Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

Machine Learning I Week 3: Linear Classification

Christian Osendorfer, Martin Felder

Technische Universität München

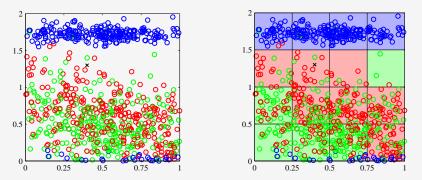
5 November 2009

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	0000000	00000000	0000000

Classification Problems

Goal: Assign unknown input vector \mathbf{x} to one of K classes, denoted C_k $k = 1, \dots, K$.

Example: K = 3, $\mathbf{x} \in \mathbb{R}^2$; Which class (=color) should the \times get?

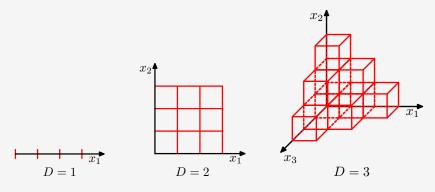


Naive solution: Divide \mathbb{R}^2 into boxes, color according to prevalent class.

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	000000

Curse of Dimensionality

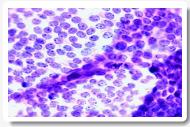
Problem: Not scalable!



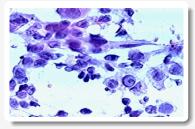
 \implies For $\mathbf{x} \in \mathbb{R}^D$, scales with D^3 .

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

Real-world Example: Breast cancer detection (UCI)



healthy tissue



cancerous tissue

 \Longrightarrow Use computer vision to automatically extract several features of the cell nuclei from the images:

 $\mathbf{x} = [$ radius mean, r. variance, r. max, texture mean, t. variance, t. max, smoothness ..., symmetry ..., fractal dimension ..., ... $]^{\mathsf{T}}$

 \longrightarrow 30 dimensions altogether!

(best classifier gets it right almost 100% of the time)

Three Approaches to Classification

In order of increasing complexity (cf. MLE, MAP, full Bayes):

Discriminant function: Find a function $f(\mathbf{x})$ that maps input directly to predicted class.

Discriminative model: Break the problem down into two stages: Inference: Find the posterior class probabilities $p(C_k|\mathbf{x})$. Decision: Use decision theory to find most likely C_k for given \mathbf{x}

Generative model: First infer class-conditional densities $p(\mathbf{x}|C_k)$ for each class C_k . This allows us to "simulate" input data! Also infer $p(C_k)$, then use Bayes:

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_k p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}$$

Finally, use decision theory as above to find C_k for each **x**.

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	●0000	000000	00000000	000000

Discriminant Functions

Recap: For linear regression, we used the model function

$$y(\mathbf{x}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$
(1)

Goal: Find a discriminant function, i.e. a function that takes an input vector \mathbf{x} and assigns it to class C_k .

Idea: For 2 classes simply do a regression and wrap it into a step function:

$$y(\mathbf{x}) = \mathbf{f}(w_0 + \mathbf{w}^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{x}))$$
(2)

where

$$f(a) = \begin{cases} 1 & \text{if } a > 0 \quad \Rightarrow \mathbf{x} \in \mathcal{C}_2 \\ 0 & \text{if } a \le 0 \quad \Rightarrow \mathbf{x} \in \mathcal{C}_1 \end{cases}$$

Note:

- slight change of notation wrt. regression: w₀ is called bias, w is the weight vector
- in general, $f(\cdot)$ is called an activation function
- for properly designed $f(\cdot)$, $y(\mathbf{x})$ yields probability of $\mathbf{x} \in C_2$

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	0000	000000	00000000	0000000

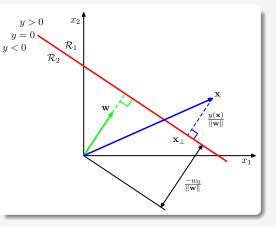
Discriminant Functions

For now, consider linear discriminants, where the decision surfaces are hyperplanes. With only two classes, we get the simple representation:

$$y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

y(x) gives the perpendicular signed distance of x from the decision surface, in units of ||w||:

$$\mathbf{x} = \mathbf{x}_{\perp} + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$$
$$\implies r = \frac{y(\mathbf{x})}{\|\mathbf{w}\|}$$



Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

Multiclass Problems

Idea: Simply introduce more decision levels for the activation function:

$$f(a) = \begin{cases} 3 & \text{if } a > 1 \quad \Rightarrow \mathbf{x} \in \mathcal{C}_4 \\ 2 & \text{if } 0 < a \le 1 \quad \Rightarrow \mathbf{x} \in \mathcal{C}_3 \\ 1 & \text{if } -1 < a \le 0 \quad \Rightarrow \mathbf{x} \in \mathcal{C}_2 \\ 0 & \text{if } a \le -1 \quad \Rightarrow \mathbf{x} \in \mathcal{C}_1 \end{cases}$$

 \implies Bad solution: Implies distance metric between classes: C_1 "neighbours" C_2 , but is "far away" from C_4

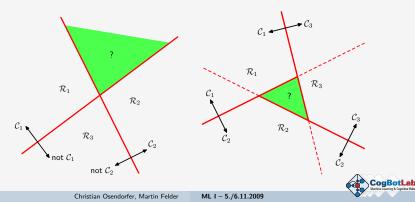
Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

Multiclass Problems

Idea: Reformulate the problem to combine binary classifiers:

- 1-vs-rest needs K 1 classifiers each "specialized" in picking out one class (last class is remainder)
 - 1-vs-1 needs K(K 1)/2 classifiers each trained on a pair of classes. Use "voting" to pick predicted class.

 \implies Suboptimal solution: Not all cases may be covered.



Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	0000000	00000000	0000000

Multiclass Problems

Idea: For K classes use a 1-of-K coding scheme. E.g. if K = 5, the target vector for class C_2 is

$$\mathbf{t} = (0, 1, 0, 0, 0)^{\mathsf{T}}$$

- \implies Usually best solution:
 - straightforward linear multi-class DF:

$$y_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_{k0} \tag{3}$$

- y_k can be interpreted as $p(C_k|\mathbf{x})$ if DF properly designed
- otherwise just use largest y_k to determine class ("winner takes all")
- K = 2 is a special case that can (usually) be shown to be equivalent to the binary target

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

Least squares for classification

How do we find parameters \mathbf{w} ?

Recap: For regression, we minimized the quadratic error function

$$E_{\mathcal{D}}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \mathbf{x})^2,$$

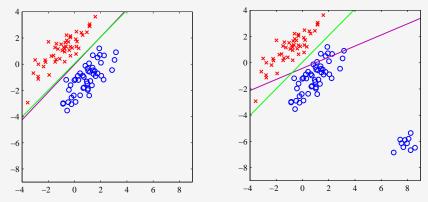
that resulted from log likelihood on Gaussians.

Idea: Good model for linear regression, use it for classification?

 \Longrightarrow Can find exact closed form solution for $\widetilde{\mathbf{W}}$ using pseudo-inverse, as before!

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

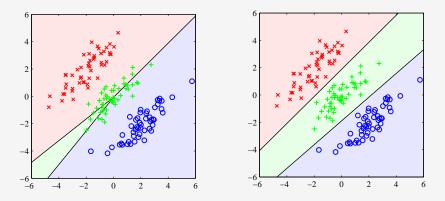
Least squares: Two classes



green: decision boundary found by logistic regression (later!) purple: decision boundary found by least squares

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

Least squares: Three classes



least squares solution logistic regression solution Ok, closed form using least squares is out. Try iterative solution next!

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

The perceptron algorithm

Two classes: Look at generalized linear model again (Eqn. 2), this time with $\phi_0(\mathbf{x}) \equiv 1$:

$$y(\mathbf{x}) = f(\mathbf{w}^{\mathsf{T}} \phi(\mathbf{x}))$$

Using a nonlinear transformation $\phi(\cdot)$ and a nonlinear activation function $f(\cdot)$. ToDo:

Find suitable error function.

2 Follow gradient $\nabla_{\mathbf{w}}$ iteratively to find minimum.

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	0000000	00000000	0000000

The perceptron algorithm

Idea: E = total number of misclassified patterns?

 \Longrightarrow not useful, this error is piecewise constant, so no gradient learning possible.

Idea: Instead, use perceptron criterion [Rosenblatt, 1962]:

Would like all patterns to satisfy

 $\mathbf{w}^{T} \phi(\mathbf{x}_{n}) t_{n} > 0$

with $t_n \in \{-1, +1\}$ resembling the two possible classes.

