmoid functions of the form

1

7 =1 exp(—x)

Show that there exists an equivalent network, which computes exactly the same function, but with hidden
unit activation functions given by tanh(z).

Problem 2. Show that the derivative of the logistic sigmoid activation function can be expressed in
terms of the function value itself. Also derive the corresponding result for the tanh activation function.

2 Multiple targets

Problem 3. If we have multiple target variables, and we assume that they are independent conditional
on  and w with shared noise precision § then the conditional distribution of the target values is given
by

p(t|.’13, w) = N(t]y(:n, 'w), /8711)

Show that maximizing the resulting likelihood function under the above conditional distribution for a
multioutput neural network is equivalent to minimizing a sum-of-squares error function.

Problem 4. Consider a regression problem involving multiple target variables in which it is assumed
that the distribution of the targets, conditioned on the input vector x, is a Gaussian of the form

p(tlz, w) = N(tly(z, w), )

where y(@, w) is the output of a neural network with input vector & and a weight vector w, and ¥ is
the covariance of the assumed Gaussian noise on the targets. Given a set of independent observations of
x and t, write down the error function that must be minimized in order to find the maximum likelihood
solution for w, if we assume that X is fixed and known. Now assume that X is also to be determined
from the data and write down an expression for the maximum likelihood solution for X. Note that
the optimizations of w and X are now coupled, in contrast to the case of independent target variables
discussed in the exercise above.
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3 Error functions

Problem 5. Show that maximizing likelihood for a multiclass neural network model in which the network
outputs have the interpretation yi(x,w) = p(tx = 1l|x) is equivalent to the minimization of the cross-
entropy error function.

Problem 6. Show the derivative of the error function
N
B(w) == {talny, + (1 —t,) In(1 - yy,)
n=1

(yn denotes y(x,,w)) with respect to the activation ay for an output unit having a logistic sigmoid

activation function satisfies
oE ;

Problem 7. Show the derivative of the standard multiclass error function

N K
Bw) ==Yty Iny(z,, w)

n=1 k=1
with respect to the activation aj for output units having a softmax activation function satisfies

0B _
day, = Yk k

4 Robust classification

Problem 8. Consider a binary classification problem in which the target values are ¢ € {0,1}, with a
network output y(x, w) that represents p(t = 1|x), and suppose that there is a probability e that the class
label on a training data point has been incorrectly set. Assuming independent and identically distributed
data, write down the error function corresponding to the negative log likelihood. Verify that the well
known error function for binary classification is obtained when € = 0. Note that this error function makes
the model robust to incorrectly labelled data, in contrast to the usual error function.

5 Regularization

Problem 9. x This exercise is taken mostly from [?], chapter 5.5.7. One way to reduce the effective
complexity of a network with a large number of weights is to constrain weights within certain groups to
be equal (weight sharing). However, this is only applicable to particular problems in which the form of
the constraints can be specified in advance. Here we consider a form of soft weight sharing [?] in which
the hard constraint of equal weights is replaced by a form of regularization in which groups of weights are
encouraged to have similar values. The division of weights into groups, the mean weight value for each
group, and the spread of values within the groups are all determined as part of the learning process.
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In general, we consider the distribution over the weights to be a mizture of Gaussians, i.e. for a given
weight w;:

N
plw) =Y miN(wilp;, 07)
j=1
(m; are called the mizing coefficients). and weights are i.i.d:

p(w) = Hp(wz‘)

Taking the negative logarithm then leads to a regularization function of the form

M
Qw) == In | Y miN(wilp;,03)
i j=1

The total error function is thus given by
E(w) = BE(w) + AQ(w)

where F(w) is the usual standard error function (sum-of-squares, cross-entropy, ...) and A is the reg-
ularization coefficient. This error is minimized both with respect to the weights w; and with respect
to the parameters {7, p1;,0;} of the mixture model. In order to evaluate the derivatives of the error
function with respect to these parameters, it is convenient to regard the {7;}; as prior probabilities and
to introduce the corresponding posterior probabilities which are in the form (and you should prove that)

miN (w|pj, oF)

yi(w) = 1
) = S m N wlaso7) W
Now, proof the following:
OE _ OE N )
dwr ~ ow AL @
23 (1j — w;)
== (w; 3
auj ; Vj (’UJ ) 0]2' ( )
OF 1 (w — py)?
= _ i  _ 4
0o /\zi:%@)) <0j U? @

Note that in a practical implementation, new variables n; defined by

0% = exp(n;)

would be introduced, to ensure that o; remains positive, and thus the minimization must be performed
with respect to the n;. Similarly, the mixing coefficients 7; are expressed in terms of a set of auxiliary
variables {¢}; using the softmax function given by

___ew(dy)
! >k exp(dx)

The derivatives thus take the form (prove this too)
OF

96, Z(Wj =75 (wi)) (5)

i
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