Machine Learning Worksheet 8

HMMs

1 Recognizing words

A word recognizer uses HMMs to represent each word. The speech signal is described at each frame interval by a sequence of acoustic features.

Problem 1. Consider the following particular discrete HMM $\lambda = \{q, A, B\}$ (here, the acoustic features are four discrete values ranging from 1 through 4).:

$$q = \begin{pmatrix} 1\\0\\0 \end{pmatrix}; \quad A = \begin{pmatrix} 0.3 & 0.7 & 0\\0 & 0.5 & 0.5\\0 & 0 & 1 \end{pmatrix}; \quad B = \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 0.5 & 0.4 & 0.1\\0.1 & 0.1 & 0.2 & 0.6 \end{pmatrix}$$

An observed sequence was $\mathbf{x} = (1, 3, 2, 4, 1)$.

- (a) Draw the state graph of the Markov chain. Is this a reasonable model for recognizing a word? Why/why not?
- (b) Determine the total number of possible state sequences of length T = 5 for this particular HMM.
- (c) Use the forward algorithm to calculate the probability that the given word model produced the given observation sequence. Show intermediate computation results.
- (d) Determine the most probable state sequence for the given observed sequence using the Viterbi algorithm. Visualize your computation steps using a trellis.

2 Non-standard emission models

Problem 2. \star Consider a hidden Markov model in which the emission densities are represented by a parametric model $p(\boldsymbol{x}|\boldsymbol{z}, \boldsymbol{w})$, such as a linear regression model or a neural network, in which \boldsymbol{w} is a vector of adaptive parameters. *Describe* how the parameters \boldsymbol{w} can be learned from data using maximum likelihood.

