Industrial Embedded Systems

- Design for Harsh Environment -

Dr. Alexander Walsch
alexander.walsch@ge.com

Part VI
WS 2011/12
Technical University Munich (TUM)

Today:
Architecture — High Level Design (Software)
Recap:

- Architecture — High Level Design (Hardware)

A. Walsch, IN2244 Slide2

Validation

Requirements e P R Field Testing

Definition

N\ /

Requirements
Specification

& — — —— e] System Testing

Verification & Validation
——————————————— Integration Testing

Verification &
Validation

Detailed Design «— — — —] Unit Testing

Implementation

A. Walsch, IN2244 Slide3

Approach - Recap

|dentify standards (coding, best practice, etc.) which should be
used (overlap with requirements analysis)

Define major system hardware components

Specify major hardware building blocks and do a rough footprint
calculation

|dentify hardware design patterns if applicable (reusable principles)
Specify interfaces between hardware building blocks

Specify major software building blocks and do a rough footprint
calculation (e.g. OS, libraries)

|dentify software design patterns if applicable

A. Walsch, IN2244 Slide4

Common practice:

Choose an embedded processor (often based on peripherals, past usage)

Get an evaluation board and the software support (IDE — editor, compiler,
linker, debugger)

Implement the most demanding functionality (usually something which uses
up a lot of hardware resources) — download the examples and change them

Outcome: have a hands-on feeling for feasability (compare lecture Il)

All IC vendors provide evaluation boards and evaluation versions of software
(sometimes completely free of charge)

E.g. : Microchip MPLAB, Tl Code Composer, Freescale Code Warrior

Usually come with a large collection of examples

A. Walsch, IN2244 Slide5

Evaluation Board Example

- Microchip Explorer 16 -

Source: microchip.com

1. 100-pin PIM riser, compatible with the PIM versions of all Microchip
PIC24F/24H/dsPIC3a3F devices

Direct 9 VDC power input that provides +3.3V and +5V (regulated) to the entire
board

Power indicator LED

RS-232 serial port and associated hardware

On-board analog thermal sansor

USB connectivity for communications and devica programming/debugging
Standard 6-wire In-Circuit Debugger (ICD) connector for connections to an
MPLAB ICD 2 programmer/debugger module

8. Hardware salection of PIM or soldered on-board microcontroller
(in future versions)

9. 2-line by 16-character LCD

n

N ORR

bdooooooobo
Jopoocoooogoo

=i 10. Provisioning on PCB for add on graphic LCD

v! 000000 YOO000
]

11. Push button switches for device Resat and user-defined inputs

12. Potentiometer for analog input

13. Eightindicator LEDs

14. 74HCT4053 multiplexers for selectable crossover configuration on serial com-
munication lines

15. Serial EEPROM

16. Independent crystals for precision microcontroller clocking (8 MHz) and RTCC

operation (32.768 kHz)
@ Prototype area for developing custom applications
9. Six-pin interface for PICkit 2 Programmer

Socket and edge connector for PICtail™ Plus card compatibility
20. JTAG connector pad for optional boundary scan functionality