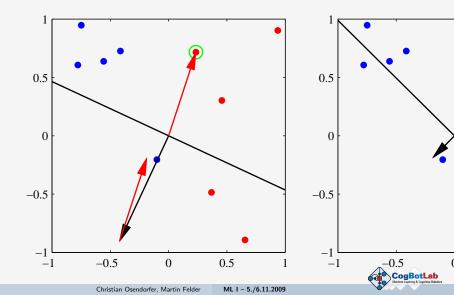
$$E_P(\mathbf{w}) = -\sum_{n \in \mathcal{M}} \mathbf{w}^T \phi_n t_n$$

 ${\cal M}$ denotes the set of misclassified patterns. Applying stochastic gradient descent to this error function we get the perceptron learning rule

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \eta \phi_n t_n$$

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	0000000	00000000	0000000

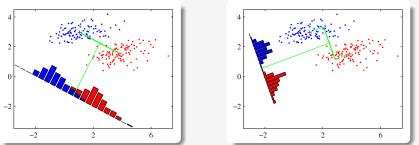
The perceptron algorithm



Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	000000

Fisher's linear discriminant

Maximize a function that will give a large separation between the projected class means while also giving small variance within each class and thereby minimizing class overlap.



Both plots show samples from two classes along with the histogramms resulting from projection onto a line. The line in the left plot joins the two class means, resulting in considerable class overlap in the projected space. On the right the corresponding projection based on the Fisher linear discriminant shows the greatly improved class separation.

 Introduction
 Discriminant Functions
 Parameter Search
 Generative Models
 Discriminative Models

 0000
 000000
 0000000
 00000000
 0000000

Probabilistic Generative Models

For a given input **x** what we want are the posterior probabilities $p(C_k|\mathbf{x})$. We get to these through Bayes' theorem by using the class-conditional densities $p(\mathbf{x}|C_k)$ and the class priors $p(C_k)$. So for K = 2 classes we have

$$p(\mathcal{C}_1|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$
$$= \frac{1}{1 + \exp(-a)} = \sigma(a)$$

with

$$\mathsf{a}(\mathsf{x}) = \mathsf{ln}\, rac{\mathsf{p}(\mathsf{x}|\mathcal{C}_1)\mathsf{p}(\mathcal{C}_1)}{\mathsf{p}(\mathsf{x}|\mathcal{C}_2)\mathsf{p}(\mathcal{C}_2)}$$

 $\sigma(\cdot)$ is called the *logistic sigmoid* function. It has the following nice (as we will see later on) symmetry property:

$$\sigma(-x) = 1 - \sigma(x)$$

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

For K > 2 classes we get

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_j p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)} = \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

This is called the *normalized exponential* or also the *softmax function*. And we defined a_k as follows:

$$a_k(\mathbf{x}) = \ln p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)$$

Note: It is a bit unclear, why one would choose the logistic sigmoid function or the softmax function to represent the posterior probabilities. Both forms are very useful if $a(\mathbf{x})$ or $a_k(\mathbf{x})$ have a certain kind of functional form.

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

Class conditionals – continuous inputs

We have to make assumptions about the class conditional densities. Let's choose a multivariate Gaussian:

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_k)^T \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu}_k)\right\}$$

Note: each class has a different μ_k , but all share the same covariance matrix!

For the case with K = 2 we have

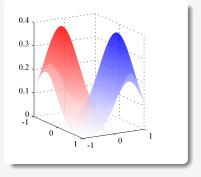
$$\rho(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^T\mathbf{x} + w_0)$$

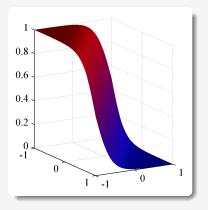
with

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\mu_1 - \mu_2)$$

$$w_0 = -\frac{1}{2}\mu_1^T \mathbf{\Sigma}^{-1}\mu_1 + \frac{1}{2}\mu_2^T \mathbf{\Sigma}^{-1}\mu_2 + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}$$

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000





Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

Similarly, in the general case with K > 2 classes we again get a linear function of **x** for $a_k(\mathbf{x}) = \mathbf{w}_k^T \mathbf{x} + w_0$ with

$$\mathbf{w}_{k} = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{k}$$

$$w_{0k} = -\frac{1}{2} \boldsymbol{\mu}_{k}^{T} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_{k} + \ln p(\mathcal{C}_{k})$$

In both cases, we see that the quardratic terms in \mathbf{x} are cancelled, which is due to the assumption of a common covariance matrix. One gets linear decision boundaries.

