
Industrial Embedded Systems

- Design for Harsh Environment -

Dr. Alexander Walsch

alexander.walsch@ge.com

WS 2011/12

Technical University Munich (TUM)

Slide1A. Walsch, IN2244

Agenda

Today:

Requirements Analysis

Quality Metrics

Recap:

− Small footprint system (mechanical, electrical, and

information view)

− Harsh environment (temperature, shock, vibration, ...)

Slide2A. Walsch, IN2244

Motivation

Slide3A. Walsch, IN2244

Source: http://www.bowdoin.edu/~disrael/what-the-customer-really-needed/what-the-customer-

really-needed.jpg

V-Model

Slide4A. Walsch, IN2244

The Big Picture

The requirements analysis phase of
system development is about
getting all information together and
about showing scope, usage, and
constraints of the proposed system.
Wrong (e.g. missing, contradicting)
information will make us fail at a
very cost intensive level.

Slide5A. Walsch, IN2244

V&V

Verification:
Test against a specification (owned by technology). This
is usually an internal activity without customer
involvement. Its intent is to show that the specification
as compiled by technology has been implemented
correctly – Have we done it right?

Validation:
Test against a requirement definition (owned by the
customer). This is usually an external activity with
customer involvement (pilot). Its intent is to show that
the system meets the customer’s expectations – Have
we done the right thing?

Slide6A. Walsch, IN2244

Requirements

Requirement:
Features of a system or system function used to fulfill
the system purpose.

Requirements Analysis:

Slide7A. Walsch, IN2244

Functional Requirements

Functional Requirement:

Core system function used to fulfill the system purpose –

What must the system do?

Includes

� Inputs and associated outputs (valid inputs, invalid inputs,

warnings, errors)

� Formats for I/O

� User Interfaces and different roles (technician, customer, …)

� States of the system (operational, error)

� Failure modes

Slide8A. Walsch, IN2244

Functional Requirements Capture

Look at system as black-box

� Look at what it interacts with

Other systems, devices, users (identified as user-roles)

UML: use case diagram

� Look at how it interacts

Data flow, control

UML: sequence diagram

� Traditional, basic form: textual, according to some template or

standard form (text document, unique ID)

� Model-based form: use case and sequence diagrams (UML) +

textual description

Slide9A. Walsch, IN2244

Examples

“The system shall connect to a pressure sensor with 4 –

20 mA interface.”

“The system shall not supply power to the pressure

sensor.”

“The system shall indicate a violation of input range by

an “out of range” error message according to [std. xyz.] if

the current input is less than 5 mA or more than 19 mA.”

“All pressure readings shall be communicated via the

CAN bus.”

“All pressure readings shall be communicated according

to [std. xyz]”
Slide10A. Walsch, IN2244

MBD Example

Slide11A. Walsch, IN2244

Pressure
Sensor

Temperature
Sensor

Can Bus

Technician

User

Measure
Pressure

Configure

Signal Health

� Functional View

� Actors = external users or devices

� Use cases = functions

:HealthUser

Request health

information
request

Acknowledge health

information
information

MBD Example Ctd.

Slide12A. Walsch, IN2244

«Interface»

Pressure

«Interface»

Temperature

«Interface»

CAN

«Interface»

Config

«Interface»

Health

Control

Can Bus

Pressure
Sensor

Temperature
Sensor

Technician

User

Init

Operate

Halt

/

/

/

Non-Functional Requirements

Non-Functional Requirement:

Constraints on implementation – How should the system

be?

Includes

� Global constraints that influence system as a whole

(shock, vibration, temperature,…)

� Performance (response time, repeatability, utilization,

accuracy)

� The “-ilities” (reliability, availability, safety, security,

maintainability, testability, …)

� Other quality (ease of configuration and installation,

…) Slide13A. Walsch, IN2244

Non-Functional Requirements Capture

Slide14A. Walsch, IN2244

Look at system as black-box

� Look at real-time aspects

e.g. response time

� Data quality

accuracy, precision, sampling rate

� Refine functional requirements – make more specific and

testable

� Look at comparable systems (prior art, competitors)

� Look at new laws or regulations (e.g. disasters – Fukushima,

Deepwater Horizon)

Examples

Slide15A. Walsch, IN2244

“Pressure samples shall be taken every 1s.”

“The response time for pressure measurement shall be

less than 10ms.”

“Reliability: 1000 FIT”

“The measurement shall have an accuracy of 2%.”

“The measurement shall be repeatable with a precision

not less than 0.5%.”

“The system shall meet the safety criteria according to

[std.].”

Requirements Analysis

How do we get all these requirements?

� Involves technical staff working with customers or

users to find out about the application domain (field

technicians), the services that the system should

provide and the system’s operational constraints.

