
Kernels

Machine Learning I
Week 8: Kernels

Martin Felder, Christian Osendorfer

Technische Universität München

14 January 2010

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Recap: Bayesian Linear Regression

Construct model from M functions φ(x):

y(x,w) = wTφ(x) (1)

Assume the usual Gaussian (conjugate!) prior

p(w|α) = N (w|m0 = 0,S0 = α−1I)

For N training samples, this yields a Gaussian posterior solution
with

mN =βSNΦTT (2)

S−1N =αI + βΦTΦ (3)

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Re-formulating the MAP solution
But the mode of a Gaussian coincides with its maximum, therefore
wMAP = mN .
Let’s see what happens if we re-substitute the MAP solution into
the defining equation:

y(x,wMAP) = wT
MAPφ(x) = φ(x)TmN =

= βφ(x)TSNΦTT

In other words, this is just a linear combination of our training
points tn:

y(x,mN) =
N∑

n=1

k(x, xn)tn

where
k(x, xn) = βφ(x)TSNφ(xn)

is called (equivalent) kernel.
Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Equivalent Kernel
What is the interpretation of the kernel?

cov[y(x), y(x′)] = cov[φ(x)Tw,wTφ(x′)] = (4)

= φ(x)TSNφ(x) = β−1k(x, x′) (5)

It can also be shown that

N∑
n=1

k(x, xn) = 1,

although k(x, xn) can be negative.

Furthermore, since SN is a covariance matrix, S
1
2
N must exist, and

we can write

k(x, x′) = βφ(x)TSNφ(x′) =
√
βφ(x)TS

T
2
NS

1
2
Nφ(x′)

√
β = ψ(x)Tψ(x′)

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Dual Representation
Starting from a regularized quadratic error function

E (w) =
1

2

N∑
n=1

(
wTφ(xn)− tn

)2
+
λ

2
wTw, (6)

we find the MAP solution by setting the gradient of E (w) to zero.
The solution for w can be written implicitly as

w = −λ
2

N∑
n=1

(
wTφ(xn)− tn

)
φ(x) =

N∑
n=1

anφ(xn) = ΦTa. (7)

When substituting this into Eqn. 6 and setting ∂E(a)
∂a to zero, with

the definition of the Gram matrix K = ΦΦT we get

a = (K + λIN)−1T (8)

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Dual Representation
Re-substituing this back into Eqn. 1 yields

y(x) = wTφ(x) = aTΦφ(x) = k(x)T(K + λIN)−1T (9)

where the vector k(x) has elements

kn(x) = k(xn, x).

Expressing the solution in terms of a instead of w is called the dual
formulation of the problem.
Properties:

The whole solution is expressed in terms of kernel functions.

The original formulation can be recovered by Eqn. 7.

We have to invert an N × N matrix now, instead of an
M ×M matrix. Usually N � M – but the kernels k(x, x′)
allow us to use very large (even infinite) Ms implicitly!

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

A simple kernel
Assume x ∈ R2 and we choose a kernel k(x, z) = (xTz)2

−→ as is easy to check, this corresponds to a mapping function

φ(x) =

 x2
1√

2x1x2
x2
2

 ∈ R3

Note: We are already saving a lot of multiplications here!

Neither this mapping nor the feature space dimension are uniquely
defined. We might as well use

φ(x) =
1√
2

 x2
1 − x2

2

2x1x2
x2
1 + x2

2

 or even φ(x) =


x2
1

x1x2
x1x2
x2
2

 ∈ R4

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

A simple kernel
Assume x ∈ R2 and we choose a kernel k(x, z) = (xTz)2

−→ as is easy to check, this corresponds to a mapping function

φ(x) =

 x2
1√

2x1x2
x2
2

 ∈ R3

Note: We are already saving a lot of multiplications here!

Neither this mapping nor the feature space dimension are uniquely
defined. We might as well use

φ(x) =
1√
2

 x2
1 − x2

2

2x1x2
x2
1 + x2

2

 or even φ(x) =


x2
1

x1x2
x1x2
x2
2

 ∈ R4

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

What is a valid kernel?

Is every k(x, z) feasible?

Well, no – the feature space must be a Hilbert space.

Mercer’s condition ensures this:

“A mapping k(x, z) = φ(x)Tφ(z) exists, iff for any
g(x) such that

∫
g(x)2dx is finite, then∫

k(x, z)g(x)g(z)dxdz ≥ 0.”

−→ Very inconvenient to prove!

What happens if Mercer’s condition is not fulfilled?

Often it may still work well – just the explanations given here
won’t hold anymore.
However it can happen that the optimization fails completely.

−→ Often more convenient to start from a proven kernel and
construct a new one using kernel manipulation rules.

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

What is a valid kernel?

Is every k(x, z) feasible?

Well, no – the feature space must be a Hilbert space.

Mercer’s condition ensures this:

“A mapping k(x, z) = φ(x)Tφ(z) exists, iff for any
g(x) such that

∫
g(x)2dx is finite, then∫

k(x, z)g(x)g(z)dxdz ≥ 0.”

−→ Very inconvenient to prove!

What happens if Mercer’s condition is not fulfilled?