A. Walsch, IN2244 Slide6

Evaluation Board Example Ctd.
- Microchip Explorer 16 -

rogram Files\Microchip\MPLAB C30'\examples\dsPIC30F
L
[PMU - MPLAB IDE v8.83 18] x]] File Edt View Favorites Tools Help | {,,
|Fle Edt View Project Debugger Programmer Tools Configure Window Help Back ‘ search. [Folders =
- v i & Rk
JDD’r‘HléﬁhﬂlannEl.?]nmq gﬁggu‘o|@§.@] Checksum: 0xfe66 Ip“»?‘ﬁﬁxg@ JO : O —’llo 4 |.$.3 xn]- :
bedded_group\PMU\source\mainh Dyembedded_group\PMU\source\main.c JAdd'ess ID C:\Program FilesiMicrochip\MPLAB C30\examplesidsPIC30F ;l Go
— . ST ST Tl
- : ss s Name_~ | Size | Type |
= Source Files P — -
= T I s e e (C)CE001_ADC_DSP_lib_Filter File Folder
i et hi ()CED02_ADC_IMSPS File Folder
i g:'i:‘t::’; /7 include uC spefic header file =/)) @CEUU3_SWJSDHBLBLDC File Folder
a lm;yscmt #include "p33fxxxx.h” int main (void) DCE004_TH'IEI'1_RTC Eile Folder
{8 Other Fles s i i A e () CE00S_FIR_DSP_lib_Filter File Folder
/* use the FCR (fast capacitor resistor) wich 7,36 MHz Bcsuoa-address_error_trap File FOlder
7,361z / 2 = 3,68MHz " 40 = 147,2MHz / 2 = 73,3MHz (FOSC BcEnn?_gtagk_grmr_trap File Folder
FCR / PLLPRE * PLLFED / PLLPOST = FOSC p=
erursmrsnrsenansanseraranras ney (C)CE008 _oscillator_Failure_trap File Folder
_FOSC(FCKSM_CSECMD < OSCIOFNC_OFF & POSCMD_NONE) ; BCEUUQ math error trap File Foldef
S mmedass E]CEDID:ADC_-n:onve;siuns_h_Sl.EEP_mnde File Folder
£ ERESERNRENY _’;| [C)CEO11 _lowpower_dynamic_clock_divide File Folder
L] = [ETi (C)CEN12 _lowpower_dynamic_clock_switch File Folder
| “‘ e-smcwdl e () CED13_external_interrupts File Folder
ymenic Howory Ussoe [C)CEO14_Fast_wake_up_from_SLEEP_mode File Folder
e (C)CEO15_internal_fast_RC_tuning File Folder
TR (C)CE016_DCI_master_audio_I25_codec_interface File Folder
Ux7800] ((30720) (C)CE017_DataEEPROM_write_erase_functions File Folder
Haximum dynamic memory (bytes): 0x7800 (30720) BCEU]B_FFT_DSPMJ File Folder
Executing: "C1Pr Files\Microchip\MPLAB C30\binpic30-binZh " "Diembedded_group\PMUPMU.cof* - |
i D e g‘f::p\;,‘;';‘ff\;au it iripic30-bin2he axe® “Criembadded. group © (C)CED19_PID File Folder
IDebug build of project'Dembedded_group\PMUPMU.mcp' succeeded.
Language tool versions: pic3(-as.exe v3.30. pic30-gcc.exe v3.30, pic3-ld.exe v3.30, pic30-arexe v3.30
Preprocessor symbol *__DEBUG!' is defined.
Fri Jan 06 115515 2012
BUILD SUCCEEDED
K|
M |dsPIC33FI256GP710 o) [oabsabIP0 |dcnovze | [l
Histant| @Y & 3 * Osiavieti., | @ exporer .|) oipocu... | [B]industria,..| T pictoho.., |[RYPMU-M...) Disinka... | L Hildocst... |) embedde...| [Seich Dekicp FRRPSE T COIoT - Y 3 : <| | _)I

Example C code projects

A. Walsch, IN2244 Slide7

Software Architecture

Processing_SW I

Application I
Task1 I Task2 I Processing_HW I

~
L a; 7 N
N
s 1’ A
e N
-, ” s N
£l ’ 3
{1 «Use»’ o /, 7’ IO HW
Runtimel 4 PE R —
7 -,
,
’ 2 %4
Vi b - 7 «use»

Cd b4
- use»
Scheduler I,' Peripheral I PR - e
S

-
N s
N P

~ ’
’ L d
Fault Detection , ’
¢
I Power Supply_HW 1}

~
M
AN

A Y

A. Walsch, IN2244 Slide8

The need for scheduling (as taken from PMU system requirements
specification):

PMUSysRQ 8: Pressure readings communicated via CAN shall not be older than 100ms.

PMUSafetyRQ4: The fault detection response time shall not exceed 3s.

Task response time:

also known as execution time is the total time required for the
computer to complete a task (10, memory access, overhead, CPU
execution time)

Task cycle time:
time between periodic task calls

A. Walsch, IN2244 Slide9

Scheduling Ctd.

. The main loop: mCETETT o1

Aka super loop e

finclude "delay.h"

" _{? —— *‘.’
Fu nCtIOnS (taSkS) to be /* Hacros for setting device configuration registers *f
/* executed once per project */
L /* oscillator configuration *f
executed In Sequence /* input: processor spec, example projects bt 4
f* __ Q',’

_FOSCSEL (FNOSC_FRCPLL) ; —

_FOSC(FCKSM_CSECMD &« OSCIOFNC_OFF & POSCMD_NONE) :

Functions run-to-completion

int main (void)

Single stack o

{
APP_read(); /*duration lSms {(we know that)*/

APP_writel); /*duration 1l0Oms {we know that)}*/
B ut - o Delay_SOms () ; /*we know the delay®/
-

}

. . . - 0] X
Relies on timeliness of executed e msiopatcn NI~ P

functions

Stopwatch Total Simulated
Synch | Instruction I:yclesl 246 I 246

Zero | Time (uSecs) | 4.1cmm| 4.100000

Processor Frequency [MHz) | 120.000000

Variation of function response time will
affect timing of all others

A. Walsch, IN2244 Slide10

Scheduling Ctd.

. Timer based interrupts:

Il D:\embedded_group'PMU'source'interrupt.c

Il D:'\embedded_group'PMU‘source\main.c

fosc =2 * fcy

/* main.c
j* __

" M (]
E s . Task (C function)
#include “"interrupt.h"

o ————] (O — executed within

T o e e e o e e e - /* Macros for setting device configuration registers . .

