Matlab Exercises

Lecture 4 – Bayesian tracking

1) Motion Model

Write a function that generates a 1D random motion of the following type:

- Brownian motion

- WNA

- Constant acceleration (a=9.81) + perturbation

Where w = Gauss($0,\sigma=1$), $\Delta t=0.1$ for all the situations.

For each case, plot a corresponding trajectory in time: p(t), with t=(0, Δt , 2 Δt ,..., N Δt), N=1000.

Afterwards, compute and plot the corresponding probabilistic motion models $P(s_t|s_{t-1})$ (in 1 or 2 dimensions, depending on the case)

2) Measurement model

Write the measurement model $\mathbf{z} = \mathbf{h}(\mathbf{s}, \mathbf{v})$ for the following case:

Suppose a point in space **p** with camera coordinates (x,y,z) is being projected on the screen (x_s,y_s) , and the measurement instrument is the camera (intrinsic parameters (f,r_x,r_y)) + an image processing algorithm that identifies the screen coordinates with a Gaussian uncertainty **v** = Gauss([0,0], Λ =I)

Hint: First identify the variables **s** and **z** (which and how many), then write down the function $\mathbf{z} = \mathbf{h}(\mathbf{s}, \mathbf{v})$.

3) Measurement model (stereo)

Consider the following case:

Suppose to have two cameras in a stereo configuration, and again one point in space **p**. The two camera frames c_1 , c_2 have fixed poses T_1 , T_2 with respect to a world coordinate system w, so that the point **p** transform in space as: ${}^{c_1}\mathbf{p} = T_1 {}^w \mathbf{p}$, and ${}^{c_2}\mathbf{p} = T_2 {}^w \mathbf{p}$ (homogeneous coordinates).

The point in space with coordinates ${}^{w}\mathbf{p} = (x,y,z)$ is being projected on the two screens $(x_{s1},y_{s1}), (x_{s2},y_{s2})$, and the cameras have the same intrinsic parameters (f,r_x,r_y) . The measurement instrument is: the 2 cameras + an image processing algorithm that identifies the screen coordinates with independent Gaussian errors $\mathbf{v}_1, \mathbf{v}_2$ Gauss([0,0], Λ =I).

Write down the measurement function $\mathbf{z} = \mathbf{h}(\mathbf{s}, \mathbf{v})$. (Hint: the same as before: first identify the variables, then write the function)

4) Likelihood function (edges)

Consider now a segment model: the state s is (x_1,y_1,α) the position and orientation of the segment (the length is 10).

 $\mathbf{q} = k\mathbf{q}_1(s) + (1-k)\mathbf{q}_2(s);$ k runs from 0 to 1

where $\mathbf{q}_1 = (x_1, y_1)$, $\mathbf{q}_2 = (x_1 + 10\cos(\alpha), y_1 + 10\sin(\alpha))$

The measurement is the image z = I.

The likelihood model is an "expected image" I_{exp} given the segment hypothesis s + an uncertainty model.

The expected image is an image that contains a segment exactly in the position **s**. The uncertainty is measured by the distance along the normal direction of the nearest edge, where every point along the segment **q** contribute independently to this error. So, we can model the uncertainty P(error) as a product of single uncertainties P(err_i), for every point, each one given by a Gaussian centered in the segment point. In the ideal case (I=I_{exp}) we have the maximum Likelihood P(I|s) (the nearest edges are exactly on the segment hypothesis).

With this model, given an image (example above) write a Matlab function that computes the Likelihood P(z|s):

- take a set of 11 equidistant points in the segment (k=0,0.1,0.2,...,1)
- take the normal vector to the segment $\mathbf{n} = (-\sin(\alpha), \cos(\alpha))$
- From a point $\mathbf{q}(k_i)$, search along the normal directions $\mathbf{q}(k_i)+j\mathbf{n}$ where j=0,-1,1,-2,2,...,-L,L (up to a length L=5 in the two directions)
- Stop the search if a black pixel is found (pixel coordinates \rightarrow the points $\mathbf{q}+\mathbf{jn}$ need to be rounded to integers), or if the maximum distance L is reached
- The result is the distance of the nearest edge, l_{ok} , or L
- Now weight the distance l_{ok} with a Gaussian: $P(l_{ok}) = Gauss(0,1)$
- Finally, multiply all the 11 Gaussians, to get the Likelihood $P(\mathbf{z}|\mathbf{s})$

5) Measurement model : 3D projection

Suppose we have

- a set of 3D points ^Bp₁,..., ^Bp_N (body frame referred),
- the 6 pose parameters $\mathbf{s} = (\alpha, \beta, \gamma, t_x, t_y, t_z)$ in Euler angles + translation vector.
- A set of measured features $\mathbf{z} = (q_1, \dots, q_N)$ on the image

We model the uncertainty as N independent Gaussians: $Gauss(err_i, 1)$ where the error is the re-projection error of feature i (distance between expected and measured point).

 \rightarrow P(**z**|**s**) is the product of N Gaussians.

Write a Matlab function that computes the Likelihood function $P(\mathbf{z}|\mathbf{s})$ for this case, with the 3 inputs specified above.