If we allow each class conditional distribution to have its own covariance matrix Σ_k then we get quadratic decision boundaries.

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	0000000	00000000	0000000

Getting the parameters right – maximum likelihood

But we are not done yet We decided on the parametric functional form of the class conditinal densities $p(\mathbf{x}|C_k)$ (and $p(C_k)$), but these densities are governed by parameters and how do we determine the actual values of these?

We have a data set comprising of observations \mathbf{x} along with their corresponding class labels.

So we can use maximum likelihood estimation! But we will not show the details in class for Gaussian class-conditionals ...

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	000000000	0000000

Discrete inputs – Naïve Bayes Classifier

Now we want to consider a classification task with discrete (categorial) features x_i . In this case, the simplest class conditional model is a joint multinomial (i.e. a table):

$$P(x_1 = a, x_2 = b, \dots | y = c) = w_{cab\dots}$$

So again, here we would use Baye's rule, as before, to determine the posterior class probabilities and, also again, use MLE to determine parameters. But now we have a big practical problem ...

$$w_{cab...} = \frac{\sum_{n} [y_n = c] [x_1 = a] [x_2 = b] [\dots]}{\sum_{n} [y_n = c]}$$

Therefore we make the following assumption: Features x_i are independent given class y!! That is

$$P(\mathbf{x}|y) = \prod_{i} P(x_i|y)$$

Of course, our decision rule for the final assignment of the actual class stays the same: $y^* = \operatorname{argmax}_y P(y) \prod_n P(x_n|y)$. So the only thing left to do is to determine $w_{kij} = P(x_i = j|y = k)$ from the training data cogBot

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	000000000	0000000

Naïve Bayes Classifier - 2

Main challenge: Get likelihood fct. *formulated* in the right way. Consider the following abbreviations:

$$P(\mathbf{x}_i = j | y = k) = w_{kij} = \prod_j w_{kij}^{[x_i = j]}$$

$$P(\mathbf{x} | y = k, w) = \prod_i \prod_j w_{kij}^{[x_i = j]}$$

$$P(\mathbf{x} | y, w) = \prod_k \prod_i \prod_j w_{kij}^{[x_i = j][y = k]}$$

$$\ell(\mathbf{w}) = \ln P(y_1, \mathbf{x}_1, y_2, \mathbf{x}_2, \dots | w) = \ln \prod_n P(y_n, \mathbf{x}_n | w)$$

= $\sum_n \ln P(\mathbf{x}_n | y_n, w) P(y_n | w) = \sum_n \ln P(y_n | w) + \sum_n \ln P(\mathbf{x}_n | y_n, w)$
= $\sum_n \ln P(y_n | w) + \sum_n \sum_{kij} [x_i^n = j] [y^n = k] \ln w_{kij}$

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

Naïve Bayes Classifier - 3

Optimize $\ell(\mathbf{w})$ by setting its derivative to zero (enforce normalization with Lagrange multipliers).

Results:

$$w_{kij} = \frac{\sum_{n} [x_i^n = j] [y^n = k]}{\sum_{n} [y^n = k]}$$
$$w_k = P(y = k | w) = \frac{\sum_{n} [y^n = k]}{\sum_{n} \sum_{j} [y^n = j]}$$

Simple algorithm:

- Sort data cases into bins according to y_n .
- Compute marginal probabilities P(y = k) using frequencies.
- Estimate $P(x_i|y = k)$ using frequencies.
- (Do not forget *smoothing*).

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	●000000

Probabilistic Discriminantive Models

So far we talked about an indirect approach to determine the posterior class probabilities (via Baye's rule and fitting class conditionals and class priors seperately). This represents an example of a *generative* model because given such a model, one can generate synthetic data by drawing values of \mathbf{x} from the marginal distribution $p(\mathbf{x})$. Can you see any disadvantage with this method?

In the following we will consider another approach: If we (would) know the functional form of the posterior class probabilities (i.e. $p(C_k|\mathbf{x})$), then we can determine its parameters directly using maximum likelihood. Because this approach is still embedded in a probabilistic framework the resulting models are called *probabilistic discriminative* models.