Often it may still work well – just the explanations given here
won’t hold anymore.
However it can happen that the optimization fails completely.

−→ Often more convenient to start from a proven kernel and
construct a new one using kernel manipulation rules.

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

What is a valid kernel?

Is every k(x, z) feasible?

Well, no – the feature space must be a Hilbert space.

Mercer’s condition ensures this:

“A mapping k(x, z) = φ(x)Tφ(z) exists, iff for any
g(x) such that

∫
g(x)2dx is finite, then∫

k(x, z)g(x)g(z)dxdz ≥ 0.”

−→ Very inconvenient to prove!

What happens if Mercer’s condition is not fulfilled?

Often it may still work well – just the explanations given here
won’t hold anymore.
However it can happen that the optimization fails completely.

−→ Often more convenient to start from a proven kernel and
construct a new one using kernel manipulation rules.

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

What is a valid kernel?

Is every k(x, z) feasible?

Well, no – the feature space must be a Hilbert space.

Mercer’s condition ensures this:

“A mapping k(x, z) = φ(x)Tφ(z) exists, iff for any
g(x) such that

∫
g(x)2dx is finite, then∫

k(x, z)g(x)g(z)dxdz ≥ 0.”

−→ Very inconvenient to prove!

What happens if Mercer’s condition is not fulfilled?

Often it may still work well – just the explanations given here
won’t hold anymore.
However it can happen that the optimization fails completely.

−→ Often more convenient to start from a proven kernel and
construct a new one using kernel manipulation rules.

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

What is a valid kernel?

Is every k(x, z) feasible?

Well, no – the feature space must be a Hilbert space.

Mercer’s condition ensures this:

“A mapping k(x, z) = φ(x)Tφ(z) exists, iff for any
g(x) such that

∫
g(x)2dx is finite, then∫

k(x, z)g(x)g(z)dxdz ≥ 0.”

−→ Very inconvenient to prove!

What happens if Mercer’s condition is not fulfilled?

Often it may still work well – just the explanations given here
won’t hold anymore.
However it can happen that the optimization fails completely.

−→ Often more convenient to start from a proven kernel and
construct a new one using kernel manipulation rules.

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Constructing Kernels

Given valid kernels k1(x, x′) and k2(x, x′), the following kernels are
also valid:

k(x, x′) = ck1(x, x′)

k(x, x′) = k1(x, x′) + k2(x, x′)

k(x, x′) = k1(x, x′)k2(x, x′)

k(x, x′) = f (x)k1(x, x′)f (x′)

k(x, x′) = q(k1(x, x′)) and k(x, x′) = exp(k1(x, x′))

k(x, x′) = xAx′

k(x, x′) = k3(φ(x),φ(x′))

f (·) any function, q(·) polynomial with non-negative coefficients,
φ(·) function in RM , k3(·, ·) valid kernel in RM , A symmetric
positive definite matrix

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Example Kernels

Define a range function as

r(x) =

{
1 if ‖x‖ ≤ 1
0 otherwise

and ∆x ≡ x− x′.

Kernels sometimes found in the literature:

Uniform: k(x, x′) = 1
2 r(∆x)

Triangle: k(x, x′) = (1− ‖∆x‖)r(∆x)

Epanechnikov: k(x, x′) = 3
4(1− ‖∆x‖2)r(∆x)

Quartic: k(x, x′) = 15
16(1− ‖∆x‖2)2r(∆x)

Triweight: k(x, x′) = 35
32(1− ‖∆x‖2)3r(∆x)

Gaussian: k(x, x′) = 1√
2π

exp
(
−1

2‖∆x‖2
)

Cosine: k(x, x′) = π
4 cos

(
π
2 ∆x

)
r(∆x)

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Non-Vectorial Kernels

Note that Mercer’s condition demands for a Hilbert space, not
necessarily a vector space!

=⇒ Can define custom kernels for a broad class of data, like
strings, graphs, text documents, sets, . . .

Example: Given a fixed set S, define a Hilbert space consisting of
all possible subsets A of this set. A simple definition of a kernel in
this space would be

k(A1,A2) = 2|A1∩A2|.

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Kernel Algorithms

Many algorithms can operate on kernels instead of non-transformed
input vectors or basis functions, greatly increasing their modelling
capabilities while keeping complexity in check. These include

Support Vector Machines (SVMs; → next week!)

Fisher’s linear discriminant analysis

principal components analysis (PCA)

canonical correlation analysis

ridge regression

spectral clustering

etc, etc.

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Kernel application example: Defining implicit surfaces

Let θ(x) be a continuous scalar function with x ∈ R3. An implicit
surface is then defined by the set of points that satisfies

θ(x) = 0.

Application: Use kernels to reconstruct the surface of laser-scanned
3D objects. This method can easily deal with millions of 3D data
points, and is resistant to outliers and noise.
The kernel used is of course specially designed for the task, taking
surface normals into account, and uses regularization.

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

Kernels

Martin Felder, Christian Osendorfer ML I – 14.01.2010

CogBotLab
Machine Learning & Cognitive Robotics
CogBotLab
Machine Learning & Cognitive Robotics

	Kernels
	Kernels

