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Classification Problems

Goal: Assign unknown input vector x to one of K classes, denoted Ck
k = 1, . . . ,K .

Example: K = 3, x ∈ R2; Which class (=color) should the × get?

x6

x7

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

x6

x7

0 0.25 0.5 0.75 1
0

0.5

1

1.5

2

Naive solution: Divide R2 into boxes, color according to prevalent class.
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Curse of Dimensionality

Problem: Not scalable!
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=⇒ For x ∈ RD , scales with D3.
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Real-world Example: Breast cancer detection (UCI)

healthy tissue cancerous tissue

=⇒ Use computer vision to automatically extract several features of the
cell nuclei from the images:

x = [ radius mean, r. variance, r. max, texture mean, t. variance, t. max,
smoothness . . . , symmetry . . . , fractal dimension . . . , . . . ]T

−→ 30 dimensions altogether!
(best classifier gets it right almost 100% of the time)
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Three Approaches to Classification

In order of increasing complexity (cf. MLE, MAP, full Bayes):

Discriminant function: Find a function f (x) that maps input directly to
predicted class.

Discriminative model: Break the problem down into two stages:
Inference: Find the posterior class probabilities p(Ck |x).
Decision: Use decision theory to find most likely Ck for given x

Generative model: First infer class-conditional densities p(x|Ck) for each
class Ck . This allows us to “simulate” input data! Also infer p(Ck), then
use Bayes:

p(Ck |x) =
p(x|Ck)p(Ck)

p(x)
=

p(x|Ck)p(Ck)∑
k p(x|Ck)p(Ck)

Finally, use decision theory as above to find Ck for each x.
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Discriminant Functions
Recap: For linear regression, we used the model function

y(x) = w0 +
M−1∑
j=1

wjφj(x) (1)

Goal: Find a discriminant function, i.e. a function that takes an input
vector x and assigns it to class Ck .
Idea: For 2 classes simply do a regression and wrap it into a step function:

y(x) = f (w0 + wTφ(x)) (2)

where

f (a) =

{
1 if a > 0 ⇒ x ∈ C2
0 if a ≤ 0 ⇒ x ∈ C1

Note:

slight change of notation wrt. regression: w0 is called bias, w is the
weight vector

in general, f (·) is called an activation function

for properly designed f (·), y(x) yields probability of x ∈ C2
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Discriminant Functions
For now, consider linear
discriminants, where the
decision surfaces are
hyperplanes. With only two
classes, we get the simple
representation:

y(x) = wT x + w0

y(x) gives the perpendicular
signed distance of x from
the decision surface, in
units of ‖w‖:

x = x⊥ + r
w

‖w‖

=⇒ r =
y(x)
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Multiclass Problems

Idea: Simply introduce more decision levels for the activation function:

f (a) =


3 if a > 1 ⇒ x ∈ C4
2 if 0 < a ≤ 1 ⇒ x ∈ C3
1 if − 1 < a ≤ 0 ⇒ x ∈ C2
0 if a ≤ −1 ⇒ x ∈ C1

=⇒ Bad solution: Implies distance metric between classes:
C1 “neighbours”C2, but is “far away” from C4
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Multiclass Problems
Idea: Reformulate the problem to combine binary classifiers:

1-vs-rest needs K − 1 classifiers each “specialized” in picking out
one class (last class is remainder)

1-vs-1 needs K (K − 1)/2 classifiers each trained on a pair of
classes. Use “voting” to pick predicted class.

=⇒ Suboptimal solution: Not all cases may be covered.
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Multiclass Problems

Idea: For K classes use a 1-of-K coding scheme. E.g. if K = 5, the
target vector for class C2 is

t = (0, 1, 0, 0, 0)T

=⇒ Usually best solution:

straightforward linear multi-class DF:

yk(x) = wT
k x + wk0 (3)

yk can be interpreted as p(Ck |x) if DF properly designed

otherwise just use largest yk to determine class (“winner takes all”)

K = 2 is a special case that can (usually) be shown to be equivalent
to the binary target
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Least squares for classification

How do we find parameters w?

Recap: For regression, we minimized the quadratic error function

ED(w) =
1

2

N∑(
tn −wT x

)2
,

that resulted from log likelihood on Gaussians.

Idea: Good model for linear regression, use it for classification?