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	000000

Logistic Regression

Again we will start with looking at two-class classification.

We model the posterior distribution directly

$$p(\mathcal{C}_1|\phi) = \sigma(\mathbf{w}^T \phi(\mathbf{x}))$$

This is called *logistic regression*, though this is of course a model for classification.

Using Maximum Likelihood, we will determine the parameters of the logistic regression model. Given a data set $\{\phi_n, t_n\}$, with $t_n \in \{0, 1\}$ and $\phi_n = \phi(\mathbf{x}_n)$ we get for the likelihood function

$$p(\mathbf{T}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} (1-y_n)^{1-t_n}$$

with $\mathbf{T} = (t_1, \ldots, t_N)^T$ and $y_n = p(\mathcal{C}_1 | \phi_n)$.

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	000000

As usual we want to minimize the *negative log likelihood* function:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

This kind of error function is called the (binary) *cross entropy error* function.

Taking the gradient of the error function, we get:

$$abla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n = \mathbf{\Phi}^T (\mathbf{y} - \mathbf{T})$$

Note that this gradient has the same form as the gradient of the sum-of-squares error function for the linear regression model.

Iterative Reweighted Least Squares

But the logistic sigmoid function is nonlinear, so we no longer have a closed form solution.

However, minimization of the error function can be done via an efficient iterative optimization technique. And, even better, the error function is convex (i.e. it has a *unique* minimum)!

The Newton-Raphson algorithm:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \mathbf{H}^{-1} \nabla E(\mathbf{w})$$

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

So just to have everything in one place:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{ t_n \ln y_n + (1 - t_n) \ln(1 - y_n) \}$$

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \mathbf{\Phi}^T (\mathbf{y} - \mathbf{T})$$

$$\nabla_{\mathbf{w}} \nabla_{\mathbf{w}} E(\mathbf{w}) = \mathbf{H} = \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi}$$
(6)

R is a $N \times N$ diagonal matrix with elements $\mathbf{R}_{nn} = y_n(1 - y_n)$. **H** is positive definite and thus the error function is a convex function of **w**.

Using the Newton-Raphson update step, we get

$$\mathbf{w}^{t+1} = (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{R} \mathbf{z}$$

where we have defined \mathbf{z} as follows

$$\mathbf{z} = \mathbf{\Phi} \mathbf{w}^t - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t})$$

The algorithm is called *iterative reweighted least squares*.

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	0000000

Multiclass logistic regression

For logistic regression with multiple classes we have to adapt the functional form of the posterior class probability. Considering the results from the domain of *generative* classification models, we choose the following (note that we have now y_k):

$$p(\mathcal{C}_k|\phi) = y_k(\phi) = \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$

with

$$a_k = \mathbf{w}_k^T \phi$$

Again we need the likelihood function and using the 1-of-K coding scheme it is given by

$$p(\mathbf{T}|\mathbf{w}_1,\ldots,\mathbf{w}_K) = \prod_{n=1}^N \prod_{k=1}^K p(\mathcal{C}_k|\phi_n)^{t_{nk}} = \prod_{n=1}^N \prod_{k=1}^K y_{nk}^{t_{nk}}$$

where $y_{nk} = y_k(\phi_n)$ and **T** is an $N \times K$ matrix of target variables with elements t_{nk} .

Introduction	Discriminant Functions	Parameter Search	Generative Models	Discriminative Models
0000	00000	000000	00000000	000000

Taking the negative logarithm then gives the cross entropy error function:

$$E(\mathbf{w}_1,\ldots,\mathbf{w}_K)=-\sum_{n=1}^N\sum_{k=1}^Kt_{nk}\ln(y_{nk})$$

We will need the derivatives of y_k with respect to the *activations* a_i :

$$rac{\partial y_k}{\partial a_j} = y_k (I_{kj} - y_j)$$

with I_{kj} the elements of the identity matrix. So we get

$$\nabla_{\mathbf{w}_j} E(\mathbf{w}_1, \dots, \mathbf{w}_N) = \sum_{n=1}^N (y_{nj} - t_{nj}) \phi_n$$
$$\nabla_{\mathbf{w}_k} \nabla_{\mathbf{w}_j} E(\mathbf{w}_1, \dots, \mathbf{w}_N) = -\sum_{n=1}^N y_{nk} (I_{kj} - y_{nj}) \phi_n \phi_n^T$$

