
Übung Echtzeitsysteme WS 2013/14 - Exercise 1

Übung Echtzeitsysteme WS 2013 / 2014
Introduction to C
Philipp Heise, Christian Buckl

Exercise 0 Getting to know the GNU C compiler and CMake

1. (Hello World!) Create a file named hello.c containing the following tiny C program. In
order to compile the program use the command gcc hello.c -o hello and execute the
resulting executable using the command ./hello.

#include <stdio.h>

int main(int argc, char** argv)
{
 printf("Hello World!\n");
 return 0;
}

2. (Read the documentation) You should familiarize yourself with the possible flags for the
GNU C compiler. Use your browser or the gcc manual to find out the necessary informa-
tion. What do the flags Wall, c, O{1,2,3,s},g and D do?

3. (CMake) Throughout the exercises we will use CMake as our build tool. In general your
project folder should contain one CMakelists.txt file like the one shown below and two
additional directories. One for the sourcecode named src and another one called build for
all the generated files. To use cmake your current working directory should be the buildCMakelists.txt Page 1

cmake_minimum_required (VERSION 2.6)
project(Tutorial)

include_directories("${PROJECT_SOURCE_DIR}/src")
file(GLOB SOURCES "${PROJECT_SOURCE_DIR}/src/*.c")

add_executable(hello ${SOURCES})

directory. You can then call CMake using the following command cmake ... CMake should
then generate a Makefile for you. In the build directory the make command can then be
used to compile and link our executable. What does the build folder contain? Find out
what the commands in the CMakelists.txt file do using the official CMake documentation.
Can you easily add another executable? How do you tell CMake to use special compiler
flags? What is the effect of the command make VERBOSE=1 ?

Exercise 1 C Basics

In the following we suppose that you know basic data-types like char, int and float. Further
you should know about basic control flow e.g. if/else, while and for. You should also know what
functions are and what they are for.

1

Übung Echtzeitsysteme WS 2013/14 - Exercise 1

1. (Functions) Functions are extremely useful for structuring and reusing common code.
The abstract general structure of function declarations can be simplified to the following.
The declaration contains a return type, a function name and argument types with their[No Name][+] Page 1

type function(type0 arg0, type1 arg1, ..., typeN argN)
{
 ...
}

respective names. Below a function for calculating the factorial is given:

[No Name][+] Page 1

type function(type0 arg0, type1 arg1, ..., typeN argN)
{
 ...
}

int factorial(int n)
{
 if(n <= 1)
 return 1;
 else
 return factorial(n − 1) * n;
}

• Write a function that has no parameters and returns no value, but prints a message
to the standard-output.

• Write a function for calculating the n-th Fibonacci number. The return value should
be the result and the sole parameter should be n.

2. (Pointers) The name of a variable refers to a particular location in memory. We can
use the name to retrieve or store a value from this memory location. If you refer to the
variable by name then

1. the memory address is looked up

2. the value at the address is read or set.

C allows us to perform these steps independently (given a variable x):

• &x evaluates to the address of x in memory

• *(&x) dereferences the address of x and retrieves the value of x

• *(&x) is the same thing as x

The following code demonstrates this with an additional illustration of the memory (we
assume x is at location 0x123 in memory)bla.c Page 1

#include <stdio.h>

int main()
{
 int x;
 int* p = &x;

 x = 10;
 printf("%d\n", x);
 *p = 5;
 printf("%d\n", x);
 return 0;
}

• The concept of pointers allows us to call functions that modify their parameters.
Change your Fibonacci function so that the first parameter is a pointer to the
memory location for the return value. The function should return nothing.

2

Übung Echtzeitsysteme WS 2013/14 - Exercise 1

5 0x123

x p

0x123 0x124 0x125 0x126... ...

• Can you perform arithmetic operations like plus, minus etc. on the pointers? Can
you assign arbitrary values to the pointer? What are the implications of this?

• What is necessary to change the address of a pointer that he is currently pointing to
from within a function? What happens when you directly change the pointer inside
the function? The current address of every pointer can be printed using printf and
%p.