/* executed once per project the tlmer_drlven
/* oscillator configuration

/* input: processor spec, example projects

" "
i mchiiee . e Interru pt service
[T e e e - _FOSC (FCKSM_CSECMD & OSCIOFNC_OFF & POSCMD_NONE) ; .
routine (ISR)

int main (void)

A e * {

/* public function bodies - APP_init () ; . .

e f . Timing accurate
Tl while (1) /*super loop*/

void TZ_init (void) L {

{ f*enpty super loop or background task*/

.
uintlé match walue; [,]/*pxocessor sleeps™/ n SI ng |e Stack

ConfigIntTimer2 (TZ_INT_PRIOR_1 & TZ_INT_ON);
itelimexrz (U); }
< mnatch_wvalue = O0xESES: us assuning Tcy = 16.7ns*/

i s RIS | - Two priorities:
high priority

foreground vs.

background

; msopvarch =

void __ attribute_ ((interrupt, no_auto_psv)) _TZInterrupt (voi
{

Stopwatch _Total Sirmulated
Synch | Instructon Cycles | 53881 | 838378

APP_read(); :

- oF Zeio | Time EGS! I ssamsss?! jrzssass:'
IFSObits.TZIF = 0; /*reset interrupt flag®/
Processor Frequency (MHz) I 120.000000

A. Walsch, IN2244 Slidel1

Scheduling Ctd.

Context switch

Switch from one process to another (P1 to P2)

Store P1 context (stack pointer if it is a multi-stack implementation, program
counter, registers) — if we switch stacks we need assemby language

Restore P2 context
Is there a ,natural” context switch?

If we work on one stack there is: function and interrupt calls save context
automatically (the compiler does that for us):

ST o spowts T e sewn T
b 4 () — | | calee-saved
Local Variables +— FP (W14 Registers. [W14+n] accesses
Return addr [23:16] and Temporaries wia) I local conteat
Local Variables || «— FP (w14)
Return addr [15:0] Previous FP and Temporaries [W1d-n] acoe:
|
Stack grows Parameter 1 Retum addr [23:16] s FP nction para
toward - S;ﬂc"gmws Retum addr [15-0] 0w addr [23:16]
great greater ; franeil n adar [15:0]
addresses parametern-i | [addresses | | T W
Parameter n
nnnnnnnnnnn
R +«—— FP (W14 Parameter n
Caller,Ads Fra (> 1 | |Peameten L 0 | [Porameter n
Caller Ads Fra

call instruction (taken from microchip.com)
A. Walsch, IN2244 Slide12

Scheduling Ctd.

Function call conventions for context:

]| =1 - Interrupts save context in their stack
= T frame
o w . dsPIC default: W0-W15
) W]
=y . RCOUNT
e - More on demand — save parameter in
e {2 case of dsPIC C30 compiler
.7 . In case of the C30 compiler this also
—— applies for functions called within an ISR
) . We conclude: a timer-driven interrupt
: — "n "j: - gives us timing accuracy and saves
s our context
Sl =]_lL.l e | | Source: microchip.com

A. Walsch, IN2244 Slide13

Scheduling Ctd.

We can use an ISR to realize a light-weight scheduler:

We can call different functions at different times (round-robin based on
elapsed time to realize different cycle times)

All tasks are C functions that run to completion

We can put a background task into the while(1){...} loop in main. E.g. serial
communication

BUT: does not really work well if we do have different asynchronous sources
of interrupt (e.g. timer and ADC)

Why do we use our own scheduler at all?

Cost of commercial OS

Lack of certificate (if we need to certify we need to show that the OS meets
the criteria of the certification)

Therefore, a very simple scheduler might be a good alternative
A. Walsch, IN2244 Slide14

Scheduling Ctd.

M D:\embedded_group\PMU\source\interrupt.c

e s s R s
/* private variables *f
I

static uintlé counter;

-
/* public function bodies *
"o *
wvoid TZ_init (void)
{
uintlé match_value;
ConfigIntTimerZ (TZ_INT_PRIOR_L & TZ_INT_ON):
WriceTimer2(0);
match_value = OxE9E8; /*lms assuming Tey = 16.7ns™/
OpenTimer2 (TZ_ON & TZ_GATE_OFF & T1_IDLB_STOP &\
Tz_PS_1_1 & T2_SOURCE_INT, match_value)
}
void _ attribute_ ((interrupt, no_auto_psv)) _TZInterrupt (void)

{
uintlé modll, mod20;

modld = counter:CYCLELOD;
wodZ0 = countersCYCLEZO;

switch (modl0)
{

f*time slot
J*execute every
APF_read();

Ons*/

case 1,
/Ytfme slot L+/
frefecute every 20us*/
if f1 == modz0)

APP_wrirte():

break;

default
break;

T

counter /*increment ISR call counter®/

10ms cycle

ginclude "main.h"
#include “app.h*
ginclude “"interrupt.h"

/* Macros for setting device comfiguration registers
/™ executed once per project

/* oscillator configuration

/* input: processor spec, example projects

_FOSCSEL (FNOSC_FRCPLL) ;
_FOSC (FCKSM_CSECMD & OSCIOFNC_OFF & POSCMD_NONE)

int main (woid)
i

APP_init ()
T2_inivi);
while (1)