−→ Combine yk(x) = wT
k x + wk0 into (4)

y(x) = W̃
T

x̃ (5)

=⇒ Can find exact closed form solution for W̃ using pseudo-inverse, as
before!
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Least squares: Two classes
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green: decision boundary found by logistic regression (later!)
purple: decision boundary found by least squares
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Least squares: Three classes
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logistic regression solution
Ok, closed form using least squares is out. Try iterative solution next!
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The perceptron algorithm

Two classes: Look at generalized linear model again (Eqn. 2), this time
with φ0(x) ≡ 1:

y(x) = f (wTφ(x))

Using a nonlinear transformation φ(·) and a nonlinear activation function
f (·).
ToDo:

1 Find suitable error function.

2 Follow gradient ∇w iteratively to find minimum.
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The perceptron algorithm

Idea: E = total number of misclassified patterns?
=⇒ not useful, this error is piecewise constant, so no gradient learning
possible.
Idea: Instead, use perceptron criterion [Rosenblatt, 1962]:
Would like all patterns to satisfy

wTφ(xn)tn > 0

with tn ∈ {−1,+1} resembling the two possible classes.

EP(w) = −
∑
n∈M

wTφntn

M denotes the set of misclassified patterns. Applying stochastic gradient
descent to this error function we get the perceptron learning rule

wk+1 = wk + ηφntn
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The perceptron algorithm
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Fisher’s linear discriminant

Maximize a function that will give a large separation between the
projected class means while also giving small variance within each class
and thereby minimizing class overlap.

Both plots show samples from two classes along with the histogramms resulting

from projection onto a line. The line in the left plot joins the two class means,

resulting in considerable class overlap in the projected space. On the right the

corresponding projection based on the Fisher linear discriminant shows the

greatly improved class separation.
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Probabilistic Generative Models
For a given input x what we want are the posterior probabilities p(Ck |x).
We get to these through Bayes’ theorem by using the class-conditional
densities p(x|Ck) and the class priors p(Ck). So for K = 2 classes we have

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a)

with

a(x) = ln
p(x|C1)p(C1)

p(x|C2)p(C2)

σ(·) is called the logistic sigmoid function.
It has the following nice (as we will see later on) symmetry property:

σ(−x) = 1− σ(x)
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For K > 2 classes we get

p(Ck |x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

This is called the normalized exponential or also the softmax function.
And we defined ak as follows:

ak(x) = ln p(x|Ck)p(Ck)

Note: It is a bit unclear, why one would choose the logistic sigmoid
function or the softmax function to represent the posterior probabilities.
Both forms are very useful if a(x) or ak(x) have a certain kind of
functional form.
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Class conditionals – continuous inputs

We have to make assumptions about the class conditional densities. Let’s
choose a multivariate Gaussian:

p(x|Ck) =
1

|2πΣ|1/2
exp

{
−1

2
(x− µk)T Σ−1(x− µk)

}
Note: each class has a different µk , but all share the same covariance
matrix!
For the case with K = 2 we have

p(C1|x) = σ(wT x + w0)

with

w = Σ−1(µ1 − µ2)

w0 = −1

2
µT

1 Σ−1µ1 +
1

2
µT

2 Σ−1µ2 + ln
p(C1)

p(C2)

Christian Osendorfer, Martin Felder ML I – 5./6.11.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics



Introduction Discriminant Functions Parameter Search Generative Models Discriminative Models

Christian Osendorfer, Martin Felder ML I – 5./6.11.2009

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics



Introduction Discriminant Functions Parameter Search Generative Models Discriminative Models

Similarly, in the general case with K > 2 classes we again get a linear
function of x for ak(x) = wT

k x + w0 with

wk = Σ−1µk

w0k = −1

2
µT

k Σ−1µk + ln p(Ck)

In both cases, we see that the quardratic terms in x are cancelled, which
is due to the assumption of a common covariance matrix. One gets linear
decision boundaries.
If we allow each class conditional distribution to have its own covariance
matrix Σk then we get quadratic decision boundaries.
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Getting the parameters right – maximum likelihood

But we are not done yet . . . . We decided on the parametric functional
form of the class conditinal densities p(x|Ck) (and p(Ck)), but these
densities are governed by parameters and how do we determine the actual
values of these?

We have a data set comprising of observations x along with their
corresponding class labels.

So we can use maximum likelihood estimation! But we will not show the
details in class for Gaussian class-conditionals . . .
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Discrete inputs – Näıve Bayes Classifier
Now we want to consider a classification task with discrete (categorial)
features xi . In this case, the simplest class conditional model is a joint
multinomial (i.e. a table):

P(x1 = a, x2 = b, . . . |y = c) = wcab...

