
Industrial Embedded Systems

- Design for Harsh Environment -

Dr. Alexander Walsch

alexander.walsch@ge.com

Part VI

WS 2011/12

Technical University Munich (TUM)

Agenda

Today:

Architecture – High Level Design (Software)

Recap:

− Architecture – High Level Design (Hardware)

Slide2A. Walsch, IN2244

V-Model

Slide3A. Walsch, IN2244

Approach - Recap

Slide4A. Walsch, IN2244

� Identify standards (coding, best practice, etc.) which should be

used (overlap with requirements analysis)

� Define major system hardware components

� Specify major hardware building blocks and do a rough footprint

calculation

� Identify hardware design patterns if applicable (reusable principles)

� Specify interfaces between hardware building blocks

� Specify major software building blocks and do a rough footprint

calculation (e.g. OS, libraries)

� Identify software design patterns if applicable

First Steps

Slide5A. Walsch, IN2244

� Common practice:

� Choose an embedded processor (often based on peripherals, past usage)

� Get an evaluation board and the software support (IDE – editor, compiler,
linker, debugger)

� Implement the most demanding functionality (usually something which uses
up a lot of hardware resources) – download the examples and change them

� Outcome: have a hands-on feeling for feasability (compare lecture II)

� All IC vendors provide evaluation boards and evaluation versions of software
(sometimes completely free of charge)

� E.g. : Microchip MPLAB, TI Code Composer, Freescale Code Warrior

� Usually come with a large collection of examples

Evaluation Board Example

- Microchip Explorer 16 -

Slide6A. Walsch, IN2244

Source: microchip.com

Evaluation Board Example Ctd.

- Microchip Explorer 16 -

Slide7A. Walsch, IN2244

Example C code projects

Software Architecture

Slide8A. Walsch, IN2244

Processing_SW

Application

Task1 Task2

Runtime

Fault Detection

PeripheralScheduler

Application

Task1 Task2Task1 Task2

Runtime

Fault Detection

PeripheralScheduler

Fault Detection

PeripheralScheduler

Processing_HW

IO_HW

Power Supply_HW

«use»

«use»

«use»
«use»

Scheduling

Slide9A. Walsch, IN2244

� The need for scheduling (as taken from PMU system requirements

specification):

� Task response time:

also known as execution time is the total time required for the

computer to complete a task (IO, memory access, overhead, CPU

execution time)

� Task cycle time:

time between periodic task calls

Scheduling Ctd.

Slide10A. Walsch, IN2244

� The main loop:

� Aka super loop

� Functions (tasks) to be
executed in sequence

� Functions run-to-completion

� Single stack

� But:

� Relies on timeliness of executed
functions

� Variation of function response time will
affect timing of all others

Scheduling Ctd.

Slide11A. Walsch, IN2244

� Timer based interrupts:

fosc = 2 * fcy

� Task (C function)
executed within
the timer-driven
interrupt service
routine (ISR)

� Timing accurate

� Single stack

� Two priorities:
high priority
foreground vs.
background

Scheduling Ctd.

Slide12A. Walsch, IN2244

� Context switch

� Switch from one process to another (P1 to P2)

� Store P1 context (stack pointer if it is a multi-stack implementation, program
counter, registers) – if we switch stacks we need assemby language

� Restore P2 context

� Is there a „natural“ context switch?

� If we work on one stack there is: function and interrupt calls save context
automatically (the compiler does that for us):

call instruction (taken from microchip.com)

Scheduling Ctd.

Slide13A. Walsch, IN2244

� Function call conventions for context:

� Interrupts save context in their stack

frame

� dsPIC default: W0-W15

� RCOUNT

� More on demand – save parameter in
case of dsPIC C30 compiler

� In case of the C30 compiler this also
applies for functions called within an ISR

� We conclude: a timer-driven interrupt

gives us timing accuracy and saves

our context
Source: microchip.com

Scheduling Ctd.

Slide14A. Walsch, IN2244

� We can use an ISR to realize a light-weight scheduler:

� We can call different functions at different times (round-robin based on
elapsed time to realize different cycle times)

� All tasks are C functions that run to completion

� We can put a background task into the while(1){...} loop in main. E.g. serial
communication

� BUT: does not really work well if we do have different asynchronous sources
of interrupt (e.g. timer and ADC)

� Why do we use our own scheduler at all?

