RACE Praktikum Student Competition

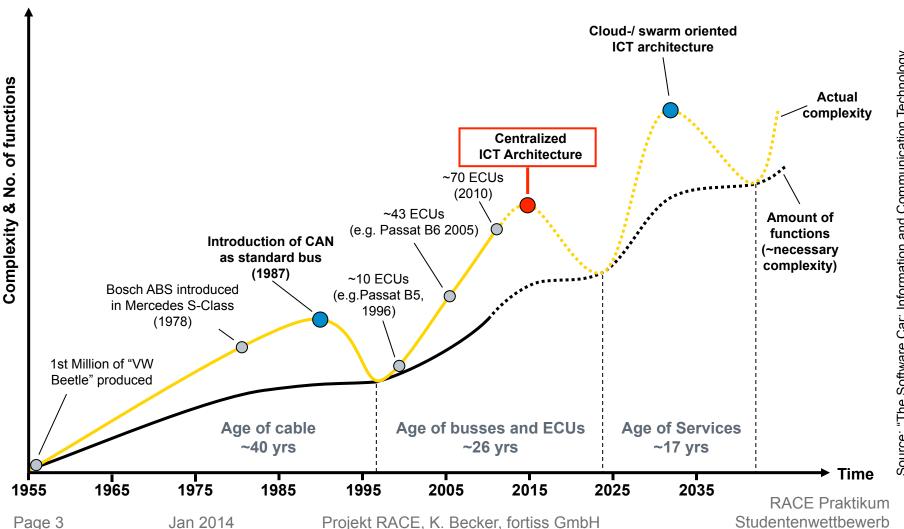
Which functional features do you expect from your future electric vehicle? Why not implement them yourself? ...do it now!

21.01.2014

Website: http://www4.in.tum.de/lehre/praktika/map/ss14/raceapps

Gefördert durch:

Bundesministerium für Wirtschaft und Technologie

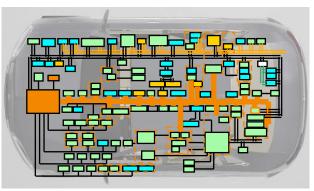

aufgrund eines Beschlusses des Deutschen Bundestages

Page 2Jan 2014Projekt RACE, K. Becker, fortiss GmbH

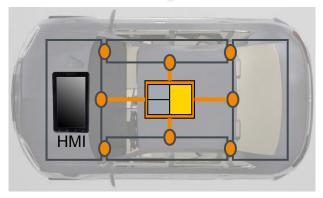
History and forecast about the complexity of automotive architectures

race

RACE Platform Idea

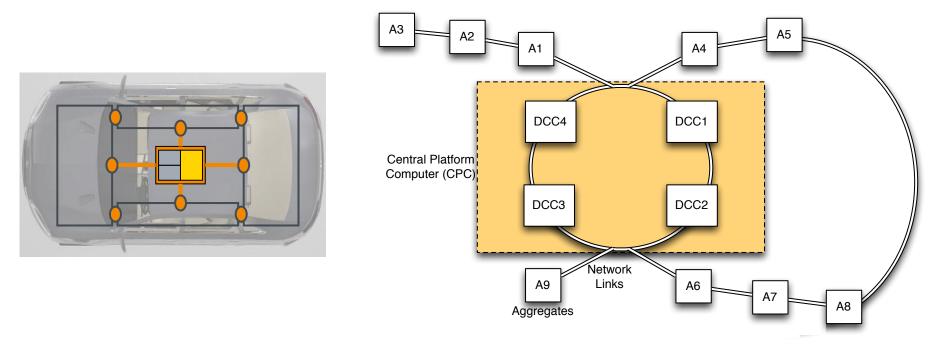


Main Project objectives:

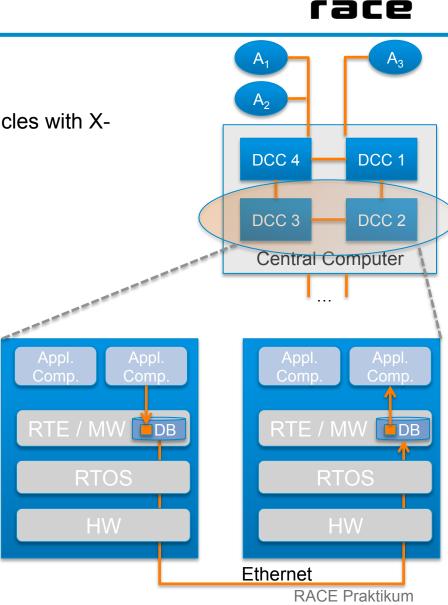

- Aim 1: Reduction of complexity of ICT-Architecture by homogeneous and open basis platform
- Aim 2: Support if new complex functional vehicle features
- Aim 3: Plug & Play capability of ICT-Architecture
- Aim 4: Ability to certify the ICT-Architecture
- Aim 5: Show an migration path to the new architecture

