Industrial Embedded Systems
- Design for Harsh Environment -

Dr. Alexander Walsch alexander.walsch@ge.com

WS 2011/12 Technical University Munich (TUM)

Today:

Requirements Specification for PMU

Recap:

- Safety (risk analysis, safety function, safety integrity)

PMU – Next Steps

- Refine existing UML diagrams completeness, team approach
- Add global non-functional requirements
- Refine system in terms of reliability and safety (use methods like FMEA and FTA)
- Write a specification document which will conclude the requirements phase
- We will return at a later stage and see how test cases can be developed

PMU – Functions Overview

Pressure Sensor

- Use case diagram
- Behaviorally related sequences performed by an actor.
- Actors = external users, Temperature Sensor systems, components
- system border
- View on the ideal world, deal with deviations from expected behavior later

- Pre-conditions and post-conditions are the states of the system before and after successful execution of the use case. These can often be cross-referenced to the states in the system modes diagram.
- Non-functional requirements (see lecture #2)
- Alternate courses are a selection of alternative courses (fault conditions) and scenarios can be listed.
- Example screen layouts are illustrations of screens associated with the use case, including sample user data where available.
- Ties exceptions (faults, errors) and non-functional requirements to a use case
- Sequence diagrams can be added however, they do not add new information at this stage.
 A. Walsch, IN2244
 Slide5

• Measure Pressure:

	A request is received from the CAN bus. A temperature		
Description	compensated pressure reading is sent as response.		
Pre-condition	The system must be in 'Running' state.		
Post-condition	The system will be in 'Running' state.		
	Pressure is read with a maximum cycle time of 100ms,		
Non-functional Requirements	output accuracy is 2%, precision is 0.5%.		
	Pressure outputs are in a range equivalent 0 - 16 bar. The		
	valid temperature ranges from -45°C to +85°C. If either range		
Alternate Courses	is violated it must be signalled via CAN.		

Configure System:

•

	A request for configuration is communicated to the system			
	The requester is a technician which is equivalent to			
	someone with restricted access rights. During configuration			
	the system is not accepting CAN requests. The system			
Description	reports valid configuration.			
Pre-condition	The system must be in 'Active' state.			
Post-condition	The system will be in 'Active' state.			
	Access should be protected by a password. The			
Non-functional Requirements	configuration data shall be stored in non-volatile memory.			
	All configuration options are checked for validity. If the			
	configuration data are not valid the system signals the 'Error'			
Alternate Courses	state.			

Display Health:

	Health of the system is requested by a user. The system			
	displays health using LEDs. Three LEDs are used. Green fo			
	'Running', Red for 'Error', and yellow for all other system			
	states. The LEDs are visible from outside the system such			
Description	that the user gets visual feedback.			
Pre-condition	The system must be in 'Active' state.			
Post-condition	NA			
Non-functional Requirements	NA			
Alternate Courses	NA			

• Start System:

	Power is applied and the system starts. The system			
	performs a self test. Upon successful completion the system			
Description	automatically enters the 'Running' state.			
Pre-condition	The system must be in 'Inactive' state			
Post-condition	The system will be in 'Active' state			
Non-functional Requirements	The system shall be in 'Running' state in less than 10s.			
	If the system detetcts a fault the 'Error' state shall be			
	entered. In this case the system shall report the error state			
Alternate Courses	in less than 10s.			

Stop System:

Description	Power is removed.		
Pre-condition	The system must be in 'Active' state.		
Post-condition	The system will be in 'Inactive'state.		
Non-functional Requirements	NA		
Alternate Courses	NA		

Summary:

- . Identify the actors: external to the system
- Identify the use cases:

"A behaviorally related sequence of interactions performed by an actor in a dialogue with the system to provide some measurable value to the actor"

- Create a use case diagram
- Write up use case descriptions

- System Usage Modeling Checklist
 - . Scale:
 - A manageable number of use cases should be selected 10 to 20
 - . Granularity
 - Use cases should be not too high level (e.g. run system) or too low level (too many details)
 - Relevance
 - Use cases should display normal actor-system interaction. Fault conditions should be part of more detailed analysis (e.g. in alternate courses)
 - . Partitioning

Use cases describe end-to-end functionality and not functions of (to be developed sub-systems)

- . Applicability
 - Use case diagrams describe the response to external stimuli. Therefore, they are suited to describe real-time systems on a high level.

- System Usage Diagram does not tell us:
 - Internal Structure:
 - What are the components of the systems that interact with the actors (mechanical, electrical, software), is there a component that controls activity?
 - Interface Description:
 - Interfaces are modeled as "classes". A class name can already be used as a description (e.g. I²C bus)
- But the composite structure diagram does
 - Also focuses on the system border, very high-level structural model
 - . Shows what is inside and outside our system

PMU – Scope Ctd.

- Content of Requirements Specification
 - Context structure diagram as in previous slide: shows what is inside and outside the systems responsibility, nature of interfaces:
 - Pressure sensor: 4 20 mA, screw terminal, sensor powered externally or by PMU
 - . Temperature sensor: PT100 three wire, screw terminal
 - Power: screw terminal
 - CAN: D-sub 9
 - Health: LEDs
 - Config: RS232 D-sub 9 (PC interface)
 - Interface description can be added to context structure but can also be added as text in the specification

PMU – System States

PMU – System States

- System states: states of the system when viewed as a black box
 - States of the PMU control object
 - States allow or disallow certain use cases
 - State transitions often triggered by actor interaction (see scope in previous slides)
 - Where use cases are shown as actions, it is important to recognize that the action implied is the initiation of the use case, not necessarily its completion.