� Cost of commercial OS

� Lack of certificate (if we need to certify we need to show that the OS meets
the criteria of the certification)

� Therefore, a very simple scheduler might be a good alternative

Scheduling Ctd.

Slide15A. Walsch, IN2244

10ms cycle 20ms cycle

Scheduling Ctd.

Slide16A. Walsch, IN2244

� For multiple sources of interrupt we can realize a fixed-priority

single-stack scheduler using plain C (compiler takes care of

context)

� Every task is realized by a non-blocking (does not wait for external signal)
thread of execution

� Once an IRQ is fired it is marked for execution (READY) and is run if no task
of higher priority is currently running

READY PREEMPTED

RUNNING

[ex te rna l s igna l] /c rea te t as k

[h ighes t p rio rit y] /run

[ta s k R TC] /

[higher priority tas k RE A DY

]/c ontex t s witc h

[h igher prio rity tas k R TC] /res um e

Task3

Task2

Task 1
high address

low address

Scheduling Ctd.

Slide17A. Walsch, IN2244

� State-machine based task execution (no state for resource waiting)

� C compiler ISR handling takes over task switching

� Different interrupt sources (timer, ADC, etc) can trigger task

creation (post event and mark task for execution)

� Refer to „Build a super simple tasker“ http://www.state-

machine.com/resources/articles.php

Peripherals

Slide18A. Walsch, IN2244

� Embedded processors do come with many peripherals. Usually we

need two things:

� The peripheral specification
(tells what bit to set to achieve
a certain functionality)

� The device specification

� An example program or library
(tells us the sequence of
necessary steps and gives a
quick feedback on
functionality)

Source: microchip.com

Peripherals Ctd.

Slide19A. Walsch, IN2244

� It might also be a good idea to define wrapper function to

� Abstract the hardware – useful when working with different embedded
processors

� Allow unified error handling

� Common functions: OpenPeripheral(), ClosePeripheral(),

ReadPeripheral(), WritePeripheral(),...

� Macros: EnableInterrupt, DisableInterrupt,...

� In case of the dsPIC Microchip provides ready-to-use functions for

peripherals, watchdog, and reset (other IC vendors do as well).

Fault Detection

Slide20A. Walsch, IN2244

� Specific to safety-related systems in industrial domain

(IEC61508-2) to achieve a higher DC -> influences PFD/PFH and

architectural constraints

� What is a DC (diagnostic coverage)?

� In previous lectures we discussed random hardware failures and assigned a
failure rate (λ)

� Hardware failures can lead to hazardous states (not good!) of the system
which can result in harm (very bad!) – but they do not have to

� However, a system (in the safety world) is allowed to fail safe.

� If we can avoid a dangerous system failure by detecting dangerous
component faults (λd) in advance we can transfer λd into λs (actually a λdu is
transferred into a λdd).

DC=∑λdd/∑λd ; λdd= λd x DC/100

Fault Detection Ctd.

Slide21A. Walsch, IN2244

Source: IEC61508-2, general faults to be
detected or analyzed

Fault DetectionCtd.

Slide22A. Walsch, IN2244

� Invariable memory and variable memory

Source: IEC61508-2

Fault Detection Ctd.

Slide23A. Walsch, IN2244

Source: IEC61508-2

� IO

� Program sequence

Fault Detection Ctd.

Slide24A. Walsch, IN2244

� Fault detection is a series of activities that happen at startup,

background (cyclic tests) and specific maintenance cycles

� CPU

� Memory (used one)

� IO

� Program sequence

� Basic tool for fault detection evaluation is FMEA

� Time-critical test is cyclic background test since it checks physical

resource during operation (must align to the fault detection

response time specified in the systems requirements)

Fault Detection – Memory

� Memory matrix organization

(1-bit … n-bit) – in reality one

data word stored at a specific

address

� address decoder, read and

write amplifiers, control

signals, data in and out

� low diagnostic coverage:

stuck-at for data and/or

address (constantly ‘0’ or ‘1’)

� medium diagnostic coverage:

DC fault model for data and

address (stuck-at, high-Z, X-

talk)