{

/meupty super loop or background task®/
/*processor sleeps*/

)

/=super loop*/

R

o SqamaE

‘mbedded_group\PMU\source\interrupt.c

7
/* private variables
i

static uintlé counter;

i~ Ly
/* public function bodies *f
! i =E

wvoid TZ_inic (void)
{

wintlé match_value;

ConfigIntTimerZ (T2_INT_PRIOR_1 & T2_INT_ON);

UriteTimerZ (0);

mavch_value = 0xESES; /*lms assuming Tey = 16.7ns™/

OpenTimerz (T2_ON & T2_GATE_OFF & T1_IDLE STOP &\
T2_PS_1_1 & T2_SOURCE_INT, match value);

void _ attribute_ ((interrupt, no_auto_psv)) _TZInterrupt (void)
{

wintlé modlO, modZ0;

modl0 = counter*CYCLELO;
wod20 = counter:CYCLEZ0:

switch (modl0)

{

case 0:
/*time slot 0*/
/*execute every lOms?®/
APP_read();

break;

case 1:

STexecute every MNgus*/
if (1 == mod20)
APP_urite ()

countexti;

20ms cycle

A. Walsch, IN2244

Jincrement ISR call counter™/ l

#include "main.h"
finclude "app.h"
#include "interrupt.h"

JF mmm e
/* Macros for setting device configuration regis
/* executed once per project

/* oscillator configuration

A% inmput: processor spec, exauple projects

. W N S R
_FOSCSEL (FNOSC_FRCPLL) ;

_FOSC (FCKSH_CSECMD < OSCIOFNC_OFF ¢ POSCHD_NONE

int main (woid)

/*super loop®/

/*empty super loop or background task*/

f*processor sleeps®/
¥

Slidel5

Scheduling Ctd.

For multiple sources of interrupt we can realize a fixed-priority
single-stack scheduler using plain C (compiler takes care of
context)
Every task is realized by a non-blocking (does not wait for external signal)
thread of execution

Once an IRQ is fired it is marked for execution (READY) and is run if no task
of higher priority is currently running

high address Task 1
[externa | signal]/create tas k
as
READY

Task?2

[highest priority]/run

[higher priority task RTC]/resume

[higher priority task READY
J/context switch

\

RUNNING

Task3

[task RTC]/

low address

A. Walsch, IN2244 Slidel6

Scheduling Ctd.

State-machine based task execution (no state for resource waiting)
C compiler ISR handling takes over task switching

Different interrupt sources (timer, ADC, etc) can trigger task
creation (post event and mark task for execution)

Refer to ,Build a super simple tasker” http://www.state-
machine.com/resources/articles.ohp .

Systemwide SST prioritly scheme P . i
High-
Sysrcmwidc SST priority ‘:::E ‘1
................. :
Execution order pn:r;'y- [i} 2 Task preempted l?l F) |
controlled in hardware ok
by interrupt controller)
A Asynchronous preemplion by an interrupt and a high-priority task
SST_MAX PRIO + 2 iori 1 Interropt <all
-------- SST MAX PRIO + 1 I pt refum
SST_MAX_PRIO - | Function call
. | Function return
. 0 55T interrupt
Execution order =
XxXecuhon ol -
controlled in software 1 T I $3T schodulor
by SST
¥ 0 P! 1a) |
5 1 15 3

A. Walsch, IN2244 ’ : T Slidel7

Peripherals

Embedded processors do come with many peripherals. Usually we
need two things:

dsPIC33F/PIC24H/dsPIC33E/PIC24E
ADC Peripheral Module Library Help

The peripheral specification e E
(tells what bit to set to achieve =1~ Table of Contents
a certain functionality) | = |

1 Library Features
2 Using the Library Module in a Project

3 Functions

1 BusyADCx
CloseADCx
3.3 ConfigintADCx
4 ConvertADCx

35 StopSampADCx

The device specification

An example program or library

(tells us the sequence of
necessary steps and gives a

quick feedback on
functionality)

Nols 13 VRERs, VREF. MpUS 30 b MUNDIEXED W Cther araioq Inputs. FOr GELATS, rarer 1 1 SDECIC Gevick 03t niet.
z crmnz ana 3 are not appicasie for e 1220 mea!eputm

Source: m|croch|p com

A. Walsch, IN2244 Slide18

Peripherals Ctd.

It might also be a good idea to define wrapper function to

. Abstract the hardware — useful when working with different embedded
Processors

. Allow unified error handling

Common functions: OpenPeripheral(), ClosePeripheral(),
ReadPeripheral(), WritePeripheral(),...

Macros: Enablelnterrupt, Disablelnterrupt,...

In case of the dsPIC Microchip provides ready-to-use functions for
peripherals, watchdog, and reset (other IC vendors do as well).

A. Walsch, IN2244 Slide19

Fault Detection

Specific to safety-related systems in industrial domain
(IEC61508-2) to achieve a higher DC -> influences PFD/PFH and

architectural constraints

What is a DC (diagnostic coverage)?