So again, here we would use Baye’s rule, as before, to determine the
posterior class probabilities and, also again, use MLE to determine
parameters. But now we have a big practical problem . . .

wcab... =

∑
n[yn = c][x1 = a][x2 = b][. . . ]∑

n[yn = c]

Therefore we make the following assumption: Features xi are
independent given class y !! That is

P(x|y) =
∏

i

P(xi |y)

Of course, our decision rule for the final assignment of the actual class
stays the same: y∗ = argmaxyP(y)

∏
n P(xn|y). So the only thing left to

do is to determine wkij = P(xi = j |y = k) from the training data.
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Näıve Bayes Classifier - 2
Main challenge: Get likelihood fct. formulated in the right way. Consider
the following abbreviations:

P(xi = j |y = k) = wkij =
∏

j

w
[xi=j]
kij

P(x|y = k,w) =
∏

i

∏
j

w
[xi=j]
kij

P(x|y ,w) =
∏
k

∏
i

∏
j

w
[xi=j][y=k]
kij

`(w) = lnP(y1, x1, y2, x2, . . . |w) = ln
Y
n

P(yn, xn|w)

=
X

n

lnP(xn|yn, w)P(yn|w) =
X

n

lnP(yn|w) +
X

n

lnP(xn|yn, w)

=
X

n

lnP(yn|w) +
X

n

X
kij

[xn
i = j ][yn = k] lnwkij
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Näıve Bayes Classifier - 3

Optimize `(w) by setting its derivative to zero (enforce normalization
with Lagrange multipliers).
Results:

wkij =

∑
n[xn

i = j ][yn = k]∑
n[yn = k]

wk = P(y = k|w) =

∑
n[yn = k]∑

n

∑
j [y

n = j ]

Simple algorithm:

Sort data cases into bins according to yn.

Compute marginal probabilities P(y = k) using frequencies.

Estimate P(xi |y = k) using frequencies.

(Do not forget smoothing).
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Probabilistic Discriminantive Models

So far we talked about an indirect approach to determine the posterior
class probabilities (via Baye’s rule and fitting class conditionals and class
priors seperately). This represents an example of a generative model
because given such a model, one can generate synthetic data by drawing
values of x from the marginal distribution p(x). Can you see any
disadvantage with this method?

In the following we will consider another approach: If we (would) know
the functional form of the posterior class probabilities (i.e. p(Ck |x)), then
we can determine its parameters directly using maximum likelihood.
Because this approach is still embedded in a probabilistic framework the
resulting models are called probabilistic discriminative models.
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Logistic Regression

Again we will start with looking at two-class classification.

We model the posterior distribution directly

p(C1|φ) = σ(wTφ(x))

This is called logistic regression, though this is of course a model for
classification.

Using Maximum Likelihood, we will determine the parameters of the
logistic regression model. Given a data set {φn, tn}, with tn ∈ {0, 1} and
φn = φ(xn) we get for the likelihood function

p(T|w) =
N∏

n=1

y tn
n (1− yn)1−tn

with T = (t1, . . . , tN)T and yn = p(C1|φn).
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As usual we want to minimize the negative log likelihood function:

E (w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)}

This kind of error function is called the (binary) cross entropy error
function.

Taking the gradient of the error function, we get:

∇wE (w) =
N∑

n=1

(yn − tn)φn = ΦT (y − T)

Note that this gradient has the same form as the gradient of the
sum-of-squares error function for the linear regression model.
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Iterative Reweighted Least Squares

But the logistic sigmoid function is nonlinear, so we no longer have a
closed form solution.

However, minimization of the error function can be done via an efficient
iterative optimization technique. And, even better, the error function is
convex (i.e. it has a unique minimum)!

The Newton-Raphson algorithm:

wt+1 = wt −H−1∇E (w)
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So just to have everything in one place:

E (w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)}

∇wE (w) = ΦT (y − T)

∇w∇wE (w) = H = ΦT RΦ

(6)

R is a N × N diagonal matrix with elements Rnn = yn(1− yn). H is
positive definite and thus the error function is a convex function of w.

Using the Newton-Raphson update step, we get

wt+1 = (ΦT RΦ)−1ΦT Rz

where we have defined z as follows

z = Φwt − R−1(y − t)

The algorithm is called iterative reweighted least squares.
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Multiclass logistic regression
For logistic regression with multiple classes we have to adapt the
functional form of the posterior class probability. Considering the results
from the domain of generative classification models, we choose the
following (note that we have now yk):

p(Ck |φ) = yk(φ) =
exp (ak)∑
j exp (aj)

with
ak = wT

k φ

Again we need the likelihood function and using the 1-of-K coding
scheme it is given by

p(T|w1, . . . ,wK ) =
N∏

n=1

K∏
k=1

p(Ck |φn)tnk =
N∏

n=1

K∏
k=1

y tnk

nk

where ynk = yk(φn) and T is an N × K matrix of target variables with
elements tnk .
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Taking the negative logarithm then gives the cross entropy error function:

E (w1, . . . ,wK ) = −
N∑

n=1

K∑
k=1

tnk ln(ynk)

We will need the derivatives of yk with respect to the activations aj :

∂yk

∂aj
= yk(Ikj − yj)

with Ikj the elements of the identity matrix.
So we get

∇wj E (w1, . . . ,wN) =
N∑

n=1

(ynj − tnj)φn

∇wk∇wj E (w1, . . . ,wN) = −
N∑

n=1

ynk(Ikj − ynj)φnφ
T
n
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