
Lab Course “Microntroller Programming” Exercise 2

Exercise 2: Serial Communication

1 UART

Universal Asynchronous Receiver/Transmitter (UART) is a piece of hardware that translates data
between parallel and serial data. UARTs are usually used in conjunction with other communication
standards such as EIA RS-232 (like in our case) to perform serial communication. The UART
takes bytes of data and transmits the individual bits in a sequential fashion. At the destination,
a second UART re-assembles the bits into complete bytes. Most microcontrollers today provide
built-in UART functionality. In our target microcontroller, there is 1 UART port available.

In asynchronous transmitting, a UART frame consists of the following bits (figure 1):

Figure 1: UART Frame Format

• Start bit: always 1 bit with the opposite polarity of the data line’s idle state.

• Data bits: 5 to 8 bits, least significant bit first.

• Parity bits: optional (0 or 1 bit), odd parity mode and even parity mode supported.

• Stop bits: 1, 1.5, or 2 bits.

Some microcontrollers also support synchronous transmission mode (USART), in which the clock
data is recovered separately from the data stream and no start/stop bits are used. This improves
the efficiency of transmission on the channel. ATmega8515 also support it, but for reasons of
simplicity, we will only use the asynchronous transmission (normal mode) in this lab course.

The UART settings (number of data bits, parity, number of stop bits) must be agreed between PC
and target (the microcontroller in our case) before communication starts. At the target side, those
settings are configured in special registers. Another key parameter that needs to be set before
communication is the baud rate (transmission speed). For UART there are a set of predefined
baud rate values that we can choose from.

1/4



Lab Course “Microntroller Programming” Exercise 2

Remember: Save each of the solutions to the exercises in this lab course as a separate AVRStudio
project and send all the projects together with the answers to the questions to the organizers of
the lab course when you are finished.

Exercise 2.1

a) Which pins serve for receiving data (RXD) and transmitting data (TXD) in ATmega8515,
respectively? Connect the two-wire cable so that the corresponding pins and the UART
connector (RS232 SPARE ) are connected.

b) What is the difference between a baud and a bit? Do some research on the internet.

c) Start the HyperTerminal application (Accessories → Communications → HyperTerminal in
the start menu). Enter an arbitrary profile name and select a valid COM port. Have a look
at the available settings. List the standard baud rates that are available. Which of these
baud rates are theoretically supported by ATmega8515 at a clock speed of 8 MHz? Read the
ATmega8515 manual and calculate the possible baud rates.

d) Read the ATmega8515 manual to find out which register is used to configure the baud rate
of the target. What value should we put into this register for a given baud rate? Write down
the formula for asynchronous normal mode. Which bits of the UBRR value have to be put
into which hardware register?

e) List the registers and the corresponding bit fields that are relevant for storing other UART
related settings and data in ATmega8515.

2 Polling-based UART communication

Programming a microcontroller without a debugger is a painful task. In this section, we will try
to build a UART based debugger on our own. The idea is to forward the standard output channel
(written to by C functions like putchar(), puts(), printf(), etc.) via a UART connection to the
PC and use a terminal application to visualize the output.

Exercise 2.2

a) Write a function uart_init() that initializes the UART of ATmega8515 using the following
parameters: Asynchronous normal mode, 9600 baud, 8 data bits, no parity bit, 1 stop bit.
Make sure your code is readable (i.e., not just calculate the register values in advance, but
set each bit individually by using the shift operator and the bitwise OR operator).

b) Read the manual including sample C code and develop a function named uart_putchar()
for sending a single character c to the terminal. The signature of the function should be (we
will later see why):

int uart_putchar(char c, FILE* stream);

Let your function always return 0 and ignore the stream argument. Establish a HyperTer-
minal connection with the same baud rate, data bits, stop bits and parity mode as on the
target and disable flow control. Test your uart_putchar() function.

c) Based on your uart_putchar() implementation, implement and test a uart_puts() func-
tion that can print a whole character string to the console. Always append a Windows
line break ("\r\n") at the end of the transmission. Test your implementation by sending
"Hello world!".

2/4



Lab Course “Microntroller Programming” Exercise 2

Hints

• There are two serial connectors on the development board. The one named RS232 CTRL is
used to program the device and RS232 SPARE is used for normal communication (e.g., our
debug console). We recommend to attach both serial cables to the host PC so that you do
not need to reconnect the cable between programming and communicating. Each host PC
should have an additional serial port connector below the VGA slot.