In previous lectures we discussed random hardware failures and assigned a
failure rate (A)

Hardware failures can lead to hazardous states (not good!) of the system
which can result in harm (very bad!) — but they do not have to

However, a system (in the safety world) is allowed to fail safe.

If we can avoid a dangerous system failure by detecting dangerous
component faults (A) in advance we can transfer Ajinto A, (actually a Ay, is
transferred into a Ayy).

A. Walsch, IN2244 Slide20

Fault Detection Cid.

Requirements for diagnostic coverage or

See safe failure fraction claimed
Component table(s) k _
Low (60 %) Medium (90 %) High (99 %)
Electromechanical A2 |Doesnctenergize or |Does not energize or |Does net energize or de-
devices de-energize de-energize energize
Welded contacts Individual contacts Individual contacts welded
welded No positive guidance of
contacts (for relays this failure
is not assumed if they are built
and tested according to
EN 50205 or equivalent)
No positive opening (for
pos?tnson switches this failure is
not assumed if they are built
and tested according to
EN 60947-5-1. or equivalent)
Discrete hardware | A3 A7,
AL AN
Digital I/0 Stuck-at DC fault model DC fault model!
drift and oscillation
Analogue I/C Stuck-at DC fault model DC fault model
drift and escillation drift and oscillation
Power supply Stuck-at DC fault model DC fault model
drift and oscillation drift and oscillation
Bus A3
General A7 [Stuck-at of the Time out Time out
addresses
Memory A8 [Stuck-at of data or Wrong address Wrong address cecoding
management unit addresses deceding
Direct memory No or continuous DC fault model for data |All faults which affect data in
access access and addresses the memory
Wrong access time Wrong data or addresses
Wrong access time
Bus-arbitration Stuck-at of arbitration |No or continuous No or continucus or wrong
(see note 1) signals arbitration arbitration
CPU A4, A0
Re?.i!sler. internal Stuck-at for data and DC fault model for data |DC fault model for data and
RA addresses and addresses addresses
Dynamic cross-over for memory
cells
No, wrong or multiple
addressing
Coding and [Wreng coding or no Wreng coding or wrong |No definite failure assumption
execution including lexecution execution
flag register
Address calculation Stuck-at DC fault model No definite failure assumption
Pregram counter, Stuck-at CC fault model DC fault model
stack pointer
Interrupt handling Al No or continuous No or continuous No or continuous interrupts

interrupts

interrupts
Cross-over of interrupts

Cross-over of interrupts

See Requirements for diagnostic coverage or
table(s) safe failure fraction claimed
Component
Low (60 %) | Medium (30 %) High (99 %)
Invariable A5 Stuck-at for data and |DC fault model for data and |All faults which affect data
memory addresses addresses in the memory
Variable AB Stuck-at for data and |DC fault model for data and |DC fault mode! for data and
memory addresses addresses addresses
Change of informaticn Dynamic cross-over for memory
caused by soft-errors for [cells
DRAM with integration No. wrong or multiple addressing
1 Mbits and higher ; :
Change of information caused by
|soft-errors for DRAM with
integration 1 Mbits and higher
Clock (quartz) A12 Sub- or super- Sub- or super-harmenic Sub- or super-harmonic
harmonic
Communication| A.13 [Wrong data or All faults which affect data |All faults which affect data
and mass addresses in the memory in the memory
storage No transmission Wrong data or addresses [Wrong data or addresses
Wrong transmission time |Wrong transmission time
Wrong transmission Wrong transmission sequence
sequence
Sensors A4 Stuck-at OC fault model DC fault mode!
Drift and oscillation Drift and oscillation
Final elements A15 [Stuck-at DC fault model DC fault mode!

Crift and oscillation

Drift and oscillation

NOTE 1

a component.

Bus-arbitration is the mechanism for deciding which device has control of the bus.
NOTE 2 "Stuck-at” is a fault category which can be described with continuous "0" or "1" or “on™ at the pins of

NOTE 2 "DC fault model” (DC = direct current) includes the following failure modes: stuck-at fauits, stuck-open,
open or high impedance outputs as well as short circuits between signal lines.

Source: IEC61508-2, general faults to be
detected or analyzed

A. Walsch, IN2244

Slide21

Fault DetectionCtd.

Invariable memory and variable memory

Diagnostic See Maximum diagnostic coverage Notes
technique/measure IEC 61508-7 considered achievable

Word-saving multi-bit A4 Medium

redundancy

Modified checksum A4.2 Low

Signature of one word A43 Medium The effectiveness of the signature

(8-bit) depends on the width of the
signature in relation to the block
length of the information to be
protected

Signature of a double A4.4 High The effectiveness of the signature

word (16-bit) depends on the width of the
signature in relation to the block
length of the information to be
protected

Block replication A45 High

Diagnostic See Maximum diagnostic coverage Notes
technigque/measure IEC 61508-7 considered achievable

RAM test “checkerboard” A5 Low

or “march”

RAM test “walk-path” AS2 Medium

RAM test “galpat” or AS53 High

“transparent galpat”

RAM test "Abraham” AS4 High

Parity-bit for RAM AS5S5 Low

RAM monitoring with a A58 High

modified Hamming code,

or detection of data

failures with error-

detectien-correction

codes (EDC)

Double RAM with AS5T High

hardware or software

comparison and

read/write test

MNOTE 1 This table does not replace any of the requirements of annex C.