� May involve end-users, our customers, managers,

engineers involved in prior development and/or

maintenance, domain experts, certification bodies,

etc. These are called stakeholders.

Slide16A. Walsch, IN2244

Challenges in Requirements Analysis

� Stakeholders don’t know what they really want.

� Stakeholders express requirements in their own

terminology – maybe not precise.

� Different stakeholders may have conflicting

requirements.

� Political factors may influence the system

requirements (e.g. disasters).

� The requirements change during the analysis

process.

� Some requirements might be common sense and not

explicitly mentioned.
Slide17A. Walsch, IN2244

Feasibility Study

Feasibility Study:

A feasibility study decides whether or not the proposed

system is worthwhile. Usually a study on the most risky

elements of a new development.

A short focused study that checks

� If the proposed system can be engineered using current

technology and within budget (technical and economic

feasibility);

� If the proposed system can be integrated with other systems

that are used (interoperability).

� If the proposed system can meet the requirements (especially

non-functional like reliability, e.g.)
Slide18A. Walsch, IN2244

A final Look at Requirements

� Validity. Does the system provide the functions which the
customer expects?

� Consistency. Are there any requirements conflicts?

� Completeness. Are all functions required by the customer
included? Are more functions included?

� Realism. Can the requirements be implemented given
available budget and technology -> feasibility?

� Verifiability. Can the requirements be tested?

Slide19A. Walsch, IN2244

Requirements Analysis Summary

Typical document layout:

Requirement Specification

1. Objective

2. System Description (boundary,

interfaces, major components)

3. Functional Requirements

4. Non-functional Requirements

5. Performance

6. Mechanical Constraints

7. Environmental Constraints

8. RAMS

All requirements get numbers which allow

forward and backwards tracing.

Slide20A. Walsch, IN2244

Traceability

Traceability:

Traceability is concerned with the relationships between

requirements, their sources and their design implications.

Traceability can be a requirement itself.

� Source traceability

� Links from requirements to stakeholders who proposed these

requirements;

� Requirements traceability

� Links between dependent requirements;

� Design traceability

� Links from the requirements to the design;

Slide21A. Walsch, IN2244

RAMS

Slide22A. Walsch, IN2244

In practice there are four non-
functional requirements that get a
special focus – reliability,
availability, maintainability, and
safety (RAMS). It is important to
understand their definition and
metrics to furnish requirements
specifications. They do influence
the architecture.

Failure

Failure:
Failure is defined as deviation from the specification.
The designed function can not be executed anymore as
specified.

Failure Mode:
A component (or system) can fail in various ways. In our
analysis we pick the failure mode that leads to the
failure we investigate.

Failure Rate:
Each failure mode comes with a certain failure rate
(failures/time). We pick the failure rate of the failure
mode that leads to the failure under investigation.

Slide23A. Walsch, IN2244

Example

Function:
Pressure is measured and the reading transmitted using
a 4 – 20 mA interface.

The following failure modes and rates are known. What
failure modes do influence our design?

Slide24A. Walsch, IN2244

Failure Mode Failure rate (10-6h-1)

4 – 20 mA current signal stuck fail 5

4 – 20 mA current signal low fail 3

Sensor head fail 4

0 – 10 V voltage signal stuck fail 6

Other 3

Failure Rate

Failure Rate:
A time dependent measure of #failures/time. Commonly
only random failures are considered. The symbol for
failure rate is � � .

Slide25A. Walsch, IN2244

Source:
Smith: Reliability, Maintainability and Risk

Reliability

Reliability:

Reliability of a system is defined to be the probability

that a given system will perform a required function

under specified conditions for a specified period of time.

“probability of non-failure (survival) in a given period”

Reliability of a system is modeled as:

R(t) =
�� if the failure rate � is constant.

λ is often expressed as failures per 106 hours or FIT (failures per

109 hours).

If “λt” small then R(t) = 1 - λt

Slide26A. Walsch, IN2244

MTBF

MTBF:

Mean Time Between Failures (MTBF): is the average

time a system will run between failures. The MTBF is

usually expressed in hours.

Θ = � � � ���
� = �
���

� dt = λ
��

, λ = const.

The observed MTBF:

Θ� = T/k; T = total time, k = failed items (total N)

Slide27A. Walsch, IN2244

MDT and MTTR

MDT:

Mean Down Time (MDT) is the average time a system is

in a failed state and can not execute its function. MTBF

can be understood as the mean up time.

MTTR:

Mean Time to Repair (MTTR) is overlapping with MDT.

Used for maintenance calculations. It can be visualized

as the average time it takes (a technician) to repair the

system such that it is up again.

Slide28A. Walsch, IN2244

Availability

Slide29A. Walsch, IN2244

Availability:

Availability is the probability that a system is functioning

at any time during its scheduled working period.

