
Lab Course “Microntroller Programming” Exercise 9

Exercise 9: The Modbus Protocol and Wired Sensor Nodes

Overview

In previous sessions, only a single microcontroller is used to complete a certain task. However,
in many real world applications, the workload is distributed into multiple microcontrollers, which
interact with each other to achieve a common goal. Such systems are known as distributed systems
and those controllers are viewed as nodes in the system structure. Nodes in distributed systems
are typically connected via a network and communicate with each other according to predefined
protocols. As an example, there are usually more than 100 microcontrollers in a modern car,
which communicate using various protocols, such as CAN, MOST, FlexRay, etc. In this session,
we will introduce you the widely used Modbus1 protocol and demonstrate how to program a
microcontroller in a distributed system by implementing a simplified version of Modbus.

The Modbus Protocol

Modbus is an openly published serial communication standard. It is now the most commonly avail-
able means of connecting industrial electronic devices. The Modbus specification defines the appli-
cation layer messaging policy, which can be implemented over serial port or Ethernet (TCP/IP).
Most Modbus devices communicate over a serial port. For serial connections, two variants exist,
namely the RTU (Remote Terminal Unit) mode and the ASCII mode. The two modes have differ-
ent representations of numerical data and slightly different protocol details. The RTU mode uses
a compact, binary representation of the data, where as ASCII mode is human readable, and more
verbose. In this lab course, we will use the RTU-based implementation.

Modbus is a master-slave based protocol. In a Modbus network, an unique address is assigned to
each device intended to communicate. Only nodes assigned as master can initiate a command. A
Modbus command contains the Modbus address of the device it is intended for. Only the intended
device will act on the command, even though other devices might receive it.

The Modbus protocol defines a simple protocol data unit (PDU) independent of the underlying
communication layers. A Modbus PDU consists of a function code field and data field. A valid
function code is a one-byte value between 1 and 255. The data field contains additional information
needed by a specific function code. In this exercise, we will implement a simplified version of
Modbus, which supports only two function codes, namely 0x03 (Read Holding Register) and 0x06

(Write Single Register). The details of these two function codes can be found in the specification.

Receiving an RTU frame

The maximum length of a RTU frame is 256 bytes. In RTU mode of Modbus, a command PDU is
equipped with a header field, which contains the address of the slave device intended to response
the command, and a tailer field, which contains the CRC of the frame for error detection (figure

1http://www.modbus.org/

Figure 1: RTU Message Frame

1/4



Lab Course “Microntroller Programming” Exercise 9

1). The device address is coded in one byte, in which address 0 is reserved as broadcast address. A
slave device should have an unique address between 1 and 247. The master device does not have
a specific address. The CRC field contains two bytes, which are the expected check sum of the
frame calculated by the sender. The receiver should compute the CRC of the received frame and
compare it with the expected value. An error results if the two values do not match. The detailed
information about how the CRC is calculated can be found in the specification.

The starting and ending points of a RTU frame are identified by the so-called t3.5 interval (figure
2). The idea is that RTU frames must be separated by at least 3.5 byte times. After receiving a
byte, the receiver can start a timer which expires at the time that it takes to transmit 3.5 bytes.
When next byte arrives within t3.5, the timer is restarted. A timer expiration is considered as the
ending of the current frame. CRC check is done after receiving a frame to detect erroneous frames.
The RTU frame must be transmitted in a continuous byte stream. If a silent interval of more
than 1.5 byte time (t1.5) occurs between two successive bytes, the frame should be considered as
incomplete and discarded. Thus, we need two separate timers, one for t1.5 and another one for
t3.5. For baud rates greater than 19,200 bps, fixed values for the 2 timers should be used: it is
recommended to use a value of 750µs for the inter-character time-out (t1.5) and a value of 1.750 ms
for inter-frame delay (t3.5).

Figure 2: Separation of RTU frames

Modbus Holding Registers

The data model of Modbus consists of four primary types as listed in figure 3. There are separate
function codes for accessing different data types. In this session, we will only use the holding
register as an example.

