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Linear SVMs Lagrange Sparseness Separability Kernel Parameter Search Multiclass

Classification Problem Revisited

Assume there are two classes of data
points in a 2D plane.

Goal: Find the optimum division line
between the two classes, such
that subsequent points fall
onto the correct side.

−→ Intuitively, a wide margin
around the dividing line seems to
make this more likely.
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Formal Problem Definition

A hyperplane (i.e. our dividing line, in 2D)
can be defined by:

xTw + b = 0

w is normal to the hyperplane,
b is the offset,
x are the points on the hyperplane,

The classifier is then:

class(x) = sign
(
wTx + b

)
Note also: The distance from the origin is
|b|/‖w‖.

w <x,w>+b=+1

<x,w>+b=0

<x,w>+b=−1

|b|/||w||

2/||w||
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Problem Definition

Let xi be the ith of N data points, and
ti ∈ {−1, 1} the class assigned to xi .

To impose our margin, we state the
following constraints ∀i = 1, . . . ,N:

xTw + b ≥ +1 for ti = +1

xTw + b ≤ −1 for ti = −1

which can be condensed into

ti (xTi w + b) ≥ 1

w <x,w>+b=+1

<x,w>+b=0

<x,w>+b=−1

|b|/||w||

2/||w||
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Determining the Margin

Now, given the parallel hyperplanes

xTw + b = ±1

with the distance to the origin

| ± 1− b|
‖w‖

,

yields the margin by simple subtraction:

|1− b|
‖w‖

− | − 1− b|
‖w‖

=
2

‖w‖

w <x,w>+b=+1

<x,w>+b=0

<x,w>+b=−1

|b|/||w||

2/||w||

By definition, no training points occur between the two hyperplanes.
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Optimization Problem

Maximizing 2/||w||, is equivalent to minimizing ‖w‖2/2. We can
formulate this as quadratic programming problem:

Minimize 1
2‖w‖

2, with constraints

ti (xTi w + b)− 1 ≥ 0

In principle, QP problems are easy to solve using standard tools, but

satisfying the constraints in this formulation is a pain, and

for reasons that will become apparent, we want training data to
appear only as dot products in the entire algorithm.
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Lagrange formulation

We reformulate the problem by defining a Lagrangian, using Lagrange
Multipliers to provide the constraints.

Rule: “For constraints of the form c ≥ 0, subtract λc with λ ≥ 0 from
the objective function.”

Ok, let’s do that. We get:

Minimize

LP =
1

2
||w||2 −

∑
i

αi ti (xTi w + b) +
∑
i

αi

with respect to w, b, subject to the constraints

αi ≥ 0

∂LP
∂αi

= ti (xTi w + b) + 1 = 0
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Lagrange formulation
Notice how we have shifted the inequality conditions to the αs.
This is a convex QP problem, since the objective function is convex,
and linear constraints always define a convex set of points.
Optimization theory has shown that under these conditions, we can
equivalently solve the Wolfe dual problem:

Minimize

LP =
1

2
||w||2 −

∑
i

αi ti (xTi w + b) +
∑
i

αi

with respect to α, subject to the constraints

αi ≥ 0

∂LP
∂w

= w −
∑
i

αi tixi = 0 (1)

∂LP
∂b

= −
∑
i

αi ti = 0 (2)
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Lagrange formulation – Dual

Since this is a convex problem, there is a single unique maximum.
Substituting the dual problem constraints (1) and (2) back into LP allows
us to reformulate:

Maximize

LD =
∑
i

αi −
1

2

∑
i,j

αiαj ti tjx
T
i xj

with respect to α, subject to the constraints

αi ≥ 0

w −
∑
i

αi tixi = 0

−
∑
i

αi ti = 0
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Lagrange formulation – Dual

Notes:

Solving the dual problem often much simpler than primal problem.

Hij := ti tjxTi xj defines the Hessian, which is usually positive
semidefinite.

b is not explicitly given by the solution condition. After the αi are
found, it can be calculated as

b =
1

ti
−wTxi ,

where an average over all αi is usually taken for numerical stability
reasons.

Problem: Wait a minute, what’s so great about this? Inverting the
Hessian scales as O(N3) worst case!

−→ let’s look at the optimality result in more detail
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Karush-Kuhn-Tucker Conditions

It can be proven that optimality is given for our convex QP iff the
Karush-Kuhn-Tucker conditions hold:

∂LP
∂w

= w −
∑
i

αi tixi = 0

∂LP
∂b

= −
∑
i

αi ti = 0

ti (wTxi + b)− 1 ≥ 0 ∀i

αi ≥ 0

αi (ti (wTxi + b)− 1) = 0 ∀i
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Support Vectors

αi (ti (wTxi + b)− 1) = 0 ∀i

The Lagrange-Multiplicators αi are
αi = 0 if xi doesn’t contribute to the solution, and
αi > 0 if xi does influence the hyperplane.

xi with αi > 0 are called the support vectors.

Note that in the dual formulation we had:
w =

∑
i αi tixi

Hence to calculate w, it suffices to know all αi > 0, with
corresponding xi and class ti .

This means most data points are irrelevant to the solution.
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Support Vectors
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Separability

What if data is not linearly separable?

