Matlab Exercises

Lecture 4 - Bayesian tracking

1) Motion Model

Write a function that generates a 1D random motion of the following type:

- Brownian motion
- WNA
- Constant acceleration (a=9.81) + perturbation

Where $\mathrm{w}=\operatorname{Gauss}(0, \sigma=1), \Delta \mathrm{t}=0.1$ for all the situations.
For each case, plot a corresponding trajectory in time: $p(t)$, with $t=(0, \Delta t, 2 \Delta t, \ldots, N \Delta t)$, $\mathrm{N}=1000$.

Afterwards, compute and plot the corresponding probabilistic motion models $\mathrm{P}\left(\mathbf{s}_{t} \mid \mathbf{s}_{t-1}\right)$ (in 1 or 2 dimensions, depending on the case)

2) Measurement model

Write the measurement model $\mathbf{z}=\mathrm{h}(\mathbf{s}, \mathbf{v})$ for the following case:
Suppose a point in space \mathbf{p} with camera coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) is being projected on the screen $\left(\mathrm{x}_{\mathrm{s}}, \mathrm{y}_{\mathrm{s}}\right)$, and the measurement instrument is the camera (intrinsic parameters $\left.\left(\mathrm{f}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}\right)\right)+$ an image processing algorithm that identifies the screen coordinates with a Gaussian uncertainty $\mathbf{v}=\operatorname{Gauss}([0,0], \Lambda=I)$

Hint: First identify the variables \mathbf{s} and \mathbf{z} (which and how many), then write down the function $\mathbf{z}=\mathrm{h}(\mathbf{s}, \mathbf{v})$.

3) Measurement model (stereo)

Consider the following case:

Suppose to have two cameras in a stereo configuration, and again one point in space \mathbf{p}. The two camera frames c_{1}, c_{2} have fixed poses T_{1}, T_{2} with respect to a world coordinate system w , so that the point \mathbf{p} transform in space as:
${ }^{\mathrm{c} 1} \mathbf{p}=\mathrm{T}_{1}{ }^{\mathrm{W}} \mathbf{p}$, and ${ }^{\mathrm{C} 2} \mathbf{p}=\mathrm{T}_{2}{ }^{\mathrm{w}} \mathbf{p}$ (homogeneous coordinates).
The point in space with coordinates ${ }^{\mathrm{w}} \mathbf{p}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is being projected on the two screens $\left(\mathrm{X}_{\mathrm{s} 1}, \mathrm{y}_{\mathrm{s} 1}\right),\left(\mathrm{X}_{\mathrm{s} 2}, \mathrm{y}_{\mathrm{s} 2}\right)$, and the cameras have the same intrinsic parameters ($\mathrm{f}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}$).
The measurement instrument is: the 2 cameras + an image processing algorithm that identifies the screen coordinates with independent Gaussian errors $\mathbf{v}_{1}, \mathbf{v}_{2}$ Gauss([0,0], $\Lambda=I)$.

Write down the measurement function $\mathbf{z}=\mathrm{h}(\mathbf{s}, \mathbf{v})$.
(Hint: the same as before: first identify the variables, then write the function)
4) Likelihood function (edges)

Consider now a segment model: the state s is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \alpha\right)$ the position and orientation of the segment (the length is 10).
$\mathbf{q}=\mathrm{k} \mathbf{q}_{1}(\mathrm{~s})+(1-\mathrm{k}) \mathbf{q}_{2}(\mathrm{~s}) ; \mathrm{k}$ runs from 0 to 1
where $\mathbf{q}_{1}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathbf{q}_{2}=\left(\mathrm{x}_{1}+10 \cos (\alpha), \mathrm{y}_{1}+10 \sin (\alpha)\right)$
The measurement is the image $\mathrm{z}=\mathrm{I}$.
The likelihood model is an "expected image" $\mathrm{I}_{\text {exp }}$ given the segment hypothesis $\mathbf{s}+$ an uncertainty model.
The expected image is an image that contains a segment exactly in the position \mathbf{s}. The uncertainty is measured by the distance along the normal direction of the nearest edge, where every point along the segment \mathbf{q} contribute independently to this error. So, we can model the uncertainty P (error) as a product of single uncertainties $\mathrm{P}\left(\mathrm{err}_{\mathrm{i}}\right)$, for every point, each one given by a Gaussian centered in the segment point. In the ideal case ($\mathrm{I}=\mathrm{I}_{\text {exp }}$) we have the maximum Likelihood $\mathrm{P}(\mathrm{I} \mid \mathrm{s})$ (the nearest edges are exactly on the segment hypothesis).

With this model, given an image (example above) write a Matlab function that computes the Likelihood $\mathrm{P}(\mathrm{z} \mid \mathrm{s})$:

- take a set of 11 equidistant points in the segment $(k=0,0.1,0.2, \ldots, 1)$
- take the normal vector to the segment $\mathbf{n}=(-\sin (\alpha), \cos (\alpha))$
- From a point $\mathbf{q}\left(\mathrm{k}_{\mathrm{i}}\right)$, search along the normal directions $\mathbf{q}\left(\mathrm{k}_{\mathrm{i}}\right)+\mathbf{j} \mathbf{n}$ where $\mathrm{j}=0,-1,1,-2,2, \ldots,-\mathrm{L}, \mathrm{L}$ (up to a length $\mathrm{L}=5$ in the two directions)
- Stop the search if a black pixel is found (pixel coordinates \rightarrow the points $\mathbf{q}+\mathbf{j n}$ need to be rounded to integers), or if the maximum distance L is reached
- The result is the distance of the nearest edge, l_{ok}, or L
- Now weight the distance l_{ok} with a Gaussian: $\mathrm{P}\left(\mathrm{l}_{\mathrm{ok}}\right)=\operatorname{Gauss}(0,1)$
- Finally, multiply all the 11 Gaussians, to get the Likelihood $\mathrm{P}(\mathbf{z} \mid \mathbf{s})$

5) Measurement model : 3D projection

Suppose we have

- a set of 3 D points ${ }^{\mathrm{B}} \mathrm{p}_{1}, \ldots,{ }^{\mathrm{B}} \mathrm{p}_{\mathrm{N}}$ (body frame referred),
- the 6 pose parameters $\mathbf{s}=\left(\alpha, \beta, \gamma, \mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, \mathrm{t}_{\mathrm{z}}\right)$ in Euler angles + translation vector.
- A set of measured features $\mathbf{z}=\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{N}}\right)$ on the image

We model the uncertainty as N independent Gaussians: Gauss($\mathrm{err}_{\mathrm{i}}, 1$) where the error is the re-projection error of feature i (distance between expected and measured point).
$\rightarrow \mathrm{P}(\mathbf{z} \mid \mathbf{s})$ is the product of N Gaussians.
Write a Matlab function that computes the Likelihood function $\mathrm{P}(\mathbf{z} \mid \mathbf{s})$ for this case, with the 3 inputs specified above.

