
Lab Course “Microntroller Programming” Exercise 5

Exercise 5: Motor Speed Control

Overview

In the previous sessions, we have seen how to generate PWM signals and how to use the input
capture functionality of a microcontroller. In this exercise, we will combine these features in a
real-world example.

Imagine you have a model car that is driven by a battery-powered DC motor. We want the car
to drive at a constant speed, even if there is load on the motor because we are currently driving
uphill or the battery power is low. Of course we can not always guarantee that the motor will
reach the designated speed, but in this exercise we will at least try to do so.

Since this exercise is only about the controller of the motor speed, we do not have a real model car
here, but we have the essential components. For completing the tasks, you receive an extra printed
circuit board with a DC motor, a light barrier and respective driver circuits. We will develop a
control application that measures the current motor speed using the light barrier and adapts the
control signal until the speed reaches the designated value.

Driving a DC Motor

In the previous exercise, you have developed a PWM signal generator. We will now use a PWM
signal to control the speed of the DC motor. Note that you should never directly attach a compo-
nent with a high power consumption (like a motor) to a microcontroller, because the high current
that occurs while running it would damage the controller. To circumvent this issue, we use special
electronic components on the motor board that allow us to directly attach it to a PWM signal
generated by the microcontroller.

Driving a DC Motor with ATmega8515

Exercise 5.1

a) Attach the DC motor board to STK500 so that you can feed a PWM signal to the motor.
Do not forget to also connect the power supply pins on the motor board (+5V, GND), which is
needed for the electronic components on the board to work properly. Which pin connections
do you need?

b) Use the program from exercise 4.5 d) to test the motor at different speeds.

• Find out the approximate minimum duty cycle at which the motor runs and the maxi-
mum duty cycle from where increasing the value does not have any visible effect (listen
to the sound of the motor). When finding the minumum duty cycle, is there a difference
between the motor already turning at a higher speed or turning it on from stand?

• What happens if you hold the motor so that the axis is arranged vertically?

Determining the Speed of a Motor

There are multiple methods that can be used to measure the speed of a motor. One method
is to attach a magnet to the motor axis and use a sensor that detects the magnetic field to
measure the number of rounds per minute. The approach we will use here today is an optical
way of measuring the motor speed. There is a small light barrier mounted on the motor board.
In addition to that, a disk is mounted on the motor axis. One half of the disk is opaque and the
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other one is transparent. When the opaque area of the disk is in between the light barrier, the
light is blocked. Otherwise, the light can be detected by the receiving part of the light barrier.
This optical information is transformed to a voltage by the electrical circuit on the motor board,
which can be finally evaluated by the microcontroller. Note that you can not see the light that the
light barrier produces, as it is in the infrared spectrum.

Determining the Motor Speed with ATmega8515

Exercise 5.2

a) Attach the signal called Schmitt-Trigger OUT to the input capture pin of the microcon-
troller. Write a program that will measure the time between two successive input capture
events (it is up to you whether you want to recognize the falling and/or rising edge(s)). Do
all the calculations in the ISR and store the most recent result in a global variable. In the
main program, periodically dump the current value in microseconds to the debug console.

b) Which resolution (in degrees) can we achieve when. . .

i) . . . only considering the rising or falling edge. . .

ii) . . . considering the rising and falling edge. . .

. . . of the signal from the light barrier when using the following encoder disks:

Hints

• To use PWM signal to drive the DC motor, use the rather small period value (e.g. 100µs),
otherwise the light barrier signal may become noisy and distort your input capture events.
You might need to use small prescaler as well to achieve better resolution.

• We had some bad experience with floating point computations using AVR GCC compiler,
especially for small numbers. So when calculating the motor speed, try to avoid using floating
point numbers. If the number is smaller than 1, you may need to scale it up using a proper
scaling factor and then use fix point (integers) operations. For example, let’s assume the
time stamps of two successive input capture events are x1 = 100, x2 = 200 and we wanted to
compute the time interval in µs between the two events. The timer overflow value (maximum
value of timer counter) in the example is T = 1000 and the corresponding real time (timer
period) is P = 500µs. The code to Compute the interval using floating point may look like:

/* x1,x2: time stamp of input capture events */
float f1=x1,f2=x2;
...
/* Compute the fraction in one timer period
* Note that the variable interval must be float, otherwise the
* result is always 0, since (x2-x1)/T is smaller than 1 */
float interval = (x2-x1)/T;
/* Compute the real time in us */
interval = interval*P;
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To avoid using floating point numbers, we can use fixed-point arithmentic:

/* x1,x2: time stamp of input capture events
* scale up: note that 1000 is just for demonstration, you should pick up
* a value that is large enough */
uint32_t s1=x1*1000;
uint32_t s2=x2*1000;
...
/* Compute the fraction, now the absolute value of the result can be safely
* stored in an integer since it is much large than one. */
uint32_t interval = (x2-x1)/T;
/* Compute the real time in us */
interval = interval*P;
/* Scale down */
interval = interval/1000;

Control Theory

One of the requirements for our (so far virtual) model car was that the speed of the motor should
be constant. Until now, we have seen that the motor speed may change even if we do not change
the duty cycle of the PWM signal. Hence, we need to dynamically adapt the PWM frequency
given the current speed of the motor.

This is a typical problem from the control systems area. We will now implement a simple yet
effective controller to achieve the desired task. One of the essential features of a controller is a
feedback loop, which means that the current state of the system is fed back to controller after the
controller has set a new control value.

The controller we will use is a PI controller. PI means proportional plus integral controller. It
basically works as follows: The controller has thee input values. The first one is the so called
system deviation d, that is the difference of the measured value (so-called actual value) vm to
the desired value (so-called setpoint value) vs. The second and third inputs are the proportial
coefficient cp and the integral coefficient ci. The output s is the new setpoint for the system. A
pseudo-code algorithm for a PI controller is shown in listing 1.

Motor Control with ATmega8515

Exercise 5.3

a) Extend your previous program(s) so that it regulates the speed of the DC motor using a PI
controller. Output the current rounds per minute to the debug cosole (about every second).
It should still be possible to input the new desired value (in rounds per minute) over the
serial interface. Start with control parameters cp = 0.1 and ci = 0. Describe the behavior of
the motor.

b) Now set cp = ci = 0.1. What happens?

c) Optimize the control parameters so that the motor reacts as fast as possible when you change
the desired value.

d) What happens now if you hold the motor so that the axis is arranged vertically?
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Listing 1: PI Controller Pseudocode
input(cp); input(ci) // Retr i eve c o n t r o l parameters
told ← time()
v ← 0

forever {
input(vm); input(vs) // Retr i eve ac tua l va lue and s e t p o i n t va lue

tcur ← time() // Ca lcu la te how much time has passed
∆t← tcur − told
told ← tcur

d← vm − vs // PI c o n t r o l l e r
v ← v + ci · d
s← cp · d + v ·∆t

output(s) // Output c o n t r o l va lue
}

Notes

• Try to write your program to save as much program memory as possible (but still document
it appropriatly). Otherwise, you might hit the flash memory size limitation of 8K.
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