=⇒ training will not converge!
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Separability

Add a slack variable ξ to the constraints:

xTi w + b ≥ +1− ξi for ti = +1

xTi w + b ≤ −1 + ξi for ti = −1

which can again be joined:

ti (xTi w + b)− 1 + ξi ≥ 0

ξi ≥ 0

So the objective function to be minimized becomes:

‖w‖2

2
+ C

∑
i

ξi

C must be chosen by the user: Higher C means stronger punishment
of misclassification.
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Separability

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

We add the new constraints with another set of Lagrange multipliers µi :
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The primal Lagrangian thus becomes:

LP =
‖w‖2

2
+ C

∑
i

ξi −
∑
i

αi (ti (wTxi + b)− 1 + ξi )−
∑
i

µiξi

With the following KKT conditions:

∂LP
∂w

= w −
∑
i

αi tixi = 0 (3)

∂LP
∂b

= −
∑
i

αi ti = 0 (4)

∂LP
∂ξi

= C − αi − µi = 0 (5)

ti (wTxi + b)− 1 + ξi ≥ 0 (6)

αi ≥ 0 ξi ≥ 0 µi ≥ 0 (7)

αi (ti (wTxi + b)− 1 + ξi ) = 0 (8)

µiξi = 0 (9)
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Substitution of the KKT equations into the primal yields the dual
Lagrangian:

LD =
∑
i

αi −
1

2

∑
i,j

αiαj ti tjx
T
i xj ,

where still ∑
i

αi ti = 0.

From the conditions µiξi = 0 and C − αi − µi = 0 we can also conclude
that

ξi = 0 if αi < C .

Thus looking at the points where 0 < αi < C , Eqn. (8) reverts to the
unconstrained case, and the solutions for w and b still compute as

w =
∑
i

αi tixi

b =
1

ti
− xTi w

.
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Influence of C

C = 100
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Influence of C

C = 10
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Influence of C

C = 1
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How to build a more general classifier?

Build model that can produce non-linear boundaries = The Neural
Network way

Stick with the hyperplane, but instead raise the data to a higher
dimension (“feature space”) by some transformation Φ(·) (“feature
map”) = The SVM way

.

Boundaries often become simpler in higher
dimensions
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How to build a more general classifier?

Example: Can’t tell from a 2D image which of these stars belong to our
galaxy.

.

However, given distance as a 3rd dimension, you can.
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Kernel Trick
Previously, we had:

LD =
∑
i

αi −
1

2

∑
i,j

αiαj ti tjx
T
i xj ,

where the training data x only appear in a scalar product.

Hence, only map the scalar product:

k(a,b) = φ(a)Tφ(b)

k : Rl × Rl → R
k is then called the kernel of the transformation.

This can be orders of magnitude faster that mapping the data
directly using Φ(·)!

.

Definition: Support Vector Machine [?]

An SVM is a maximum separability hyperplane in feature space
constructed by means of a kernel function in data space.
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Gaussian kernel
Visualization of Gaussian kernel feature space (distance from decision
boundary) ∑

i

αiyik(xi , x) + b
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Gaussian kernel

σ = 1 C = 1000
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Gaussian kernel

σ = .5 C = 1000
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Gaussian kernel

σ = .25 C = 1000
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Gaussian kernel

σ = .05 C = 1000
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Gaussian kernel

σ = .005 C = 1000
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Parameter Search
The Gaussian (=RBF) kernel is used in most cases, because it is very
stable and has the advantage of requiring only two crucial parameters:

λ is essentially the width of the Gaussian kernel function.

C is the abovementioned regularization parameter controlling
the amount of “slack”.

⇒ use an automated 2d grid search!

Classification performance at each grid
point is evaluated using N-fold
cross-validation
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Parameter Search
The Gaussian (=RBF) kernel is used in most cases, because it is very
stable and has the advantage of requiring only two crucial parameters:

λ is essentially the width of the Gaussian kernel function.

C is the abovementioned regularization parameter controlling
the amount of “slack”.

⇒ use an automated 2d grid search!

Classification performance at each grid
point is evaluated using N-fold
cross-validation
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N-fold Cross-Validation
Split data into N parts, train on N-1 of them and use the Nth for testing
(here N = 5). This is feasible due to quick and deterministic training of
SVMs (but can be done for NNs, too, of course)

Training

Training

Training

Training

Testing

Result 

1

Training

Training

Training

Training

Testing

Result 

2

Training

Training

Training

Training

Testing

Result 

5

...

Average =

5-fold CV result

...
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Multiclass SVMs

Problem: SVMs can only discern two classes!

Solution: Multiclass data sets need to be somehow broken down into
binary problems.

Caveat: There is an ongoing discussion of how to best achieve this
[?].

It is likely that we lose some optimality here. But there are two common
and simple, but still relatively performant solutions:
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one-vs-one: Split the data in to pairs of classes and train an SVM on
each pair. When faced with unknown data, present it to
all such SVMs and calculate the distances from the
boundary, d = wTx + b for each one. Then use a voting
mechanism to decide the class it is in.

Pro: Possible to derive class membership probabilities
from the raw distances [?].
Con: With K classes, need to train K (K − 1)/2
SVMs.

one-vs-rest: Separate one class from the rest of the data and train an
SVM on this problem. Repeat for each class.

Pro: Simplest solution.
Con: Very unbalanced binary class distribution.
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