
Lab Course “Microcontroller Programming” Exercise 8

Exercise 8: Liquid Crystal Display Modules

Overview

During the past exercises, we have acquired and processed various sensor values. However, our only
output channels so far were LEDs and the debug console. LEDs are very limited when it comes
to visualization of information and the debug console requires the presence of a host PC. This is
why we will now focus on visualization of information using liquid crystal displays (LCDs). LCDs
are available in many different forms and shapes (compare figure 1) and can be used to display
text and/or graphics. In this lab course, we will however focus on a text-based LCD.

(a) (b) (c)

Figure 1: Different LC display modules

Some LCDs have an integrated controller IC. Those devices are usually called LCD modules. An
LCD module offers a communication interface which can be used to directly program the LCD
using a digital protocol and is similar to the way we communicated with the digital temperature
sensor from an architectural point of view (i.e., the LCD has a “local intelligence”). Most LCDs
are also capable of being backlit. This improves readability.

In this exercise, we will use the text-based LCD module EA DOGM163L-A, which allows to display
3 rows with 16 characters each (figure 1 (a)). It incorporates an ST7036 LCD controller/driver
which supports the character set that shown in figure 2. Note that for alphanumeric characters,
the character code corresponds to the ASCII character code, meaning if you want to send a capital
’A’ to the display, instead of sending the number 0b01000001 (which corresponds to 65), you can
simply write ’A’. The first eight characters (address 0x00 to 0x07) are programmable.

The EA DOG-M LCD Module Family

The DOG-M LCD Module Family features an integrated ST7036 display controller. The file EA-

DOG-M.pdf on the lab course file server and the website describes the features and technical details
of the controller and the display itself. The ST7036 controller provides four different communication
protocols for driving the display of which three are accessible on the EA DOGM display family:

• 8 bit mode: In addition to common control lines, eight data lines are used for communication.

• 4 bit mode: In addition to common control lines, four data lines are used for communication.
This means that a single data byte has to be split into two 4 bit “nibbles”.

• SPI mode: In addition to common control lines, two data lines are used for communication.
The two lines implement the SPI protocol (Serial Peripheral Interface), a widely used inter-
chip communication protocol in microcontroller applications.

1/4

Lab Course “Microcontroller Programming” Exercise 8

Figure 2: Character set of the EA DOGM LCD module family; characters 0x00 to 0x07 can be
freely programmed by the user

2/4

Lab Course “Microcontroller Programming” Exercise 8

For ease of use, we use a special carrier board for the LCD module that allows to configure it for
different usage scenarios, including 8 bit mode, 4 bit mode and SPI mode. The configuration is
applied by setting various jumpers. Figure 3 shows the valid configurations.

The different columns in the table at the bottom describe three different usage scenarios per jumper
on the J1 connector. The first column shows the configuration when the jumper is left open (to
prevent the jumper from being lost, please attach it to the upper contact on connector J1 in this
case). The second column shows the configuration when the microcontroller is used to set the
respective pin to high or low using the attached cable. The third column shows the configuration
when the jumper is used to preset the value for the respective connector.

J2 and J3 allow configuring the display for 5V or 3.3V applications. Since ATmega168 runs with
5 V, the jumper has to be set on J2. Finally, the PWR connector is for powering the LCD module.
Please respect the correct polarity!

J1
PWR

J1

PWR

J2 J3

/RES RS CS R E D0 D1 D2 D3 D4 D5 D6 D7

++++++++++–++

5V mode

3.3V mode

Power connector

/RES Control reset Normal operation

RS Control Cmd/Data

Hold in reset

–
1

–
1

CS Control CS Chip selectedChip not selected

R Control Read/Write SPI mode–
1

E Control Enable SPI mode–
1

D0 Control D0 SPI / 4 Bit mode–
1

D1 Control D1 SPI / 4 Bit mode–
1

D2 Control D2 SPI / 4 Bit mode–
1

D3 Control D3 SPI / 4 Bit mode–
1

D4 Control D4 SPI mode–
1

D5 Control D5 SPI mode–
1

D6 Control D6 –
1

–
1

D7 Control D7 –
1

–
1

1
 Do not use

+ –

J2 J3

Figure 3: Valid jumper configurations on the LCD module carrier board

3/4

Lab Course “Microcontroller Programming” Exercise 8

Serial Peripheral Interface

Exercise 8.1

a) Configure the LCD carrier board for SPI mode. Connect the board to STK500 using the
correct pins for SPI communication and set up the jumpers.

b) Implement a routine spi_init() that initializes the SPI interface using the following con-
figuration: Master mode, most significant bit first, data mode 0, data rate 2 Mbit/s.

LCD Driver Implementation

Exercise 8.2

a) Implement a routine lcd_init() that initializes the display over SPI. Include util/delay.h
to be able to use the _delay_ms() and _delay_us() functions. Make sure that the CPU
frequency is set up correctly in the project configuration options.

b) Write a routine int lcd_putchar(char c, FILE* unused) and a test program to write a
string to the display. In addition to the stdout redirection to the debug console, you might
want to assign the stderr channel to print to the LCD as follows:

/∗ F i l e handle f o r ” e r r o r ” output on LCD ∗/
stat ic FILE l c d s t d e r r =

FDEV SETUP STREAM(lcd putchar , 0 , FDEV SETUP WRITE) ;
s t d e r r = &l c d s t d e r r ;

Then you can use the functionality as follows:

f p r i n t f (s tde r r , ”He l lo world ! ”) ; /∗ Print to d i sp l ay ∗/

LCD Applications

Exercise 8.3

a) Use one of the applications from the previous sessions to visualize data in the LCD (e.g., the
current DCF77 time or the current temperature). Document your solution appropriately.

b) Read the document st7036.pdf to learn how to program custom characters and use them
to prettify your output. For the DCF77 time example, you might want to switch between the
two “radio controlled” icons shown in figure 4 (a) as soon as the time is synchronized. For the
temperature sensor application, you might want to add a custom “degree” sign (aligned to
the right in contrast to character 0b11011111) to be able to display the text “◦C” (compare
figure 4 (b); you can use a normal “C” as second character in this case).

(a) (b)

Figure 4: Custom LCD characters

4/4

