
Lab Course - Robot Vision WS 2012/13 - Assignment 1

Lab Course: Robot Vision WS 2012/2013
Philipp Heise, Brian Jensen, Sebastian Klose

Assignment 1 - Due: 05.11.2012

Exercise 1 Getting Started with ROS

1. (ROS Tutorials) The best way for getting started with ROS, is using the Tutorials pro-
vided on http://www.ros.org/wiki/ROS/Tutorials

Walk through all the Tutorials on this page, to get an overview about the ROS system. As
C++ will be the language of choice throughout this course, pleace stick to those tutorials
where needed.

2. (Image Publishing & Subscription) By now you should have a basic understanding of how
to create your own package within ROS. Your first task will be to write some simple image
publishing and subscription nodes. First create a new package named imagepub <group>.
Make sure you add the following ROS packages as dependencies when you create your
new ROS package:

roscpp, image transport, cv bridge, dynamic reconfigure.
Implement the following nodes:

• A node named cb publisher. The node shall advertise an image topic named
cb img, containing a generated image of a checkerboard. Your node should have the
following ROS parameters:

– width - the width of the advertised image

– height - the height of the advertised image

– square size - the size in pixels of one square of the checkerboard

– frequency - the frequency with which to publish the checkerboard image

You should also give useful default values for these parameters. The following wiki
pages might be useful for this taks:

– http://www.ros.org/wiki/roscpp/Overview/Parameter%20Server#Getting_

Parameters

– http://www.ros.org/wiki/image_transport/Tutorials/PublishingImages

– http://ros.org/doc/api/sensor_msgs/html/msg/Image.html

Note: For exercise you are NOT allowed to use any opencv functions, including
the OpenCV bridge. Instead you should create and manipulate the image message
directly.

• A node named file publisher, that loads an image from disk and advertises it
under the topic image. Here you should use OpenCV for loading the image and the
cv bridge for converting an OpenCV image into a ROS image message. Your node
should have the following parameters:

– file - the path to the image to load

– frequency - frequency used for publishing the image (use a default parameter
here)

1

http://www.ros.org/wiki/ROS/Tutorials
http://www.ros.org/wiki/roscpp/Overview/Parameter%20Server#Getting_Parameters
http://www.ros.org/wiki/roscpp/Overview/Parameter%20Server#Getting_Parameters
http://www.ros.org/wiki/image_transport/Tutorials/PublishingImages
http://ros.org/doc/api/sensor_msgs/html/msg/Image.html


Lab Course - Robot Vision WS 2012/13 - Assignment 1

Related wiki pages:

– http://www.ros.org/wiki/cv_bridge

– http://docs.opencv.org/ - imread function

To visualize your results you can use the image view node in the image view package.
See http://www.ros.org/wiki/image_view for information on its usage.

4. (Image Pipeline) In this exercise you will implement your first image processing pipeline
in ROS. You will implement a node that subscribes to an image topic, performs some
simple image manipulation, then publishes the resulting image on a separate image topic.
Specifically the new node will perform image brightness and contrast adjustment.

• Create a new node in the imagepub <group> package named image changer. Create
a new class named ImageChanger. The new node should have the following ROS
parameters:

– brightness - an integer value greater than or equal to zero.

– contrast - a floating point value greater than zero.

• The first task is to make the new node subscribe to an image topic. Use the
subscribe method of the ImageTransport class to receive a callback in a mem-
ber function of the class.

• Next you should perform brightness and contrast adjustment on incoming image.
This is accomplished using a simple linear operation on the raw image data according
to the formula:

I(x, y)′ = c ∗ I(x, y) + b

where b the brigheness change is, c the constrast scaling factor, and I(x, y) the
image itensity value at position x, y. Note: For multichannel images, i.e RGB, this
operation can be performed on each channel individually.

• Publish the resulting image message on a new image topic.

Visualize the resulting image with image view to verify your new node operates correctly.
Note: For exercise you are NOT allowed to use any OpenCV functions, including the
OpenCV bridge. Instead you should create and manipulate the image message directly.

5. (Dynamic Reconfigure) Now its time to get to know a very useful piece of ROS in-
frastructe: dynamic reconfigure. Here you are going to make the image changer node
respond to parameter changes at runtime using the dynamic reconfigure infrastructure.

• Create a new directory named cfg in the imagepub group package. Create a new
dynamic configuration file in that directory named ImageChangerConfig.cfg and
make this file executable. The new configuration file should contain the appropriate
entries for the image changer node.

• Make the appropriate changes to the CMakeLists.txt file for dynamic reconfigure.

• Modify the ImageChanger class to receive a callback in a member function from the
dynamic reconfigure Server class.

Test your implementation using the reconfigure gui in the dynamic reconfigure pack-
age.