NOTE 2 The requirements of annex C are rel for the i of diag 0

NOTE 2 For general notes concerning this table, see the text preceding table A1,

NOTE 4 For RAM which is only q y (for ple during cenfiguration) the Ad1to

A.4.4 are effective if they are executed after each read/wnte access.

A. Walsch, IN2244

Source: IEC61508-2

Slide22

Fault Detection Cid.

(@)

Diagnostic
technigue/measure

See
IEC 61508-7

Maximum diagnostic coverage
considered achievable

Notes

(1002, 2003 or better
redundancy)

Failure detection by A11 Low (low demand mode) Depends on diagnostic coverage
on-line monitoring Medium (high demand or of failure detection
continuous mode)

Test pattern AB.1 High
Code protection A.B.2 High
Multi-channe! parallel AB3 High Only if dataflow changes within
output diagnostic test interval
Monitored outputs AB4 High Only if dataflow changes within

diagnostic test interval
Input comparison/voting ABS High Only if dataflow changes within

diagnostic test interval

NOTE 1 This table does not replace any of the requirements of annex C.
NOTE 2 The requirements of annex C are relevant for the determination of diagnostic coverage.
NOTE 3 For general notes concerning this table, see the text preceding table A.1.

Program sequence

Diagnostic

Maximum diagnostic coverage

Notes

on-line check

technique/measure IEC 61508-1 considered achievable
Watch-dog with separate AB1 Low
time base without tme-
window
Watch-dog with separate A02 Medium
time base and time-
vendow
Logical monitoring of AB3 Medium Depends on the quality of
program sequence the monitoring
Combination of temporal A4 High
and logical monitering of
pregramme sequences
Temporal monitering with A0S Medium

NOTE 1 This table does not replace any of the requirements of annex C.
NOTE 2 The requirements of annex C are relevant for the determination of diagnostic coverage.
NOTE 3 For general notes concerning this table, see the text preceding table A.1.

A. Walsch, IN2244

Source: IEC61508-2

Slide23

Fault Detection Cid.

Fault detection is a series of activities that happen at startup,
background (cyclic tests) and specific maintenance cycles

. CPU
. Memory (used one)
1O

. Program sequence

Basic tool for fault detection evaluation is FMEA

Time-critical test is cyclic background test since it checks physical
resource during operation (must align to the fault detection
response time specified in the systems requirements)

A. Walsch, IN2244 Slide24

Fault Detection — Memory

. Memory matrix organization
(1-bit ... n-bit) —in reality one
data word stored at a specific e reachnte ampier S, R
address

AL

. address decoder, read and —
write amplifiers, control
signals, data in and out

0
1
2
3

. low diagnostic coverage:
stuck-at for data and/or ine decoder L1]]
address (constantly ‘0’ or 1) eolmn decodet

. medium diagnostic coverage:
DC fault model for data and e
address (stuck-at, high-Z, X-
talk)

Fault Detection

- Non-variable Memory (Flash) -

Modified checksum test, based
on XOR and circular shift

operations 1[0 |1 |1 10|11
. . 0 1 0 1 0 1 1 1
Defined checksum is compared a D
0 0 1 0 0 0 1 0
to the checksum calculated
during operation 01|01 0| 1|01

. Odd-numbered bit errors within a

1 0 1 1 1 0 1 1
column are detected

1 0 1 0 1 1 1 0
Low diagnostic coveragetest ° [1410 | o ool o

1 0 1 0 1 0 1 0

Fault Detection

- Non-variable Memory (Flash) cont. -

. Signature of one word test (CRC), based on Modulo-2
arithmetic

. Memory content is interpreted as a bit stream

. Division by a defined polynomial yields zero, P(X) = 11001 in
the example

. All one bit and multi-bit failures within one word and 99.6% of
all possible bit failures are detected

. Medium diagnostic coverage test

0|1 1
1 0|1
0|1 0
1 0|1

o o o -

\/
o o o o =
N o — o -
N o - -

CRC | CRC | CRC | CRC

Fault Detection

- Non-variable memory (EEPROM) -

. EEPROM content is copied to SRAM and verified during
system initialization -> working copy

. All changes are made to working copy

. Working copy is written to EEPROM before power-down or
at defined slow cycles (wear-out effect!)