Main Principles:

- Centralized ICT-Architecture
 - Central-Platform-Computer, mixed critical features
 - Data-centric approach: All data about Sensors and Actuators is accessible everywhere
- Communication
 - Switched Ethernet
 - Publish/Subscribe communication pattern
- Fail-Operational vehicle features



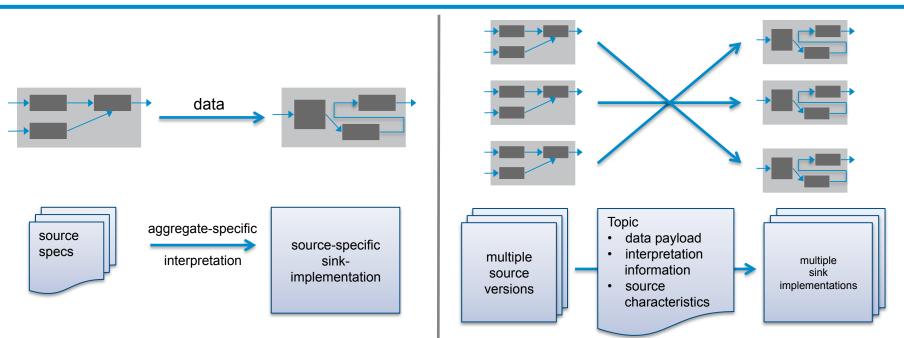
- Central Platform Computer (CPC) with scalable set of Duplex-Control-Computers (DCCs) and safety concepts to enable fail-operationality
- Data-Centrism allows freedom on deployment
 - Application-Components can access Sensor/Actuator data independently from the components location



RACE Platform

- Centralized ICT-Architecture for electric vehicles with X-By-Wire support
- Cluster of central computing units
- Data-Centric approach
 - all data accessible at every location
- Logical execution times

Main Requirements:

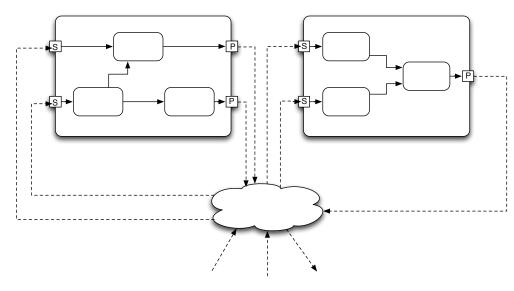

- Mixed-Criticality
- Fault-Detection & Handling
- Fail-Operationality

Projekt RACE, K. Becker, fortiss GmbH

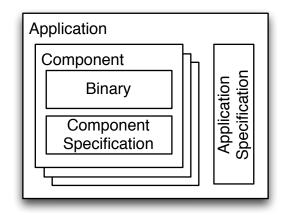
Data-Centric Communication - Comparison of Approaches

Classic Approach: Aggregate-Centric

- Data is interpreted using knowledge about the source
- Dependent on (informal) knowledge
- Tight coupling of aggregates and aggregate developers needed
- □ Inflexible, hard to build modular architectures


Novel Approach: Data-Centric

- The source properties are reflected in the topic attributes
- Data can be interpreted solely relying on the topic description
- Decoupling of producer and consumer of data
- □ Flexible, enables modular architectures



RACE Application Development Fundamentals

- Applications are realized by black-box SW-Components
- External interfaces of the SWCs are specified by Ports that <u>subscribe</u> or <u>publish</u> data.
- Internal sub-components are hard wired.

- Applications are delivered together with specifications (so called Manifests) about their functional and non-functional properties and requirements
 - e.g. WCETs, required memory, required and provided data, etc.
 - These information is required to decide about the integrability/ <u>composability</u> of the application components

Projekt RACE, K. Becker, fortiss GmbH

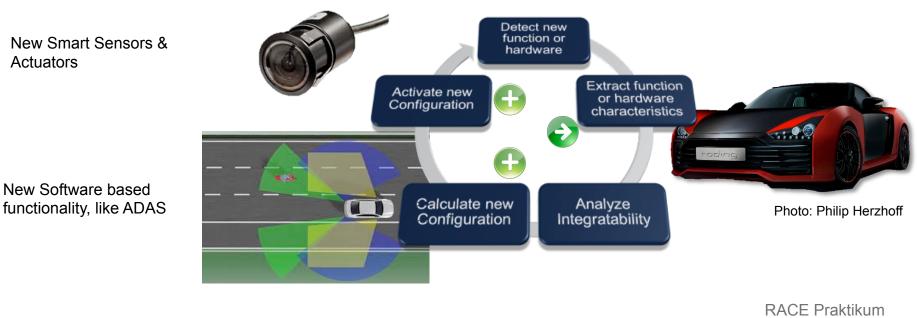
Photo: Philip Herzhoff

In the RACE Project, 3 vehicle functions get implemented to evaluate the developed vehicle platform:

1. Energy-Management

Demonstrator Car

- 2. Driving (trajectory-based)
- 3. Autonomous parking at a charging station


During the RACE-Praktikum, additional functions should be invented and implemented. The best implementations might also get integrated into the demonstrator car.

