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Agenda

Today:

Architecture – High Level Design (Software)

Recap:

− Architecture – High Level Design (Hardware)
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V-Model
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Approach - Recap
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� Identify standards (coding, best practice, etc.) which should be 

used (overlap with requirements analysis)

� Define major system hardware components

� Specify major hardware building blocks and do a rough footprint 

calculation

� Identify hardware design patterns if applicable (reusable principles)

� Specify interfaces between hardware building blocks

� Specify major software building blocks and do a rough footprint 

calculation (e.g. OS, libraries)

� Identify software design patterns if applicable



First Steps
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� Common practice:

� Choose an embedded processor (often based on peripherals, past usage)

� Get an evaluation board and the software support (IDE – editor, compiler, 
linker, debugger)

� Implement the most demanding functionality (usually something which uses 
up a lot of hardware resources) – download the examples and change them

� Outcome: have a hands-on feeling for feasability (compare lecture II)

� All IC vendors provide evaluation boards and evaluation versions of software 
(sometimes completely free of charge)

� E.g. : Microchip MPLAB, TI Code Composer, Freescale Code Warrior

� Usually come with a large collection of examples



Evaluation Board Example

- Microchip Explorer 16 -
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Source: microchip.com



Evaluation Board Example Ctd.

- Microchip Explorer 16 -
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Example C code projects



Software Architecture
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Scheduling
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� The need for scheduling (as taken from PMU system requirements 

specification):

� Task response time:

also known as execution time is the total time required for the 

computer to complete a task (IO, memory access, overhead, CPU 

execution time)

� Task cycle time:

time between periodic task calls



Scheduling Ctd.
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� The main loop:

� Aka super loop

� Functions (tasks) to be 
executed in sequence

� Functions run-to-completion

� Single stack

� But:

� Relies on timeliness of executed
functions

� Variation of function response time will
affect timing of all others 



Scheduling Ctd.
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� Timer based interrupts:

fosc = 2 * fcy

� Task (C function) 
executed within 
the timer-driven 
interrupt service 
routine (ISR)

� Timing accurate

� Single stack

� Two priorities: 
high priority 
foreground vs. 
background



Scheduling Ctd.
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� Context switch

� Switch from one process to another (P1 to P2)

� Store P1 context (stack pointer if it is a multi-stack implementation, program 
counter, registers) – if we switch stacks we need assemby language

� Restore P2 context

� Is there a „natural“ context switch?

� If we work on one stack there is: function and interrupt calls save context 
automatically (the compiler does that for us): 

call instruction (taken from microchip.com)



Scheduling Ctd.
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� Function call conventions for context:

� Interrupts save context in their stack 

frame

� dsPIC default: W0-W15

� RCOUNT

� More on demand – save parameter in 
case of dsPIC C30 compiler

� In case of the C30 compiler this also 
applies for functions called within an ISR

� We conclude: a timer-driven interrupt 

gives us timing accuracy and saves 

our context
Source: microchip.com



Scheduling Ctd.
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� We can use an ISR to realize a light-weight scheduler:

� We can call different functions at different times (round-robin based on 
elapsed time to realize different cycle times)

� All tasks are C functions that run to completion

� We can put a background task into the while(1){...} loop in main. E.g. serial 
communication

� BUT: does not really work well if we do have different asynchronous sources 
of interrupt (e.g. timer and ADC)

� Why do we use our own scheduler at all?