PMU – Non-functional Requirements

- Material cost < \$50
- Power consumption < 2 W
- Physical PCB size 50 x 25 x 10 mm
- Ambient operating temperature -40 degree C to +85 degree C
- PIC uC as compute resource
- Industrial connectors for communication and power
- Performance will not be modeled (difficult in UML anyways)

PMU Reliability

- First we look into a simplex system according to the composite structure diagram.
- We assume reliability metrics from experience or literature.
- . We still work at the system border.

- Obviously, power is the system component having the lowest MTBF (2a).
- The function of power is to deliver power to the PMU electronics.
- Power is made of
 - Connectors (mechanics, electronics)
 - . Filters, capacitors
 - Step-down converters (do not know exactly what voltage levels at that point) – probably +5V, -5V, +3.3V
- Can we improve power (better MTBF)?
- Does this improvement affect the requirements specification or is it rather a matter of more detailed design?

Function	Failure	Effekt	Si	Cause	Oi	Di	RPNi
power	external 24V power connection	Total power loss	8	cable breaks	7	5	280
				insufficient mating	5	5	200
	input protection	Total power loss	8	faulty passive components	3	5	120
		power quality loss		faulty passive components	2	5	70
	output conversion	partial power loss	8	faulty power conversion electronics	3	5	120

- Function, failure, effect, Si (severity), cause, Oi (occurrence),
 Di (detectability) to be filled in -> Risk Priority Number (lecture #3)
- Now we think about how we can mitigate the effects with respect to the system level
- An obvious approach here would be to use a second independently routed power cable.

- FTA is another way of analyzing the systems.
- . Gives us the root cause of a failure.
- Cable failure is further analyzed asking "Why?".
- FTA more powerful when analysis of combinations are necessary.

 $\Theta_s = 6,1195a$ in new configuration -> a second power connector is added. It increases the MTBF (details are not clear at this point).

Safety

- Safety is a system approach. The safety function and the safety integrity has to be met on the system level (last lecture).
- Requirements on safety integrity are based on a risk analysis (last lecture).
- Safety integrity requirements can also be based on market analysis.
- For the PMU the marketing organization communicated:
 - SIL3 in a 1002 configuration (duplex)
 - SIL2 for simplex
- Requirements specification needs to hold the safety function.
- Also additional project planning activities need to be known (not part of this class) at the requirements stage.

System Safety FTA

Safety Function

- Wrong pressure readings can lead to hazardous states and possibly to harm at the system level.
- Imagine:
 - Over pressure in vessels (chemical industry), oil and gas pipelines, or wells in oil and gas exploration
- Pressure readings must be correct (normal function) and faults at the PMU level (external or internal) and limit violations need to be detected and communicated.
- Therefore, the safety function can simply be phrased like:
 "The PMU shall communicate a pressure limit violation".
 The message indicating the limit violation is the "safe state".
- The safety function comes with non-functional requirement the SIL (last lecture), limit settings, etc.

Safety Function

• From marketing we know that the SIL of the PMU shall be 3 in a 1002 configuration. A system configuration might look like this:

Safe failure fraction	Hardware fault tolerance (see note 2)			
	0	1	2	
< 60 %	Not allowed	SIL1	SIL2	
60 % - < 90 %	SIL1	SIL2	SIL3	
90 % – < 99 %	SIL2	SIL3	SIL4	
<u>≥</u> 99 %	SIL3	SIL4	SIL4	
NOTE 1 See 7.4.3.1.1 to 7.4.3.1.4 for details on interpreting this table. NOTE 2 A hardware fault tolerance of N means that N + 1 faults could cause a loss of the safety function.				
NOTE 3 See annex C for details of how to calculate safe failure fraction.				

Safety Function

Reliability of 1002 (lecture #2): $R_{1002} = 2R - R^2 > R_{simplex}$; $R_{simplex}$ being the reliability of the safety function in a simplex configuration this is the "random failure" portion of the reliability aspect. More to come.

A. Walsch, IN2244

PMU Availability

 Availability of 1oo2 (lecture #2): In normal operation a precise and accurate pressure measurement is required (measure pressure = functional requirement) (precise, accurate = non-functional requirement)

 If a fault of any kind is detected on either channel of the PMUs the safe state is signalled and the channel is repaired (or rebooted after physical inspection)

Slide26

• During that time the output of the 1002 system is "safe state":

PMU Availability Ctd.

Both channels have to deliver a valid result (no detected faults, within limits) in normal operation. $R_{1002} = R^2$ (lecture#2: the reliability is always referring to a function) availability decreases Block-Zuverlässigkeit vs. Zeit 1.000 Zuverlässigkeit PMU measure pressure System measure pressure 0,800 0,600 Zuverlässigkeit, R(t) measure measure 0,400 pressure pressure 0,200 Alexander Walsch 28.11.2011 20:29:58 0,000 0,000 600,000 1200,000 1800,000 2400,000 3000,000 Zeit, (t)

A. Walsch, IN2244

Systematic Failures

- So far only random hardware failures (see bathtub curve) have been considered.
- Systematic failures, especially software, has not been considered.
- We have seen that reliability of the safety function can be increased by adding redundancy (from SIL2 to SIL3).
- What about software? Software is considered to show systematic failures which can not be modeled in reliability diagrams as shown before. Systematic failures are somehow similar to common mode failures (failures which affect each channel the same way).

Therefore:

PMU Requirements Specification

System Requirements Specification

for

Pressure Measurement Unit (PMU)

Preliminary Information

A. Walsch, IN2244