
Lab Course “Microcontroller Programming” Exercise 3

Exercise 3: Interrupts

The polling based implementation UART communication from the last session is actually quite
inefficient, especially when there are many tasks to perform simultaneously. Recall the button
counter application from the first session: imagine that when you press the button, the microcon-
troller is busy doing something else (e.g., UART communication) and it simply does not have a
chance to check whether the button is pressed. Then your program will miss the event. In this
section, we will learn another yet better way to do this job, namely to use interrupts.

Introduction to Interrupts

Figure 1 conceptually shows how interrupts work. The bars represent the control flow. The top
bar corresponds to the main program and the bottom bar to the Interrupt Service Routine (ISR).
When an interrupt occurs, the main program stops executing and the microcontroller begins to
execute the ISR. Once the ISR is complete, the microcontroller returns to processing the main
program where it left off. Using this mechanism, we can drastically reduce the probability to miss
important events.

Furthermore, using interrupts is a very efficient approach. Some embedded systems are called
interrupt driven systems, because most of the processing occurs in ISRs and the embedded system
spends most of its time in a low-power mode from which it is only awakened by interrupt requests.

Figure 1: Serving an Interrupt

Note that before executing the ISR, there is a special piece of code that saves the context the
program. The context typically includes current register values, the stack pointer and the address
of the next instruction to execute (program counter). After serving the interrupt, exactly the same
context must be recovered in order to guarantee the correctness of the main program. Usually,
we will not manually write the code to save and recover the context, since most compilers can
generate those instructions for us. Nevertheless, some of these instructions are not necessary for
normal function calls and the compiler will never generate them unless told. Hence, we need to
add a special attribute to the ISR function so that the compiler knows about our intentions:

#include <avr / i n t e r r up t . h>

ISR(USART RX vect)
{

/∗ Implementation ∗/
}

This statements defines a ISR called USART_RX_vect. Note that an ISR does not take any param-
eters and does not have a return value.

Usually, there are many subsystems in the microcontroller that can generate an interrupt, for
example communication channels like the UART, internal sources like timers or external sources

1/4



Lab Course “Microcontroller Programming” Exercise 3

like I/O pins. Upon detecting an interrupt, the microcontroller will first check the interrupt status
register to find which type of interrupt it is and then invoke the corresponding service routine.

The Interrupt Vector Table is a list of every interrupt service routine. It is located at a fixed
location in program memory. Table 1 shows the interrupt vector table of ATmega168. You can
also find this information in section 11.4 of the ATmega168 manual. Exactly the names in the
“ISR name” column have to be used for ISR functions handling the respective interrupts.

No. Address ISR Name Interrupt Definition

1 0x0000 (none) Power-on, Brown-out and Watchdog System Reset
2 0x0002 INT0_vect External Interrupt Request 0
3 0x0004 INT1_vect External Interrupt Request 1
4 0x0006 PCINT0_vect Pin Change Interrupt Request 0
5 0x0008 PCINT1_vect Pin Change Interrupt Request 1
6 0x000A PCINT2_vect Pin Change Interrupt Request 2
7 0x000C WDT_vect Watchdog Time-out Interrupt
8 0x000E TIMER2_COMPA_vect COMPA Timer/Counter2 Compare Match A
9 0x0010 TIMER2_COMPB_vect COMPB Timer/Counter2 Compare Match B
10 0x0012 TIMER2_OVF_vect OVF Timer/Counter2 Overflow
11 0x0014 TIMER1_CAPT_vect CAPT Timer/Counter1 Capture Event
12 0x0016 TIMER1_COMPA_vect COMPA Timer/Counter1 Compare Match A
13 0x0018 TIMER1_COMPB_vect COMPB Timer/Coutner1 Compare Match B
14 0x001A TIMER1_OVF_vect OVF Timer/Counter1 Overflow
15 0x001C TIMER0_COMPA_vect COMPA Timer/Counter0 Compare Match A
16 0x001E TIMER0_COMPB_vect COMPB Timer/Counter0 Compare Match B
17 0x0020 TIMER0_OVF_vect OVF Timer/Counter0 Overflow
18 0x0022 SPI_STC_vect SPI Serial Transfer Complete
19 0x0024 USART_RX_vect USART Rx Complete
20 0x0026 USART_UDRE_vect USART Data Register Empty
21 0x0028 USART_TX_vect USART Tx Complete
22 0x002A ADC_vect ADC Conversion Complete
23 0x002C EE_READY_vect EEPROM Ready
24 0x002E ANALOG_COMP_vect Analog Comparator
25 0x0030 TWI_vect 2-wire Serial Interface
26 0x0032 SPM_READY_vect Store Program Memory Ready