� Cost of commercial OS

� Lack of certificate (if we need to certify we need to show that the OS meets 
the criteria of the certification)

� Therefore, a very simple scheduler might be a good alternative



Scheduling Ctd.
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10ms cycle 20ms cycle



Scheduling Ctd.
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� For multiple sources of interrupt we can realize a fixed-priority 

single-stack scheduler using plain C (compiler takes care of 

context)

� Every task is realized by a non-blocking (does not wait for external signal) 
thread of execution

� Once an IRQ is fired it is marked for execution (READY) and is run if no task 
of higher priority is currently running

READY PREEMPTED

RUNNING

[ex te rna l s igna l] /c rea te  t as k

[h ighes t  p rio rit y ] /run

[ ta s k  R TC ] /

[higher priority  tas k  RE A DY

]/c ontex t s witc h

[h igher prio rity  tas k  R TC] /res um e

Task3

Task2

Task 1
high address

low address



Scheduling Ctd.
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� State-machine based task execution (no state for resource waiting)

� C compiler ISR handling takes over task switching

� Different interrupt sources (timer, ADC, etc) can trigger task 

creation (post event and mark task for execution)

� Refer to „Build a super simple tasker“ http://www.state-

machine.com/resources/articles.php



Peripherals
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� Embedded processors do come with many peripherals. Usually we 

need two things:

� The peripheral specification
(tells what bit to set to achieve
a certain functionality)

� The device specification

� An example program or library
(tells us the sequence of
necessary steps and gives a
quick feedback on
functionality)

Source: microchip.com



Peripherals Ctd.
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� It might also be a good idea to define wrapper function to

� Abstract the hardware – useful when working with different embedded 
processors

� Allow unified error handling

� Common functions: OpenPeripheral(), ClosePeripheral(),

ReadPeripheral(), WritePeripheral(),...

� Macros: EnableInterrupt, DisableInterrupt,...

� In case of the dsPIC Microchip provides ready-to-use functions for 

peripherals, watchdog, and reset (other IC vendors do as well).



Fault Detection
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� Specific to safety-related systems in industrial domain

(IEC61508-2) to achieve a higher DC -> influences PFD/PFH and 

architectural constraints

� What is a DC (diagnostic coverage)?

� In previous lectures we discussed random hardware failures and assigned a 
failure rate (λ)

� Hardware failures can lead to hazardous states (not good!) of the system 
which can result in harm (very bad!) – but they do not have to

� However, a system (in the safety world) is allowed to fail safe.

� If we can avoid a dangerous system failure by detecting dangerous 
component faults (λd) in advance we can transfer λd into λs (actually a λdu is 
transferred into a λdd).

DC=∑λdd/∑λd ; λdd= λd x DC/100



Fault Detection Ctd.
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Source: IEC61508-2, general faults to be 
detected or analyzed



Fault DetectionCtd.
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� Invariable memory and variable memory

Source: IEC61508-2



Fault Detection Ctd.
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Source: IEC61508-2

� IO

� Program sequence



Fault Detection Ctd.
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� Fault detection is a series of activities that happen at startup, 

background (cyclic tests) and specific maintenance cycles

� CPU

� Memory (used one)

� IO

� Program sequence

� Basic tool for fault detection evaluation is FMEA

� Time-critical test is cyclic background test since it checks physical 

resource during operation (must align to the fault detection 

response time specified in the systems requirements)



Fault Detection – Memory

� Memory matrix organization

(1-bit … n-bit) – in reality one 

data word stored at a specific 

address

� address decoder, read and 

write amplifiers,  control 

signals, data in and out

� low diagnostic coverage: 

stuck-at for data and/or 

address (constantly ‘0’ or ‘1’)

� medium diagnostic coverage: 

DC fault model for data and 

address (stuck-at, high-Z, X-

talk)



Fault Detection

- Non-variable Memory (Flash) -

� Modified checksum test, based 

on XOR and circular shift 

operations

� Defined checksum is compared 

to the checksum calculated 

during operation

� Odd-numbered bit errors within a 

column are detected

� Low diagnostic coverage test

1 0 1 1

0 1 0 1

0 0 1 0

0 1 0 1

A

1 0 1 1

1 0 1 0

1 0 0 0

1 0 1 0

B

0 0 1 1C

D

E

F

1 0 1 1

0 1 1 1

0 0 1 0

0 1 0 1

1 0 1 1

1 1 1 0

1 0 0 0

1 0 1 0

0 1 1 1



Fault Detection

- Non-variable Memory (Flash) cont. -

� Signature of one word test (CRC), based on Modulo-2 

arithmetic

� Memory content is interpreted as a bit stream

� Division by a defined polynomial yields zero,  P(X) = 11001 in 

the example

� All one bit and multi-bit failures within one word and 99.6% of 

all possible bit failures are detected

� Medium diagnostic coverage test 



Fault Detection

- Non-variable memory (EEPROM) -

� EEPROM content is copied to SRAM and verified during 

system initialization -> working copy

� All changes are made to working copy

� Working copy is written to EEPROM before power-down or 

at defined slow cycles (wear-out effect!)