• In C language, strings are terminated with a special character ’\0’, which is automatically in-
serted by the compiler. For example, assume we define a string using the following statement:

char str[13] = "Hello world!";

Although the string only has a length of 12 characters, we need to request 13 bytes
of memory to store str, because the last byte is used to store the terminator ’\0’. The
standard C puts() function continues to output a string until a terminator is detected. Try
to implement your own uart_puts() function in the same way.

• The uart_putchar() and uart_puts() functions developed in this exercise will serve you
well during the rest of the lab course as they facilitate debugging of the target device. Hence,
you should make sure that they work properly before continuing.

Exercise 2.3

Up to now we can only print a constant string to the terminal. To build a debug console, it is
important that we can print the current value of a certain variable. The C standard function
printf() can be used to do this.

a) Familiarize yourself with the printf() function (e.g., by “Googling”). Write down some
example format strings for formatting character strings, decimal integers and hexadecimal
integers.

b) The standard C I/O functions (e.g., puts() and printf()) forward the output string to
a predefined channel called stdout. On a PC, this channel is normally bound to a console
window, a file or a different process. We will now replace stdout with the serial port, so that
the output can be visualized at the host side. Add the following statements to your main()
function (and include <stdio.h>):

/* File handle for standard output via UART */
static FILE uart_stdout = FDEV_SETUP_STREAM(uart_putchar, 0, _FDEV_SETUP_WRITE);
stdout = &uart_stdout;

In these statements, we created a fake file called uart_stdout and replace the standard
stdout object with our own file. Now if you use printf() function, the characters are redi-
rected to the serial port by calling the uart_putchar() function, which you have developed
in the previous steps The reason why we chose the specific signature in exercise 2.2 b) is
that this function expects a pointer to a function with exactly that signature. Test whether
the printf() function works as you expected using different format specifiers.

Hints

• To make formatting floating-point numbers using printf() work, you will need to tweak
the project’s Configuration Options a little bit: In the Libraries tab, add the objects libm.a
and libprintf_flt.a. In the Custom Options tab, select the [Linker Options] item on
the left and add the value -Wl,-u,vfprintf to the parameter list.

3/4



Lab Course “Microntroller Programming” Exercise 2

Exercise 2.4

a) Write a function uart_getchar() that waits until a single character is received on the serial
port and returns that character. To prove that the function works, let the LEDs attached to
PORTB display the (ASCII) character code of the received character. Find out the character
code of a captial ’A’ by sending it to the target and interpreting the status of the LEDs.

b) Write an echo application. Upon receiving any data from the host side, send back exactly
the same data.

c) Create a generalized implementation of uart_init() named uart_init2() that takes the
following parameters:

• Baud rate (as a numeric value)

• Mode (asynchronous normal, asynchronous double speed, synchronous master)

• Parity mode (none, even, odd)

• Number of stop bits (1, 2)

• Number of data bits (5, 6, 7, 8)

Use the enumerations from the uart_params.h file. Test your implementation with various
settings on the target and the host side.

Hints

• Displaying the (ASCII) character code of the received character using the LEDs is actually
very simple. Remember that characters are already treated as numbers internally. Do not
forget to invert the bits because of the inverse logic of the LEDs.

Notes

• It is not a problem if you do not finish an exercise within one session. For reasons of structure,
some exercises will be longer, others shorter. You can also work on the solutions in the next
session. The following exercise is for those who are faster.

Exercise 2.5 (optional)

a) Optional: Generalize your set of UART functions so that they can handle 9 data bits (name
them differently from the original functions so that you can still use the “normal” ones).

b) Optional: printf() is a variable-argument function, which means the it can take a variable
number of input parameters. If you are interested (or have some spare time), ask the tutor
to provide you a printf() implementation. This implementation works exactly the same as
standard C. Have a look at the printf() implementation to find out how to declare and
implement a variable-argument function.

Notes

• Regarding the increased flash memory consumption, you should not tend to use your generic
uart_init() function in the subsequent exercises of this lab course. Use the dedicated
function from exercise 2.2 a) instead.

4/4


	UART
	Polling-based UART communication