Table 1: Interrupt Vector Table of ATmega168

Exercise 3.1

a) Why is there in general the need to save the program context before entering an ISR? Give
a concrete example for a case when it is needed. Can you imagine why the context is not
automatically saved and restored by the microcontroller (e.g., “in hardware”)?

b) Which functions from the WinAVR library can be used to enable/disable interrupts globally?

c) How can be checked whether interrupts are globally enabled? Write a function with the
following signature that returns 1 or 0 depending on whether interrupts are enabled or not:

char i en (void ) ;

2/4



Lab Course “Microcontroller Programming” Exercise 3

UART Interrupts

Read the ATmega168 manual about UART transmit and receive complete interrupts to find the
answers to the following questions.

Exercise 3.2

a) How can transmitter interrupts be enabled (transmit complete and data register empty)?

b) How can receive complete interrupts be enabled? When is the RXC0 flag cleared?

c) Develop an application with UART receive complete interrupt enabled. In the ISR, set the
state of the LEDs to show the character code of the received character like you did last time
in polling mode. Use the terminal to send some data to the device and verify the functionality.

d) Develop the same echo application as in the previous exercises. Use interrupts to implement
the functionality this time. To show that only interrupts are used, extend your program so
the LEDs produce a “running light” with a fixed, rather slow speed that is independent of
the communication.

e) Try to find out what happens if an interrupt occurs for which no service routine is specified.
Do this by commenting out the receive interrupt’s ISR and sending a character from the
host. What happens to the “running light”? If the effect does not match your expectations,
try to find an explanation.

Hints

• Make sure interrupts are enabled globally at the correct points in time ;)

• Some interrupts require the interrupt flag to be manually cleared by the ISR, otherwise a
subsequent interrupt will occur once the ISR terminates and the program will spend most of
the time in an ISR loop. Read section 19.6.3 of the ATmega168 manual for more information.

By the way, why does the above paragraph read “most of the time” and not “all the time”?

External Interrupts

In the first session we have developed an application to increment a counter when a button is
pressed. As we discussed, that implementation might be vulnerable to bouncing effects and might
suffer from timing issues. We will now improve the program by generating an pin change interrupt
when the button is pressed.

Exercise 3.3

a) Read chapter 12 of the ATmega168 manual to learn about external interrupts. Implement
the button press counter from a previous exercise using pin change interrupts (leave the
switches connected to port ’C’). Let your program have a global variable that holds the
number of button presses and let the ISR only modify that variable. In the main program,
an endless loop should apply the current value of that variable to the LEDs.

b) Implement the keyboard-like behavior when the button is continuously pressed (meaning
that when continuously pressing the button, the character gets sent multiple times after a
short period until the button is released).

3/4



Lab Course “Microcontroller Programming” Exercise 3

Hints

• Remember what has been said about the volatile keyword, which prevents the compiler
from applying optimizations to your code. Interrupts are spontaneous events, so you need to
use the keyword in the context of ISRs as well.

Sleep Modes and Interrupt Driven Design

Atmega168 can be switched to different power saving modes during idle times. This is of special
importance in scenarios where the controller is battery-powered.

Exercise 3.4

a) Read chapter 9 of the ATmega168 manual to learn about power management. Which factors
determine how much energy the microcontroller uses? Also consider factors that arise due
to inefficient programs and algorithms and give examples for each case.

b) Which sleep modes and register setup can be used for each of the following scenarios when
only the specified functionality must be guaranteed? For each case, specify the configuration
that saves as much energy as possible.

i) Handling of pin change interrupts within very short amount of time (only a few clock
cycles until interrupt handling begins), given an external clock is used.

ii) Handling of pin change interrupts with a maximum delay of a few milliseconds.

iii) Handling of UART events.

iv) Handling of timer events (for each timer individually).

c) Implement an echo application on the serial port that is as energy-efficient as possible. This
means that the MCU should switch to a well-suited power saving mode as often and quickly
as possible and the number of instructions executed should be minimized. List the energy-
saving measures your approach considers to implement the desired behavior.

4/4


