Industrial Embedded Systems - Design for Harsh Environment -

Dr. Alexander Walsch alexander.walsch@ge.com

WS 2011/12

Technical University Munich (TUM)

Introduction - Our Backgrounds

• 0&G

- Energy
- Sensor systems
- Aviation
- Automation

Source: GE O&G

Outline

Part I: Terms and Definitions

- Small footprint systems
- Design for harsh environments
- Real-time systems
- High-integrity systems
- Part II: Development
- Project Acquisition & Planning
- Requirements Analysis functional and nonfunctional
- Hardware and Software Architecture
- Special Components (e.g. System on Chips, reconfigurable ICs, operating systems)
- Detailed Design
- Realization

Part III: Verification & Validation

- Tools
- White box and black box testing
- Module, integration, and system testing
- System validation
- Operation and maintenance

Part I: Terms and Definitions

Small Footprint Systems Design for Harsh Environment

Systems

System Modeling

Researc

- Embedded systems are part of more and more complex electrical systems – team members with very different background.
- Need for Modeling at system level (requirements, interoperability, team communication).
- SysML, UML widely used as notation but disadvantages: timing, no formality, non-functional requirements hard to describe
- Hot topics: Model-based design, automated design flows

Small Footprint System

(size, power, memory, CPU)

Limited resource

 A hidden technology (no-one cares if it works everyone screams if it fails)

Source: GE O&G

System Classification

- Control systems open loop/closed loop
- Monitoring systems monitoring and diagnostics
- Protection systems safety functions
- Combination of the above

Control Systems

Control systems – open loop and closed loop open loop: solenoid valve closed loop: BLDC motor

+V

-V

Driver

Sensors * Speed

* Shaft Position * Rotation Direction torque

Motor

Current Sensor

Μ

Monitoring Systems

Monitoring systems – monitoring and diagnostics

- Temperature
- Humidity
- Pressure
- Currents
- Voltages

Monitoring systems are used to collect system data (on-board, off-board) for online or offline diagnostics (RM&D, CBM). System data might be stored for later analysis in case of remote systems ("flight recorder").

Protection Systems

Protection systems – safety functions

Source: VW

Protection systems have the sole purpose to put the system into a safe state upon fault detection. The safe state needs to be maintained until a clearance operation has been carried out (e.g. safety chains).

System Requirements

- Functionality what is the system doing?
- Timing timely execution, scalability?
- Cost material cost (HW/SW partitioning)?
- How much power is consumed?
- Hardware size form factor?
- Software size?
- Are there regulations?
- Where is it used extreme conditions?
- Quality/Standards?

System Requirements -Putting it all together

Material Cost

- Hardware cost:
 - Bill of material (BOM)
 - Board manufacturing, population
- Software cost
 - Royalties (e.g. for an OS)

Model for power consumption

- Logic consumption DUT (analog, digital)
 - Power dissipated by electronics (static, dynamic).
- I/O consumption (discrete I/O, data transmission)
 - Power to drive external loads (DUT and remote power consumption, DUT and remote power dissipation).
 - Power that is sunk (DUT power consumption and dissipation).

- Requirement on hardware components.
 - Functionality must be mapped on available space.
 - Especially conduction cooled systems put strict requirements on component size and its physical integration.
- Standardized form factors available highly depends on industry

SW Footprint

- Parameter memory (non volatile)
 - EEPROM byte wise read and write holds e.g. configuration parameters, run-time parameters (hour meter, status)
- Program memory (non volatile)
 - Flash (NOR)– word wise read, write requires a block erase - holds executable (XIP – execute in place)
- Data memory (volatile)
 - RAM (SRAM) word wise read and write addressable holds data and stack

Important domain specific standards:

- Automotive: ISO CD 26262 Automotive Safety Integrity Level (ASIL)
- Aviation: DO178/DO254 Design Assurance Level (DAL)
- Healthcare: IEC 62304
- Rail: EN 50126/50128/50129 Safety Integrity Level (SIL)
- General/Industrial: IEC61508 Safety Integrity Level (SIL)

Environmental

- Important environmental constraints:
 - Temperature (e.g. -40 to +85 °C)
 - Electromagnetic compatibility EMC (conductive, inductive, capacitive, radiative coupling)
 - Shock (e.g. 2000 g)
 - Vibration (displacement, velocity, acceleration)
 - More exotic once (rad hard etc.)

CPU

- Often the CPU is not a free choice:
 - Prior usage
 - Tools already available
 - Long term availability or scalability (CPU roadmap)
 - Communication interfaces in package
 - Multiple suppliers (e.g. IP cores like ARM/MIPS)
 - Legacy code

Communication

Communication depends on:

 Integration, a requirement which results from system level requirements

Source: Siemens Simatic Net Profibus Network Manual

System Components

Components – Analog Input

Nyquist frequency $f_N = 0.5 \times f_s$; f_N is the highest frequency component that must be present at the ADC input \rightarrow proper reconstruction

Components – Analog Output

Components – Digital Input/Output

Protective circuits can contain both transient, over/undervoltage protection and galvanic isolation.

Components – Processing

- Example: dsPIC33FJXXXGPX06
- Digital Signal Controller (DSC)
- Modified Harvard architecture
- Flash and SRAM
- On-die peripherals

Source: Microchip DS70286C

Example System - PMU

- PMU: Pressure Measurement Unit
- Will be used as an example virtual technology development
- Measures pressure, temperature compensation, inexpensive, CAN interface

- COTS single board small form factor
- I/O interfaces
- Networking
- Limited memory
- Vendor specific design tools

PMU - Requirements

- Material cost < \$50
- Power consumption < 2 W</p>
- Physical size 50 x 25 x 10 mm
- Standard/Certification: IEC61508
- Operating temperature -40 °C to +85 °C
- PIC uC
- Communication: temperature sensor, pressure sensor, CAN backend

PMU – Requirements on Software

- Timely monitoring of pressure and temperature soft real-time
- Sense faults with a very high confidence (external, board level, processor) – hard real-time

Outlook

- Real-time systems
- High integrity systems