Matlab Exercises

Lecture 5 - Bayesian tracking with Kalman Filters and Condensation

1) Kalman Filter implementation

Write a Matlab function that implements the two steps of Kalman Filter (prediction+correction):
A. Prediction: Given a Gaussian motion model with covariance matrix Λ_{w}, and linear matrix A, compute the predicted (prior) state s^{-}and covariance matrix S^{-} Inputs: Matrix A , covariance Λ_{w}, old posterior mean $\mathrm{s}_{\mathrm{t}-1}$ and covariance $\mathrm{S}_{\mathrm{t}-1}$ Outputs: new Prior mean and covariances, ($\mathrm{s}^{-}, \mathrm{S}^{-}$)
B. Correction: Given a Gaussian measurement model with covariance matrix Λ_{v}, and linear matrix C, compute the corrected (posterior) state s_{t} and covariance matrix S_{t} Inputs: Matrix C, covariance Λ_{v}, prior mean s^{-}and covariance S^{-} Outputs: new posterior mean and covariances, ($\mathrm{s}_{\mathrm{t}}, \mathrm{S}_{\mathrm{t}}$)

2) Kalman Filter example

With the previously implemented functions, now test the Bayesian tracker (Kalman) for the following case:

Suppose to have a random point moving on a 2D plane, with a random WNA motion:
$\mathrm{s}_{\mathrm{t}}=A \mathrm{~s}_{\mathrm{t}-1}+\mathrm{w}_{\mathrm{t}}$
with $\Lambda_{\mathrm{w}}=\operatorname{diag}(0,0,1,1)$ (the noise is only in acceleration, so it goes into the velocity equations, not in the position!)

Suppose the initial state is also not known, and has a prior probability distribution $\mathrm{P}_{0}(\mathbf{s})$ $=$ Gauss($\mathbf{0}, 10$), that is: the initial state is all zero (2 D pose + velocity) both with uncertainty $\sigma^{2}=10$.

The measurement z is a position measurement: $\mathrm{z}=\mathrm{Cs}+\mathrm{v}$, where $\mathrm{C}=[\mathrm{I} 0]$ is a 4×2 matrix that takes only the upper part of \mathbf{s} (i.e. the pose), plus a 2 D measurement uncertainty v=Gauss(0,1).

With the given model, do the following parallel things:
A. Simulate the random process:

- Give a random initial state s_{0} according to P_{0} (use the Matlab function randn() to generate Gaussian random numbers)
- At time t, apply the motion model (1) by generating a random acceleration w_{t}, and
updating the real state s_{t}.
- At time t , simulate also the measurement $\mathrm{z}_{\mathrm{t}}=\mathrm{Cs}_{\mathrm{t}}+\mathrm{v}_{\mathrm{t}}$ by generating random 2D Gaussian number v.
B. Apply the Kalman Filter:
- At time 0 , use only the correction function, with the prior knowledge : $\mathrm{s}_{0^{-}}=[0,0], \mathrm{S}_{0^{-}}$ $=\operatorname{diag}(10,10,10,10)$
- At time t, use both prediction+correction functions developed in the previous exercise.
C. Compare the real state with the Kalman estimation (plot a graph of the state components in time: $\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t})$ and x, y velocity)
- At each time, compute the difference between the real state (simulated in A) and the estimated posterior state obtained in B (the pose only is sufficient)
- Plot the results on a 2D graph: the real trajectory $\mathbf{s}_{0}, \mathbf{s}_{1}, \ldots$ and the estimated one (posterior), again only the pose.

3) Extended Kalman Filter: track a flying ball (DLR system)

Suppose to have two cameras (a stereo system), looking a ball thrown across the room.
The setup is the one described in Exercise 3-Lecture 4, as below indicated

The ball $\mathbf{p}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ describes a parabolic trajectory during the flight, and its motion model can be described by a constant gravity acceleration towards the bottom ($-\mathbf{g}$) + a small random component w (e.g. air resistance in different points of the trajectory).
This motion (described in Lecture 4 - Slide 10) gives a probabilistic state model:
$P\left(\mathbf{s}_{\mathrm{t}} \mid \mathbf{s}_{\mathrm{t}-1}\right)=$ Gauss $\left(A \mathbf{s}_{\mathrm{t}-1}+\mathrm{C}, B \Lambda_{\mathrm{w}} B^{\mathrm{T}}\right)$.
with

$$
A=\left[\begin{array}{cc}
I & I \Delta t \\
0 & I
\end{array}\right] \quad B=\left[\begin{array}{c}
I \Delta t^{2} \\
I \Delta t
\end{array}\right] \quad C=\left[\begin{array}{c}
-\mathbf{g} I \Delta t^{2} \\
-\mathbf{g} I \Delta t
\end{array}\right]
$$