� EEPROM test is reduced to a RAM test – we work from 

RAM data



Fault Detection 

- Variable memory (SRAM) -

� Checkerboard test – low 

diagnostic coverage

� Cells are checked for 

correct content in pairs

� Initialization, upward test, 

downward test, inverse 

initialization, upward test, 

downward test -> 10 * n 

complexity (number of load 

store operations)

� Pairs are address inverse



Fault Detection 

- Variable memory (SRAM) cont. -

� Walking pattern - medium diagnostic coverage

� Initialization (A), the first cell is inverted and all remaining cells 

are checked for correct content (B), the first cell is inverted again 

(C), the test is conducted again with inverse background (D) -> 

2*n*n + 5*n complexity (number of load store operations)



Fault Detection

- Variable memory (Stack) cont. -

� Stack data integrity is 

checked by correct 

program flow (the stack 

stores our task context)

� Stack limits are checked by 

signature or addresses 

(some controllers provide 

hardware support)

� Underlying hardware 

(SRAM) is checked by 

SRAM tests

free stack space

signature

signature

signature

signature

return address

parameter 3

parameter 2

parameter 1

local data

frame pointer

stack pointer

high address

low address



Fault Detection Ctd.

- Example -
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� RAM tests are destructive – therefore we need to safe the original 

data in advance

bit flip



Software Mapping
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� stack – local data and spilling 

registers

� heap – dynamic data (do not use)

� static data

� text – program code

� logical layout mapped to physical 

location during linkage



Communication

Slide34A. Walsch, IN2244

� We usually use standard protocols to transmit data. Correctness is 

guaranteed by by error detection mechanisms (e.g. parity, CRC)

� Sometimes error detection capability not sufficient

� Hamming distance of n:
n-1 bit errors can be detected.

� Residual error:
If we do know the Hamming distance and do know the bit error rate (bit flips 
are statistically independent) we can calculate a residual error.

� CRC: an additional peace of data is added to the existing bit stream. The 
additional peace of data allows error detection

Address

8 bit
Data – 128 bit

CRC – 16 

bit

payload

transmitted data

Source: Bosch, CAN Secification



Code Structure
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� Software stored in ASCII files – what is a good way to structure 

code?

� Object-orientation vs. precedural style

� Object-oriented programming languages (mostly C++) often not an 

option

� Proven-in-use of tools challenge (safety-related software)

� Prior experience of team

� Coding in C in an object-oriented way

� Reusability

� Data encapsulation

� Function encapsulation



Code Structure Ctd.
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All program code in a 

single source file

main.c main.h

app.c app.h

io.c io.h

� Linkage: describes the accessibility of objects (something that uses 

memory) from one file to another, or even within the same file –

internal, external, no linkage

� Internal linkage, external object, accessible within one file

� External linkage, external object, accessible throughout the whole program

� No linkage, internal object, accessible from within the function

� Scope: region of a program in which an object is visible – block, 

file, function, function prototype



Code Structure Ctd. 
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Storage Class Specifier Function or Data Object Linkage Duration

static either internal static

extern either external static

none function external static

none data object external static

� External declarations (outside a function)

� Internal declarations 

Storage Class Specifier Function or Data Object Linkage Duration

register data object none automatic

auto data object none automatic

static data object none static

extern either external static

none data object none automatic

none function external static



Code Structure Ctd. 
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Code Structure Ctd. 
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