Plug and Play of new functionality

Evolutionary update of the vehicle through autonomous integration of new software and hardware components, enabling new functionality

Organization

Phase 1 Idea Contest	 Brainstorming and conception of innovative future vehicle functions, based on the vehicle platform developed in RACE 	Registration February 2014
		Phase 1:1st half of SS14
Phase 2 Implementation	 Part 1: Implement functionality on central platform computer Part 2: Implement visualization and control of functionality on HMI. 	 Wednesday 9-11h Phase 2+3: 2nd half of SS14 and/or
		as block 2-3 weeks in
Phase 3	 Simulation and Evaluation of implemented functionality 	lecture-free time in
Simulation, Evaluation Documentation and Integration		August/Sept.You can decide.
		Teamwork
Phase 4 Presentation	• The best ideas and implementations of innovative functions can be presented at the final demonstration of the RACE project to a broad audience (Nov 14)	 3-4 Students per Team TUM-Praktikum 10 ECTS, 6 SWS
Oursetiene? Oantest Klaus Desken (heeken@ferties.com)		
Page 11 Jan 20		Studentenwettbewerb

Prerequisites

Phase 1 Idea Contest Phase 2 Implementation on central platform computer and HMI

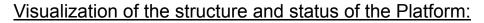
Phase 3 Simulation, Evaluation, Documentation and Integration

Prerequisites for Phase 1:

- Basic knowledge of embedded systems, like in the automotive domain.
- You will get documentation about available sensor-data of the vehicle from us.
- Enthusiasm for vehicles and software ;)

Prerequisites for Phase 2 and 3:

- Basic knowledge in **C** programming language and IDE **Eclipse** is assumed.
- Knowledge in **HTML5** and **JavaScript** is helpful for implementing the HMI GUI
- Experience with Matlab/Simulink might be helpful, but not required (optional)


Phase 4 Presentation

Not every student needs knowledge in every sector! => Teams!

Questions? Contact: Klaus Becker (<u>becker@fortiss.org</u>)

Page 12

Projekt RACE, K. Becker, fortiss GmbH

- Visualization of states of hardware components
- Visualization of states of software components
- Visualization of deployment of software components to hardware components

Integration of external web-services

Provide higher services based on vehicle data

Active or passive "Advanced Driver-Assistance Systems" (ADAS)

etc.

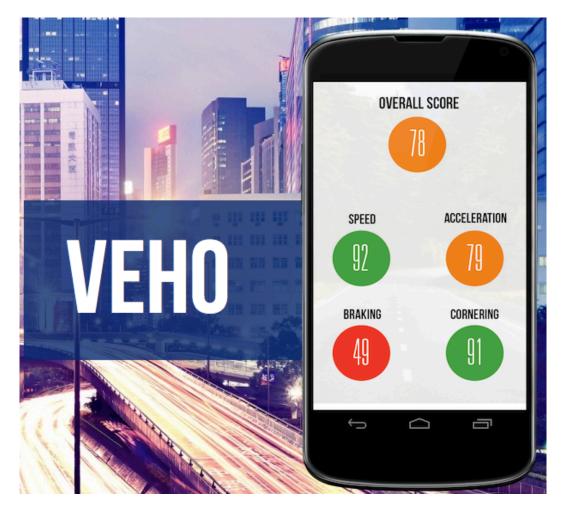
Page 13

DCC DCC 3 4

Questions? Contact: Klaus Becker (becker@fortiss.org)

Projekt RACE, K. Becker, fortiss GmbH

RACF Praktikum Studentenwettbewerb



Jan 2014

Student Project VEHO: <u>http://www.vehodrive.com/</u>

The Center for Digital Technology and Management (CDTM) developed "VEHO" - your perfect copilot. VEHO works with data out of the car, gathered by the OBD-device, and matches the data with external data like speed limits and weather information. This matching process results in real-time recommendations for the driver, improving his driving skills and presenting it in an overall score and statistics of the driving performance.

Done by 5 Students in WS12/13 at CDTM (<u>http://www.cdtm.de</u>).

Page 14

Projekt RACE, K. Becker, fortiss GmbH

Vielen Dank für Eure Aufmerksamkeit.

- Fragen ?

Website: http://www4.in.tum.de/lehre/praktika/map/ss14/raceapps

Gefördert durch:

Bundesministerium für Wirtschaft und Technologie

aufgrund eines Beschlusses des Deutschen Bundestages