� = �� ���
��� ��� = �� ���

�� ��� !�"# ��� =
$%&'

$%&' $(%
similar:

calculation of unavailability (PFD)

Relation between Reliability and MTBF

R(t) =
�� =
�/*
t = Θ -> R =
�� - 0.37
t = 2Θ -> R =
�2 - 0.14

t

Reliability

R(t)

1.0

0

0.8

0.6

0.4

0.2

1 MTBF 2 MTBF

0.36

Slide30A. Walsch, IN2244

Example

A system (S) has 10 components (C) with a failure rate of 5
per 106 hours each. Calculate λ and MTBF.

λC = 5 * 10-6 failures/hour
λS = 10 * 5 * 10-6 failures/hour = 5 * 10-5 failures/hour

Θ = �
�5

= 20000h

Slide31A. Walsch, IN2244

Example

Slide32A. Walsch, IN2244

λ = 10-6 failures/hour ; MDT = 10h

Unavailability = ?

�̅ = !�"# ���
��� ��� = $(%

$%&' $(% - � ∗ 89:
-> �̅ = 10-5

Reliability in Product Descriptions

Slide33A. Walsch, IN2244

Source:
Rosemount

Literature

Slide34A. Walsch, IN2244

IEC 61709:
Parts count method.

IEC 62380:
Parts stress method.

MIL-HDB-217:
Parts stress method.

The Bernoulli Experiment

Definition:

We have a total number of n identical systems. For each

system only two states are defined: “functioning” or “has

failed”. Both states have a certain probability assigned.

The Bernoulli experiment gives us the probability of

finding k (out of n) systems in a functioning state.

We state:

P(functioning) = 1 – P (failed);

P(functioning) = p; P (failed) = q

Slide35A. Walsch, IN2244

The Bernoulli Experiment Ctd.

The probability of k functioning systems out of n total is

P(n,p,k) =
;
< => ?#�>

Now we need the probability that a system is functioning

-> reliability (“probability of survival”)

P(n,p,k) =
;
< �> (1 @ �)#�> is the probability of having

k functioning systems in an assembly of n total.

Slide36A. Walsch, IN2244

Series Reliability Calculation

Slide37A. Walsch, IN2244

R R R R R

All n systems above need to work such that the series
assembly is functioning.

The probability of having n functioning systems out of n total
is

P(n,n,k) =
;
; �# (1 @ �)#�# = �#

Parallel Reliability Calculation

- Full Active Redundancy -

Slide38A. Walsch, IN2244

At least 1 system needs to be
functioning in full active redundancy
configuration.

Therefore, the assembly is working if n
or (n-1) or ... or 1 component work.

R

R

R

n=2: 2 or 1 component must be functioning.

RS =
2
2 �2 (1 @ �)� +

2
1 �� (1 @ �)� = 2� @ �2

n=n:

RS =
;
; �# (1 @ �)� + … +

;
1 �(1 @ �)#= 1 @ (1 @ �)#

Parallel Reliability Calculation

- Partial Active Redundancy -

Slide39A. Walsch, IN2244

At least m systems need to be
functioning in partial active redundancy
configuration.

Therefore, the assembly is working if n
or (n-1) or ... or m systems work.

R

R

R

n=3: m = 2 (2oo3)

RS =
3
3 �A (1 @ �)�B 3

2 �2 (1 @ �)�= 3�2 @ 2�A

Parallel Reliability Calculation

- Partial Active Redundancy – Ctd.

Slide40A. Walsch, IN2244

At least m systems need to be
functioning in partial active redundancy
configuration.

Therefore, the system is working if n or
(n-1) or ... or m components work.

R

R

R

n=N, m = M: (MooN)

RS =
;
; �# (1 @ �)� + … +

;
C ��(1 @ �)#��

Hybrid Configurations

R R R

R

R

R

41A. Walsch, IN2244

�D
R

R

R

�D �E

Example

�
�
�

42A. Walsch, IN2244

Calculate the MTBF of this system made of identical
components. � = FG;H�.
�5 = �I ∗ (2�I - �I2) = 2
�� @
�A�

Θ = J (2
�� @
�A��

�
)�� = … = 2

3�

The Majority Voter – 2oo3 - TMR

R

R

R

Voting

Reliability: 3�2 @ 2�A , Voter very reliable – not

considered

43A. Walsch, IN2244

Example – Turbine Controller

Slide44A. Walsch, IN2244

Source:
GE Energy

Reliability and Availability Summary

Slide45A. Walsch, IN2244

� Important part of requirements analysis

� Allows to play with configurations of our systems –

provide metrics (MTBF)

� Will also be used to play with different architecture

choices later since we apply it at the architecture level.

� If our system is part of a plant (assembly line)

availability calculations help to determine plant

downtime (MDT).