. EEPROM test is reduced to a RAM test — we work from
RAM data

Fault Detection

- Variable memory (SRAM) -

Checkerboard test — low
diagnostic coverage

1 0 1 0
Cells are checked for NEEIEE
correct content in pairs tjoj1]o Lo el B
0 1 0 1
Initialization, upward test, L C 1ol 1o
downward test, inverse o il I e o | 1| oel
initialization, upward test, & [2]1[° "
downward test -> 10 * n R
complexity (number of load
store operations) i I B N el N 8 O s I
1 0 1 0 1 0 1 0 1 0 1 0
Pairs are address inverse ° [T o1+ ol +lol+llol ol
1 0 1 0 1 0 ‘a0 1 0 o S’

Fault Detection

- Variable memory (SRAM) cont. -

. Walking pattern - medium diagnostic coverage

Initialization (A), the first cell is inverted and all remaining cells
are checked for correct content (B), the first cell is inverted again
(C), the test is conducted again with inverse background (D) ->
2"'n*n + 5*n complexity (number of load store operations)

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B 0| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fault Detection

- Variable memory (Stack) cont. -

frame pointer

. Stack data integrity 1S - e TS high address
ter 3
checked by correct borameter 3
program flow (the stack parameter 1

stores our task context)

local data

. Stack limits are checked by sty
signature or addresses
(some controllers provide free stack space
hardware support)

. signature
Underlying hardware i
(SRAM) is checked by Signature R

SRAM tests

Fault Detection Cid.

- Example -

. RAM tests are destructive — therefore we need to safe the original
data in advance

W D:\embedded_group\PMU\source‘\ram_test.c K — |I.'.||_X
* public function bodies
MG e, o [AddSFR| [acCA =] Add Symbol [mem =
Update] Address | Symbol Nawe | value | B
intlé Walking Patterni) 0800 = rem
{ 0800 (0] 0x5555 i
intlé i, k; | 0802 - [1) OxAARA
I 0804 [2) OxAAAR
f* tirsc pax_'t: write 1 into all memory cells */ i 0806 [3] OxARRD
::: wr:.:.e Tl:mtilexac:lir o)::e ’/‘] %2 ' 0808 o [4) OxAAAR
forr?:=0f i<c:.mss;23 ;o:++‘w’?n . 0s0k Ei% OxARRR
.. ial . ' ! 080C OxARRR
/__ (mem+i) = OxAMAN } 080E 7 OxAAED
({ (B for (i=0; i< RAM_SIZE ; it+){ . 0810 (8] OxALRL
NG *(mewti) = OxSSSS; 0812 oo 9] OxARAR
for (k=0; k< RAM SIZE ; ki+){/*read*/ | 0814 OXAALE
if(k == i){ 0816 OxALAAE
continue; /*skip*/ 0818 Q<Aiidid
} = 0814 [13] OxARRA
elge(/*k/=i*/ 081C e [14] OxAARA
if (" (memtk) == OxAAAR){ i 081E - [15] OxAARA
continue; /*good*/ 0820 [16] OxAARD
e } 1 0gz2 —=i[17] OxAARL
< else{ 0824 -~ [18)] OXARAA
@ | ERLuER| (=137 S DRdS 0826 e [19] OxARRL
D ’ 0828 e [20] OXARRA
: } 0824 - [21] OxARAR
*{mem+i) = OxAAAL; [*reset memory~®/ oszc e [22] OxAAAA
} 0G2ZE [23] OxARLL
/* second part: write 0 into all memory cells */ 0830 (24] OxAARL
/* write 1 into exactly one */ o83z [(25] OxAAAL
/* read all cells and look verify correctness */ 0834 [ze6] OxARRR
for (i=0; i< RAM SIZE ., i++){ | 0836 [27]) OxARRA
*(mem+i) = 0x5585; } | 0838 e [28] OxARAR
_lﬂ ! 0834 [29] OxARLL
el | ¥ 083c e [30] OxXAAAL
ﬂ #define APP_PRIVATE CONSTANT 1 1 083E [31) OxAARR
#define APP_PRIVATE_CONSTANT 2 2 0840 - [32] OxAbbd
EXETI fdefine APP_PRIVATE_CONSTANT 3 2 0842 [33] OxARRDL
: 0844 e [34) OxAARL
(& 3 - - - - - ~na s rel MaadA A AR -

A. Walsch, IN2244 bit fli D Slide32

Software Mapping

stack — local data and spilling
reqgisters

heap — dynamic data (donotuse) 7~~~

static data memory

stack

text — programcode | T | L

heep | = 4+ ————
logical layout mapped to physical 4
location during linkage static data

text |\ 0 T 1 — — — —

non-variable
memory

A. Walsch, IN2244 Slide33

Communication

We usually use standard protocols to transmit data. Correctness is
guaranteed by by error detection mechanisms (e.g. parity, CRC)

Sometimes error detection capability not sufficient

Hamming distance of n:
n-1 bit errors can be detected.

Residual error:
If we do know the Hamming distance and do know the bit error rate (bit flips
are statistically independent) we can calculate a residual error.