Fault Detection

- Non-variable Memory (Flash) -

� Modified checksum test, based

on XOR and circular shift

operations

� Defined checksum is compared

to the checksum calculated

during operation

� Odd-numbered bit errors within a

column are detected

� Low diagnostic coverage test

1 0 1 1

0 1 0 1

0 0 1 0

0 1 0 1

A

1 0 1 1

1 0 1 0

1 0 0 0

1 0 1 0

B

0 0 1 1C

D

E

F

1 0 1 1

0 1 1 1

0 0 1 0

0 1 0 1

1 0 1 1

1 1 1 0

1 0 0 0

1 0 1 0

0 1 1 1

Fault Detection

- Non-variable Memory (Flash) cont. -

� Signature of one word test (CRC), based on Modulo-2

arithmetic

� Memory content is interpreted as a bit stream

� Division by a defined polynomial yields zero, P(X) = 11001 in

the example

� All one bit and multi-bit failures within one word and 99.6% of

all possible bit failures are detected

� Medium diagnostic coverage test

Fault Detection

- Non-variable memory (EEPROM) -

� EEPROM content is copied to SRAM and verified during

system initialization -> working copy

� All changes are made to working copy

� Working copy is written to EEPROM before power-down or

at defined slow cycles (wear-out effect!)

� EEPROM test is reduced to a RAM test – we work from

RAM data

Fault Detection

- Variable memory (SRAM) -

� Checkerboard test – low

diagnostic coverage

� Cells are checked for

correct content in pairs

� Initialization, upward test,

downward test, inverse

initialization, upward test,

downward test -> 10 * n

complexity (number of load

store operations)

� Pairs are address inverse

Fault Detection

- Variable memory (SRAM) cont. -

� Walking pattern - medium diagnostic coverage

� Initialization (A), the first cell is inverted and all remaining cells

are checked for correct content (B), the first cell is inverted again

(C), the test is conducted again with inverse background (D) ->

2*n*n + 5*n complexity (number of load store operations)

Fault Detection

- Variable memory (Stack) cont. -

� Stack data integrity is

checked by correct

program flow (the stack

stores our task context)

� Stack limits are checked by

signature or addresses

(some controllers provide

hardware support)

� Underlying hardware

(SRAM) is checked by

SRAM tests

free stack space

signature

signature

signature

signature

return address

parameter 3

parameter 2

parameter 1

local data

frame pointer

stack pointer

high address

low address

Fault Detection Ctd.

- Example -

Slide32A. Walsch, IN2244

� RAM tests are destructive – therefore we need to safe the original

data in advance

bit flip

Software Mapping

Slide33A. Walsch, IN2244

� stack – local data and spilling

registers

� heap – dynamic data (do not use)

� static data

� text – program code

� logical layout mapped to physical

location during linkage

Communication

Slide34A. Walsch, IN2244

� We usually use standard protocols to transmit data. Correctness is

guaranteed by by error detection mechanisms (e.g. parity, CRC)

� Sometimes error detection capability not sufficient

� Hamming distance of n:
n-1 bit errors can be detected.

� Residual error:
If we do know the Hamming distance and do know the bit error rate (bit flips
are statistically independent) we can calculate a residual error.

� CRC: an additional peace of data is added to the existing bit stream. The
additional peace of data allows error detection

Address

8 bit
Data – 128 bit

CRC – 16

bit

payload

transmitted data

Source: Bosch, CAN Secification

Code Structure

Slide35A. Walsch, IN2244

� Software stored in ASCII files – what is a good way to structure

code?

� Object-orientation vs. precedural style

� Object-oriented programming languages (mostly C++) often not an

option

� Proven-in-use of tools challenge (safety-related software)

� Prior experience of team

� Coding in C in an object-oriented way

� Reusability

� Data encapsulation

� Function encapsulation

Code Structure Ctd.

Slide36A. Walsch, IN2244

All program code in a

single source file

main.c main.h

app.c app.h

io.c io.h

� Linkage: describes the accessibility of objects (something that uses

memory) from one file to another, or even within the same file –

internal, external, no linkage

� Internal linkage, external object, accessible within one file

� External linkage, external object, accessible throughout the whole program

� No linkage, internal object, accessible from within the function

� Scope: region of a program in which an object is visible – block,

file, function, function prototype

Code Structure Ctd.

Slide37A. Walsch, IN2244

Storage Class Specifier Function or Data Object Linkage Duration

static either internal static

extern either external static

none function external static

none data object external static

� External declarations (outside a function)

� Internal declarations

Storage Class Specifier Function or Data Object Linkage Duration

register data object none automatic

auto data object none automatic

static data object none static

extern either external static

none data object none automatic

none function external static

Code Structure Ctd.

Slide38A. Walsch, IN2244

Code Structure Ctd.

Slide39A. Walsch, IN2244

