
Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Machine Learning I
Continuous Reinforcement Learning

Thomas Rückstieß

Technische Universität München

January 7/8, 2010

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

RL Problem Statement (reminder)

ENVIRONMENT

AGENT

new step

action at

state st+1

reward rt+1

st

rt

Definition (agent, environment, state, action, reward)

An agent interacts with an environment at discrete time steps
t = 0, 1, 2, . . . At each time step t, the agent receives state st ∈ S from
the environment. It then chooses to execute action at ∈ A(st) where
A(st) is the set of available actions in st . At the next time step, it
receives the immediate reward rt+1 ∈ R and finds itself in state st+1.

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Different Types of RL (reminder)

π

state

action

Q

state action

value

Pa
ss� Ra

ss�

state action

next state reward

data is cheap
computation is limited
e.g. embedded systems

data is expensive
computation doesn't matter

e.g. medical trials

Direct RL Value-based RL Model-based RL

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

General Assumptions (reminder)

For now, we assume the following:

Both states and actions are discrete and finite.

Our problem fulfills the Markov property (MDP)

the current state information summarizes all relevant information
from the past (e.g. chess, cannonball)
the next state is only determined by the last state and the last
action, not the entire history
the environment has a stationary Pa

ss′ and Ra
ss′ .

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Continuous Reinforcement Learning

Why continuous reinforcement learning?

Problems with too many states/actions

Generalization for similar states/actions

Continuous domains, like robotics, computer vision, ...

Let’s loosen the restrictive assumptions from last week:

Both states and actions are discrete and finite.

What changes when we allow s, a ∈ Rn ?

No transition graphs anymore

No Q-table anymore

Q-function? Q(s, a) 7→ R is possible, but maxa Q(s, a) difficult

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Continuous RL – Overview

Value-based Reinforcement Learning

Continuous states, discrete actions – NFQ
Continuous states and actions – NFQCA

Direct Reinforcement Learning (Policy Gradients)

Finite Difference methods
Likelihood Ratio methods
REINFORCE
1D controller example
Application to Neural Networks

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

NFQ – Neural Fitted Q-iteration

We want to apply Q-Learning to continuous states (but discrete
actions for now).

Instead of a Q-table, we have a Q-function (or function
approximator, e.g. neural network), that maps Q(st , at) 7→ R.

We sample from the environment and collect (st , at , rt)-tuples

Q-Learning Update Rule

Qπ(st , at)← Qπ(st , at) + α
(
rt+1 + γmax

a
Qπ(st+1, a)− Qπ(st , at)

)

How do we get the maximum over all actions in a certain state s?

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

NFQ – Neural fitted Q-iteration
Maximum over discrete actions:

1. Use several neural networks, one for each action

S S

Q

...

S S

Q

...

S S

Q

...

action 1 action 2 action 3

2. or encode the action as additional input to the network

S S A

Q

A A

one-of-n coding
0, 0, 1
0, 1, 0
1, 0, 0

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

NFQ – Neural fitted Q-iteration

a forward pass in the network returns Qπ(st , at)

to train the net, convert the (st , at , rt)-tuples to a dataset with

input (st , at)

target Qπ(st , at) + α (rt+1 + γmaxa Qπ(st+1, a)− Qπ(st , at))

train network with dataset (until convergence)

collect new samples by experience and start over

Unfortunately, there is no guarantee of convergence, because the
Q-values change during training. But in many cases, it works anyway.

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

NFQCA – NFQ with continuous actions
With continuous actions, getting the maximum value of a state over all
actions is infeasable. Instead, we can use an actor / critic architecture:

One network (the actor) predicts actions from states

The second network (the critic), predicts values from states and
actions

state

action

value

state

hidden_actor

action

hidden_critic

value

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

NFQCA Training

1 Backprop TD error through critic network

2 Backprop resulting error further through actor network

state

action

value

θπ
i ← θπ

i + α
∂Qt(st, at)

∂π(st)
∂π(st)
∂θπ

i

θQ
i ← θQ

i + α(rt + γ max
a

Qt(st+1, a)−Qt(st, at))
∂Qt(st, at)

∂θQ
i

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

More value-based continuous RL

There are other methods of using function approximation with
value-based RL (→ Sutton&Barto, Chapter 8).