CRC: an additional peace of data is added to the existing bit stream. The
additional peace of data allows error detection

payl Oad SSSSS - DATA FRAME < Space
or

> [N

A

Data — 128 bit wwwwwwwwwwwwwww

Address CRC-16 - ‘ ‘ rrrrr

»
»

A

CRC Field

transmitted data

A. Walsch, IN2244 Slide34
Source: Bosch, CAN Secification

Code Structure

Software stored in ASCII files — what is a good way to structure
code?

Object-orientation vs. precedural style

Obiject-oriented programming languages (mostly C++) often not an
option

Proven-in-use of tools challenge (safety-related software)
Prior experience of team
Coding in C in an object-oriented way

Reusability
Data encapsulation

Function encapsulation

A. Walsch, IN2244 Slide35

Code Structure Ctd.

main.c main.h

All program code in a —_— app.c app.h

single source file

io.C io.h

Linkage: describes the accessibility of objects (something that uses
memory) from one file to another, or even within the same file —
internal, external, no linkage

Internal linkage, external object, accessible within one file
External linkage, external object, accessible throughout the whole program

No linkage, internal object, accessible from within the function

Scope: region of a program in which an object is visible — block,
file, function, function prototype

A. Walsch, IN2244 Slide36

Code Structure Ctd.

External declarations (outside a function)

Storage Class Specifier Function or Data Object Linkage |Duration
static either internal [static
extern either external [static
none function external |[static
none data object external |[static
Internal declarations

Storage Class Specifier Function or Data Object Linkage |Duration
register data object none automatic
auto data object none automatic
static data object none static
extern either external [static
none data object none automatic
none function external [static

A. Walsch, IN2244

Slide37

D:\embedded_group\PM

#ifndef
gdefine

_MAIN H
_MAIN_H

J/* include uC spefic header file */f

Code Structure Ctd.

finclude "main.h"
finclude "app.h"
J,i"k __

/* Macros for setting dewvice configuration registers
/* executed once per project
/* oscillator configuration

/* input: processor spec, exauple projects

fF e e

_FOSCSEL (FNOSC_FRCPLL) ;

_FOSC(FCKSM_CSECMD < OSCIOFNC_OFF & POSCHMD_NONE) ;

int main (wvoid)
{
APP_init () ;
while (1)
{
APP_read();

APP_write() ;

B tatutar

/* END OF FILE

T T e

______ *f

7
i
e]
4

finclude "p33fxxxx.h"

j‘k __ f.‘.f

/* typedefs L

/* input: C compiler specification */

j* __ *.l"

typedef int intlé;

typedef long int32;

typedef long long inté4;

typedef unsigned int uintlé;

typedef unsigned long uint32;

typedef unsigned long Aong uintéd;

typedef float float32Z;

typedef long double floatéd;

/? __

/* interrupts

j‘k _______________________________________

fendif

f‘k ___

/* END OF FILE

I e e e e e e e e e e e e e e e e e e

4

el | e |

Type Bits Min Max Type Bits E Min E Max N Min N Max
char, signed char 8 128 127 Tloat 2 126 127 5126 5128
unsigned char 8 0 255 " 56 158

1 -

short, signed short 16 32768 32767 double 32 126 127 2 2
ansigned short 6 0 65535 long double 64 -1022 1023 21022 21024
int, signed inc 16 32768 32767 E = Exponent
unsigned int 16 0 65535 N = Normalized (approximate)
leng, signed long 32 23 23 4 * double is equivalent to long double if -fno-short-double is used.
unsigned long 32 0 224
long long**, signed long long** 64 283 2831
unsigned long long** 64 0 2%

A. Walsch, IN2244

Slide38

Code Structure Ctd.

finclude "main.h"
finclude "app.h"
#ifndef _APP_H

§define _APP_H [sttt AN A A B e S A R iy
/* public wvariable definitions xf
lfﬂ' __ */

f* __ !’f

/* public constants *f uintlé publicl:

f* mmmmm e e e e e e e e — e ——————— */ uintlé publicZ;

#define APP_PUBLIC_CONSTANT 1 1 e =/

) o b /* private function prototypes ®f

#define APP_PUBLIC_CONSTANT 2 Z
f#define APP_PUBLIC_CONSTANT 3 2

e ————————————————— *f

static void APP_privatel):
/* __ ‘RI

F* public function prototypes o 4 o3 *
R e S e e e *z f* private constants Lt
"'X __ ?/
void APP_init (), gdefine APP_PRIVATE CONSTANT 1 1
void APP write(): gdefine APP_PRIVATE_CONSTANT_ 2 2
wvoid APP read!(); fdefine APP_PRIVATE_CONSTANT_3 3
X . e e e e e e i =)
#endif /* private variables *f
F e e L e e e */ e *y
/* END OF FILE *r
ST e e e e e e e */ static uintlé privatel;
static uintlé privateZ;
‘f* __ *f
- /* public function bodies Wyt

L] | _’|_ e */

void APP_init ()

{}

void APP_write()

{}

void APP_read()

(}

/‘X __ T‘f
/* END OF FILE *f

A. Walsch, IN2244 Slide39