3. (Arrays) The general structure of array declarations in C looks like this. Array accessbla.c[+] Page 1

type name[dimension];
type name[dimension1][dimension2];

and various initialization techniques are shown below.
[No Name][+] Page 1

int array[4];

array[0] = 3;
array[1] = 5;
array[2] = 7;
array[3] = 42;

...

int array[4] = { 3, 5, 7, 42 };

...

int array[] = { 3, 5, 7, 42 };

In C just the name of an array is equivalent to a pointer of the same type, which points
to the first element of the array. Indexing is equivalent to dereferencing a pointer with
an offset. The following code snippet illustrates this equivalency.

str.c Page 1

#include <stdio.h>

int main()
{

 int array[] = { 1, 2, 3, 4 };

 int* ptr;
 ptr = array;
 // is identical to
 ptr = &array[0];

 array[2] = 5;
 // is identical to
 *(array + 2) = 5;

 return 0;
}
• Declare an array of a certain size and use 3 different techniques to fill the array

with its index number. Use the normal bracket, the pointer plus offset and an
incrementing pointer method to set the contents.

3

Übung Echtzeitsysteme WS 2013/14 - Exercise 1

• Write a function to initialize an array with a fixed value. The parameters of the
function should be a pointer to the array and the size of the array. Why is the size
necessary? Can you use your function to set a single variable to the fixed value?

4. (Memory management) Local variables reside normally on the stack. The lifetime of
variables on the stack is only as long as the function does not return. Heap memory is
not affected by the current function and is persistent. To allocate and free memory of the
heap several functions exist: malloc,calloc and free. The stdlib.h header must be included
to use these functions.

• Read the manuals for these functions and find out what they do.

• What happens to the memory if free is not called.

• Assume you have two pointers to the same memory location allocated using malloc
- what happens to the other pointer if one of them is used to free the memory?

5. (Structures) Often it is useful to encapsulate several variables into one new data-type.
In C this can be done with structures. The following simple example shows how to use
them.

struct.c Page 1

#include <stdio.h>

struct Vec2f {
 float x;
 float y;
};

int main()
{
 struct Vec2f v;

 v.x = 1.0f;
 v.y = 1.0f;

 struct Vec2f* vptr = &v;
 (*vptr).x = 2;
 // is identical to
 vptr−>x = 2;

 return 0;
}

In order to avoid to write struct every time, we can use a typedef to allow the direct
usage of Vec2f.

str.c[+] Page 1

#include <stdio.h>

struct Vec2f {
 float x;
 float y;
};

int main()
{
 struct Vec2f v;

 v.x = 1.0f;
 v.y = 1.0f;

 struct Vec2f* vptr = &v;
 (*vptr).x = 2;
 // is identical to
 vptr−>x = 2;

 return 0;
}

typedef struct Vec2f Vec2f;

typedef struct {
 float x;
 float y;
} Vec2f;

• Write several functions to perform the following operations. The first parameter
should always be a pointer to the Vec2f type (with the exception of vec2f new).

vec2f new Allocate memory for the structure using malloc and sizeof.

vec2f delete Free the allocated memory.

vec2f zero Set the components to zero.

vec2f set Set the components to the by parameters provided values.

vec2f print Print the components.

vec2f add Add the components of two Vec2f and store the result in the third.

vec2f scale Scale the components using the value provided by parameter and store
it into the destination.

4

Übung Echtzeitsysteme WS 2013/14 - Exercise 1

Exercise 2 Common mistakes

The following code snippets contain some common mistakes. Spot the bug!<cuments/Lehre/lehre−svn/echtzeitsysteme/ws1314/uebung/sheet01/code/mistakes.cPage 1

// Bug 1:
int* some_function(int a, int b)
{
 int retval;
 retval = a ^ b;
 return &retval;
}

// Bug 2:
void copydata(uint8_t* dst, const uint8_t* src, size_t n)
{
 for(size_t i = 0; i <= n; i++) {
 dst[i] = src[i];
 }
}

// Bug 3:

int* data = malloc(sizeof(int) * 10);
int* dptr = data;

dosomething(dptr, data);
free(data);
dosomethingdifferent(dptr);

5