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Continuous RL – Overview

Value-based Reinforcement Learning

Continuous states, discrete actions – NFQ
Continuous states and actions – NFQCA

Direct Reinforcement Learning (Policy Gradients)

Finite Difference methods
Likelihood Ratio methods
REINFORCE
1D controller example
Application to Neural Networks

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Direct Reinforcement Learning

Key aspects of direct reinforcement learning:

skip value functions (change policy directly)

sample from experience (like MC methods)

calculate gradient of parameterized policy

follow gradient to local optimum

⇒ Methods that follow the above description are called
Policy Gradient Methods or short Policy Gradients.

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Policy Gradients – Notation

For now, we will even loosen our second assumption:

Our problem fulfills the Markov property.

The next state can now depend on the whole history h, not just the last
state-action pair (s, a).

Policy π(a|h, θ) probability of taking action a when encountering
history h. The policy is parameterized with θ.

History hπ history of all states, actions, rewards following policy π.
hπ0 = {s0}
hπt = {s0, a0, r0, s1, . . . , at−1, rt−1, st}

Return R(hπ) =
∑T

t=0 γ
trt

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Performance Measure J(π)

We need a way to measure the performance for the whole policy π. We
define the overall performance of a policy as:

J(π) = Eπ{R(hπ)} =

∫

hπ

p(hπ)R(hπ) dhπ (1)

Optimize the parameters θ of the policy to improve J:

∇θJ(π) = ∇θ
∫

hπ

p(hπ)R(hπ) dhπ

=

∫

hπ

∇θp(hπ)R(hπ) dhπ. (2)

Knowing the gradient, we can update θ as

θt+1 = θt + α∇θJ(π) (3)

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Finite Differences

One method to approximate the gradient of the performance is
Finite Differences:

∂J(θ)

∂θi
≈ J(θ + δθ)− J(θ)

δθi

J(π)

θδθ

J(θ + δθ)− J(θ)

∇θJ

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Finite Differences

Or even better: take many samples with different δθ’s and run a linear
regression (⇒ pseudo inverse)

J(π)

θ

∇θJ

matrix Θi = [δθi 1] , vector Ji = [J(θ + δθi)]

β = (ΘT Θ)−1 ΘT J

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Finite Differences

Problems with Finite Differences

For Finite Differences, the chosen action can be written as

a = f (h, θ + ε),

where ε ∼ N (0, σ2) is some exploratory noise.

We change the policy parameters θ directly ⇒ the resulting
controller is not predictable.
Example robot control: changing the parameters randomly can
damage the robot or cause a risk for nearby humans

In some recent publications, finite differences perform badly in
probabilistic settings ⇒ most real problems are probabilistic.

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Likelihood Ratio

The safer (and currently more popular) method is to estimate the
gradient with likelihood ratio methods.

Policy Gradients explore by perturbing the resulting action instead of
the parameters

a = f (h, θ) + ε,

again with some exploratory noise ε ∼ N (0, σ2).

The policy, that causes this behavior is unknown (and might not
even exist).

J(θ + δθ) cannot be measured.

Another method of estimating ∇θJ is needed.

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Likelihood Ratio

We start from the performance gradient equation:

∇θJ(π) =

∫

hπ

∇θp(hπ)R(hπ) dhπ

where the probability of encountering history h under policy π is:

p(hπ) = p(s0)π(a0|hπ0)p(s1|hπ0 , a0)π(a1|hπ1)p(s2|hπ1 , a1) . . .

= p(s0)
T∏

t=1

π(at−1|hπt−1) p(st |hπt−1, at−1)

Multiplying with 1 = p(hπ)
p(hπ) gives

∇θJ(π) =

∫

hπ

p(hπ)

p(hπ)
∇θp(hπ)R(hπ) dhπ

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Likelihood Ratio

∇θJ(π) =

∫

hπ

p(hπ)

p(hπ)
∇θp(hπ)R(hπ) dhπ

can be simplified by applying 1
x · ∇x = ∇ log(x):

∇θJ(π) =

∫

hπ

p(hπ) ∇θ log p(hπ) R(hπ) dhπ

where – after a few more steps – we get

∇θ log p(hπ) =
T∑

t=1

∇θ log π(at−1|hπt−1)

which we will insert into above equation.