In the pure holding register system, the slave devices can be viewed as external memories of the
master device. The register contents are store in the respective slave devices labeled with addresses.
The value of a holding register can be updated by sending a write single register command (0x06)
or read by sending a read holding register command (0x03). Read the specification for details of
the two commands.

2/4



Lab Course “Microntroller Programming” Exercise 9

Figure 3: Modbus Data Model

Exercise 9.1

Browse through the Modbus protocol specification to find out the following information.

a) What is the structure of a general Modbus application data unit (ADU) ? Which part of the
frame is the protocol data unit (PDU)?

b) What is the meaning of the following read/write function codes: 0x01, 0x02, 0x03, 0x04,
0x05, 0x06? Group them according to figure 3.

c) Summarize for which kind of data the Modbus protocol is optimized and why it was designed
that way regarding its primary field of use.

Prerequisites

In this exercise, we will use the RTU mode of the Modbus protocol over a serial line. This mode
requires that we use cyclic redundancy checks (CRC) to secure the data. Read appendix 6.2.2 on
page 39–43 of the“Modbus over Serial Line” specification to find out how Modbus CRC calculation
basically works.

Exercise 9.2

• Develop a function with the signature uint16_t modbus_crc16(uint8_t* buffer,

uint16_t n) that calculates the CRC for arbitrary data in the buffer with length n. You
can use the code shown in appendix 6.2.2 for this purpose.

You might want to verify that your function yields the following result:

– Input: 0x01 0x06 0x00 0x0E 0x04 0xD2

– Output: 0x94 0x6A

Note

Since ATmega8515 has quite limited memory space, it might be advantageous to use a function-
based implementation rather than the lookup-table based approach as described in the specifi-
cation. If you run out of memory space, ask the tutors to provide you with a CRC calculation
function that does not use lookup tables (however that implementation is of course slower, but
this does not cause problems in our usage scenario).

3/4



Lab Course “Microntroller Programming” Exercise 9

Modbus Slave Implementation

Exercise 9.3

a) First, attach the LC display to the slave and make sure you can use it for debugging pur-
poses, since there will be no debug console available (the serial line will be used for Modbus
communication).

b) Implement a Modbus device that provides 16 holding register for reading/writing, each of
which is 16 bits wide. Those registers are maintained in the local memory of the slave device
and can be accessed via an RTU command from the master device. Do this task step by step,
e.g., first echo the command from the master to verify that the RTU frame can be correctly
received and sent. The hints part in the following introduces some software that may assist
you with development.

c) Make the register with index 15 represent the current temperature value in 1
10 degrees from

the TSic temperature sensor. For example, if the temperature is 21.3 ◦C, let the register
contain the value 213. Write operations from the master to that specific holding register
should simply be ignored. In addition, show the current temperature value on the LCD.

Hints

• To communicate the your slave device, we can reuse the host side software provided in the
EasyLab installation (C:/Program Files/EasyLab/bin/service_modbus_test.exe). This
software can be used to connect to a modbus RTU device via serial port. Please ignore the
“error retrieving program ID” message upon startup, it is related to the fact that EasyLab
implements its own variant of the Modbus protocol. Self-explaining options are provided to
read and write the holding registers in the slave device. In the host side software, the following
configurations of the UART are hard-coded, please use exactly the same configuration so that
the host and target side can communicate properly. In addition, the slave ID of your device
must be set to 0x01.

– 1 start bit

– 8 data bits

– no parity bit

– 1 stop bit

– Baud rate 19,200

• When communicating with the host software, you can use the Free Serial Port Monitor
software to observe the traffic on the serial port to help you with debugging. The software is
installed at C:/Program Files/HHD Software/Free Serial Port Monitor. Create a new
session for your serial port (e.g. COM1) and use the request view as your visualizer. Now
you can see the traffic on both directions of the respective port.

• To avoid conflict in the serial port, always keep only the receiver or only the transmitter
enabled. It is recommended that the transmitter is activated only before sending a response
frame and it is deactivated again as soon as the response is successfully sent. For the rest
of the time, enable the receiver and disable the transmitter. To keep listening on the serial
port, you may want to use the receiver interrupt.

4/4