($A \mathbf{s}_{\mathrm{t}-1}+\mathrm{C}$) is the prediction of \mathbf{s}_{t} $\mathbf{g}=[09810]$ is the gravity acceleration (y direction)
$\Lambda_{\mathrm{w}}=\operatorname{diag}(0,0,0,1,1,1)$ is the covariance of motion noise (acceleration noise)
$\Delta t=0.1$ is the time sampling interval (10 frames $/ \mathrm{sec}$).
The state \mathbf{s} is a ($3+3$)-vector (position+velocity), and positions are measured in [mm]. The measurement \mathbf{z} (solution of the other exercise) is the collection of two positions located on the two camera images:
$\mathbf{z}=\left(\mathbf{p}_{\mathrm{s} 1}, \mathbf{p}_{\mathrm{s} 2}\right)$, which are 4 image coordinates ($\left.\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}\right)$.
The measurement model, for a given hypothesis \mathbf{p}, gives an expected measurement
$p_{s 1, \exp }\left(p_{c 1}\right)=\left(\frac{x_{c 1}}{z_{c 1}} f+\frac{r_{x}}{2}, \frac{y_{c 1}}{z_{c 1}} f+\frac{r_{y}}{2}\right) \quad p_{s 2, \exp }\left(p_{c 2}\right)=\left(\frac{x_{c 2}}{z_{c 2}} f+\frac{r_{x}}{2}, \frac{y_{c 2}}{z_{c 2}} f+\frac{r_{y}}{2}\right)$
$p_{c 1}=\left(x_{c 1}, y_{c 1}, z_{c 1}\right)=T_{1} p \quad p_{c 2}=\left(x_{c 2}, y_{c 2}, z_{c 2}\right)=T_{2} p$
where $\mathbf{p}_{\mathrm{c} 1}$ and $\mathbf{p}_{\mathrm{c} 2}$ are the coordinates of p in the two cameras (extrinsic transformations $\mathrm{T}_{1}, \mathrm{~T}_{2}$), and $\mathbf{p}_{\text {s1,exp }}, \mathbf{p}_{\mathrm{s} 2, \exp }$ are the projections on the screens (intrinsic transformation: $\mathrm{f}, \mathrm{r}_{\mathrm{x}}$, r_{y}).

The parameters for this example are the following ones:
T_{1} : only translation to the left $t_{x}=-100 \mathrm{~mm}$
T_{2} : only translation to the right $\mathrm{t}_{\mathrm{x}}=+100 \mathrm{~mm}$
$\mathrm{f}=1000, \mathrm{r}_{\mathrm{x}}=640$ pixels, $\mathrm{r}_{\mathrm{y}}=480$ pixels
$\Lambda_{\mathrm{V}}=$ covariance of measurement noise $=\mathrm{I}$ (1 pixel uncertainty)
The probabilistic measurement model is (nonlinear $\mathbf{z}_{\text {exp }}+$ Gaussian), therefore an Extended Kalman Filter can be used for Bayesian tracking.
A. Compute the Jacobian matrix $J=\frac{\partial \mathbf{z}_{\text {exp }}}{\partial \mathbf{s}}$ at given hypothesis \mathbf{s}, (write a Matlab function returning J , with input \mathbf{s})
B. Implement the Extended Kalman Filter (equations in Lecture 5-Slide 19).

NOTE: the motion model is already linear, so the Jacobian is just A.
C. Do a simulated experiment (real vs. estimated state), where the ball is thrown from the ground:

Real initial state $\mathbf{p}_{0}=[0,0,0]$ with initial velocity $\mathbf{v}_{0}=[0,10,10]$ (forward z, up y).
Initial state hypothesis: $\mathbf{p}_{0}=[0,0,0], \mathbf{v}_{0}=[0,0,0]$ (no knowledge).
Perturbation of acceleration during the flight = Gaussian random w, with covariance 1.

Run the EKF, and report the results as for the Kalman filter (trajectories).

4) Particle Filters implementation

Implement a basic Particle Filter, by defining the 3 functions :
A. Re-sample: given a N-particles set $\left(s^{i}, \pi^{i}\right)$, take a new particle set obtained by sampling N times between $(1, \ldots, \mathrm{~N})$ (with evtl. repetitions) with probabilities $\left(\pi^{1}, \ldots, \pi^{\mathrm{N}}\right)$.
B. Move: for every re-sampled particle, apply a motion model $\mathrm{s}_{\mathrm{t}}=\mathrm{g}\left(\mathrm{s}_{\mathrm{t}-1}, \mathrm{w}_{\mathrm{t}}\right)$, for example a WNA motion with given acceleration covariance. For this purpose, generate a random acceleration for every particle (hypothesis).
C. Re-weight: give new weights $\pi^{i}=P\left(z \mid s^{i}\right)$ to the moved particles, by using a Likelihood function $\mathrm{P}(\mathrm{z} \mid \mathrm{s})$ given by the user.

5) Particle Filters example

Apply the Particle Filters implementation to the same example used for Kalman Filter; here the Likelihood is Gaussian: $\mathrm{P}(\mathrm{z} \mid \mathrm{s})=\operatorname{Gauss}\left(\mathrm{Cs}, \Lambda_{\mathrm{v}}\right)$.

