
Matlab Exercises 
 

Lecture 5 – Bayesian tracking with Kalman Filters and Condensation 
 

1) Kalman Filter implementation 
 
    Write a Matlab function that implements the two steps of Kalman Filter  

(prediction+correction): 
 
A. Prediction: Given a Gaussian motion model with covariance matrix Λw, and linear 
matrix A, compute the predicted (prior) state s- and covariance matrix S- 
 
Inputs: Matrix A, covariance Λw, old posterior mean st-1 and covariance St-1 
Outputs: new Prior mean and covariances, (s-,S-) 
 
B. Correction: Given a Gaussian measurement model with covariance matrix Λv, and 
linear matrix C, compute the corrected (posterior) state st and covariance matrix St

 
 
Inputs: Matrix C, covariance Λv, prior mean s- and covariance S- 
Outputs: new posterior mean and covariances, (st,St) 
 

2) Kalman Filter example 
 

With the previously implemented functions, now test the Bayesian tracker (Kalman) 
for the following case: 
 
Suppose to have a random point moving on a 2D plane, with a random WNA motion: 
 
st = Ast-1 + wt 

 

with Λw = diag(0,0,1,1) (the noise is only in acceleration, so it goes into the velocity 
equations, not in the position!) 
 
Suppose the initial state is also not known, and has a prior probability distribution P0(s) 
= Gauss(0,10), that is: the initial state is all zero (2D pose+velocity) both with 
uncertainty σ2=10. 
 
The measurement z is a position measurement: z = Cs+v, where C = [I 0] is a 4x2 
matrix that takes only the upper part of s (i.e. the pose), plus a 2D measurement 
uncertainty v=Gauss(0,1). 
 
With the given model, do the following parallel things: 
 
A. Simulate the random process: 
 
- Give a random initial state s0 according to P0 (use the Matlab function randn() to 
generate Gaussian random numbers) 
- At time t, apply the motion model (1) by generating a random acceleration wt, and 



updating the real state st. 
- At time t, simulate also the measurement zt = Cst+vt by generating random 2D 
Gaussian number v. 
 
B. Apply the Kalman Filter: 
 
- At time 0, use only the correction function, with the prior knowledge : s0- = [0,0], S0- 
=diag(10,10,10,10) 
 
- At time t, use both prediction+correction functions developed in the previous 
exercise. 
 
C. Compare the real state with the Kalman estimation (plot a graph of the state 
components in time: x(t), y(t) and x,y velocity) 
 
- At each time, compute the difference between the real state (simulated in A) and the 
estimated posterior state obtained in B (the pose only is sufficient) 
 
- Plot the results on a 2D graph: the real trajectory s0,s1,… and the estimated one 
(posterior), again only the pose. 
 

3) Extended Kalman Filter: track a flying ball (DLR system) 
 
Suppose to have two cameras (a stereo system), looking a ball thrown across the room. 
 
The setup is the one described in Exercise 3-Lecture 4, as below indicated 

 
The ball p=(x,y,z) describes a parabolic trajectory during the flight, and its motion model 
can be described by a constant gravity acceleration towards the bottom (-g) + a small 
random component w (e.g. air resistance in different points of the trajectory). 
This motion (described in Lecture 4 - Slide 10) gives a probabilistic state model: 
P(st|st-1) = Gauss (A st-1+C, BΛwBT).  
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(A st-1+C) is the prediction of st 
g = [0 981 0] is the gravity acceleration (y direction) 
Λw = diag(0,0,0,1,1,1) is the covariance of motion noise (acceleration noise) 
Δt = 0.1 is the time sampling interval (10 frames/sec). 
 
The state s is a (3+3)-vector (position+velocity), and positions are measured in [mm]. 
The measurement z (solution of the other exercise) is the collection of two positions 
located on the two camera images: 
z = (ps1, ps2), which are 4 image coordinates (x1,y1,x2,y2). 
 
The measurement model, for a given hypothesis p, gives an expected measurement 
 
 
 
 
 
where pc1 and pc2 are the coordinates of p in the two cameras (extrinsic transformations 
T1, T2), and ps1,exp, ps2,exp are the projections on the screens (intrinsic transformation: f, rx, 
ry). 
 
The parameters for this example are the following ones: 
 
T1: only translation to the left tx = -100mm 
T2: only translation to the right tx = +100mm 
f = 1000, rx = 640 pixels, ry = 480 pixels 
Λv = covariance of measurement noise = I (1 pixel uncertainty) 
 
The probabilistic measurement model is (nonlinear zexp+Gaussian), therefore an Extended 
Kalman Filter can be used for Bayesian tracking. 
 
A. Compute the Jacobian matrix J =            at given hypothesis s, (write a Matlab 
function returning J, with input s) 
 
B. Implement the Extended Kalman Filter (equations in Lecture 5-Slide 19). 
NOTE: the motion model is already linear, so the Jacobian is just A. 
 
C. Do a simulated experiment (real vs. estimated state), where the ball is thrown from the 
ground: 
 
Real initial state p0 = [0,0,0] with initial velocity v0 = [0, 10, 10] (forward z, up y). 
Initial state hypothesis: p0 = [0,0,0], v0 = [0,0,0] (no knowledge). 
Perturbation of acceleration during the flight = Gaussian random w, with covariance 1. 
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Run the EKF, and report the results as for the Kalman filter (trajectories). 
 
4) Particle Filters implementation 
 
    Implement a basic Particle Filter, by defining the 3 functions : 
 
    A. Re-sample: given a N-particles set (si,πi), take a new particle set obtained by  
         sampling N times between (1,…,N) (with evtl. repetitions) with        
         probabilities (π1,…,πN). 
 
    B. Move: for every re-sampled particle, apply a motion model st = g(st-1,wt), for 
         example a WNA motion with given acceleration covariance. For this purpose, 
         generate a random acceleration for every particle (hypothesis). 
 
    C. Re-weight: give new weights πi = P(z|si) to the moved particles, by using a  
         Likelihood function P(z|s) given by the user. 
 
5) Particle Filters example 
 
     Apply the Particle Filters implementation to the same example used for Kalman Filter;  
     here the Likelihood is Gaussian: P(z|s) = Gauss(Cs,Λv). 
 