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Likelihood Ratio – REINFORCE

This leads to the likelihood ratio gradient estimate

∇θJ(π) =

∫
p(hπ) ·

T∑

t=1

∇θ log π(at−1|hπt−1) · R(hπ) dhπ

= Eπ

{
T∑

t=1

∇θ log π(at−1|hπt−1) · R(hπ)

}

Just like in the classical case, the expectation cannot be calculated
directly. We use Monte-Carlo Sampling of episodes to approximate and
get Williams’ REINFORCE algorithm (1992):

∇θJ(π) ≈ 1

N

∑

hπ

T∑

t=1

∇θ log π(at−1|hπt−1) · R(hπ)

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Example: Linear Controller (1D)

After this general derivation, we now go back to an MDP

π(at |ht , θ) = π(at |st , θ)

Here with a linear controller:

a = f (s, θ) + ε = θs + ε, ε ∼ N (0, σ2)

The actions are distributed like

a ∼ N (θs, σ2)

and the policy is thus

π(a|s) = p(a|s, θ, σ) =
1√
2πσ

exp

(
− (a− θs)2

2σ2

)

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Example: Linear Controller (1D)

Policy from last slide:

π(a|s) = p(a|s, θ, σ) =
1√
2πσ

exp

(
− (a− θs)2

2σ2

)

Deriving the policy with respect to the free parameters θ and σ results in

∇θ log π(a|s) =
(a− θs)s

σ2

∇σ log π(a|s) =
(a− θs)2 − σ2

σ3

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Example: Linear Controller (1D)

REINFORCE Algorithm

1 initialize θ randomly

2 run N episodes, draw actions a ∼ π(a|s, θ), remember all sn
t , a

n
t , r

n
t

3 approximate gradient with REINFORCE

∇θJ(π) ≈ 1

N

N−1∑

n=0

T−1∑

t=0

∇θ log π(an
t |sn

t) · Rn
t

4 update the parameter θ ← θ + α∇θJ(π)

5 goto 2

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Application to Neural Network Controllers

How does the policy for a NN controller look like?

Input Layer

{Hidden Layer

{Deterministic
Output Layer

Neuron
summing unit
squashing unit
gaussian unit

...

...

...

neuron{ ...

{Probabilistic
Output Layer

Neuron

uk

µk

ak

zk

k

j

zj

aj

zi

zk = fact(ak)

θkj

θji

ak =
∑

j

θkjzj

σk

uk ∼ N (µk,σ2
k)

state

action

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Application to Neural Network Controllers

Again we need to derive the log of the policy with respect to the
parameters, which here are the weights θij of the network

∂ log π(a|s)

∂θji
=
∑

k∈O

∂ log πk(ak |s)

∂µk

∂µk

∂θji

The factor ∂µk

∂θji
describes the back-propagation through the network.

⇒ use existing NN implementation, but back-propagate the log likelihood

derivatives ∂ log πk (ak |s)
∂µk

instead of the error from supervised learning.

⇒ use REINFORCE to approximate ∇θJ(π) which results in the weight
update θ ← θ + α∇θJ(π).

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Where did the exploration go?

no explicit exploration

probabilistic policy π(s, a) = p(a | s)

covers two “random” concepts: non-deterministic policies and
exploration

this is actually not very efficient ⇒ State-Dependent Exploration

a = f (s, θ + ε) a = f (s, θ) + ε a = f (s, θ) + ε(s)

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Continuous Reinforcement Learning Reminder Motivation Value-based methods Policy Gradient Methods

Conclusion

Does it work?

Yes, for few parameters and many episodes

Policy Gradients converge to a local optimum

There are ways to improve REINFORCE: baselines, pegasus,
state-dependent exploration, . . .

New algorithms use data more efficiently: ENAC

Thomas Rückstieß ML I – 07.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

	Continuous Reinforcement Learning
	Reminder
	Motivation
	Value-based methods
	Policy Gradient Methods