Exercise 2 Harris Corner Detection

In this exercise, we will implement a node that computes the harris corners for an input image
stream. The node will subscribe to an image message topic and publish a resulting image topic.

2

http://www.ros.org/wiki/cv_bridge
http://docs.opencv.org/
http://www.ros.org/wiki/image_view


Lab Course - Robot Vision WS 2012/13 - Assignment 1

1. (Image Subscription) Create a package named harris ¡group¿. Consider which dependen-
cies are appropriate for the new harris corner detector package.

• In this package create a node named harris corners.

• Create a class that subscribes to an input image topic and receives the callbacks
in a member function. Use the OpenCV cv bridge functionality for creating an
OpenCV image (cv::Mat) from the incoming image message.

• Convert the OpenCV image to grayscale using the appropriate OpenCV color con-
version function.

2. (Parameters) The harris corners node should to support the following parameters:

• template size - an odd integer value greater than or equal to three that contains
the size of the template for calculating the harris response at a given point.

• threshold - a floating point value greather than zero that sets the lower boundary
for a harris response value to be considered a corner. This value is in percent and
taken relative to the maximum harris response in the input image, i.e. a value of
0.1 means that all response values greater than 10% of the maximum response are
considered corners.

3. (Harris corner detection) Recall that the Harris corner detector looks for points in the
image where the immediate area enclosing the point has high self dissimilarity in all
directions. This can be approximately estimated using image partial derivatives and the
Sum of Squared Differences method:

S(x, y; ∆x,∆y) = [∆x∆y]Q(x, y)

[
∆x
∆y

]
where S(x, y; ∆x,∆y) is the approximated sum of sqaured differences between the image
patch at (x, y) and at (x+ ∆x, y + ∆y) and where

Q(x, y) =
∑

(u,v)∈W (x,y)

w(u, v)

[
Ix(u, v)2 Ix(u, v)Iy(u, v)

Ix(u, v)Iy(x, y) Iy(u, v)2

]
=

[
A B
B C

]
is the Harris matrix at (x, y). This matrix contains a sum of the squared image parital
derivates over the template window W (x, y) centered at the image location, where each
partial derivative term is weighted arrording to the template w(u, v) (which can either
be a guassian or a contant factor). Harris corners are characterized by locations which
have two large eigenvalues λ1λ2 in the Harris matrix. Instead of performing eigen value
decomposition we will use the alternative formulation for checking this trait proposed by
Harris:

λ1λ2 − 0.04(λ1 − λ2)
2 = AC −B2 − 0.04(A+ C) (1)

which is known as the Harris response for a point.

• Create a member function for computing the Harris corner response that takes a
graysacale OpenCV image as input and returns an image containing the Harris
response at every valid point (the template does not exceed the image boundaries
at the point).

• Calculate the matrices A, B, and C for each valid point:

A(x, y) =
∑
W

Ix(x, y)2, B(x, y) =
∑
W

Ix(x, y)Iy(x, y), C(x, y) =
∑
W

Iy(x, y)2

• Calculate the Harris reponse at each valid point using equation 1. Determine the
maximum harris response value and use the threshold parameter to determine
which image points are Harris corners.

3



Lab Course - Robot Vision WS 2012/13 - Assignment 1

• Create an ouput image where each of the detected Harris corners is drawn on the
input image using an appropriate OpenCV drawing function. Publish the output
image on a separate image topic.

You may NOT use the OpenCV corner detection! However, you may use the Sobel,
Gaussian or Convolution filters as well as any of the drawing functions.

4. (Dynamic reconfigure) Rework your Harris implementation to use dynamically reconfig-
urable parameters. Use the reconfigure gui to visualize how changes of the parameters
affects your corner detector implementation.

Exercise 3 Nodelets

In this exercise you will get to know Nodelets. Nodelets are a piece of ROS infrastructure to
enable minimal overhead communication between nodes. Nodelets are basically equivalent to
nodes, implemented as threads rather than full-blown processes. A nodelet manager serves as
the thread pool process. Nodelets can be loaded dynamically into running managers, as they
are implemented as plugins. Read the relevant wiki pages about Nodelets for more detailed
informaition.

1. (Harris Nodelet)

• write an additional nodelet version of your existing harris implementation

• create a launch file, that brings up a manager and your nodelet

Exercise 4 Visualization in RViz

1. (Images and Poses) Download the bagfile from (wget http://www6.in.tum.de/~kloses/

rvc/kitty_01.bag). Playback the content of the file using the rosbag tool. Use rviz to
visualize the images in the bagfile (image Display). The bag file also contains the pose
of the moving camera, which is has been published as a tf frame. Use a tf Display in
RViz, to visualize this pose, such that the camera is the moving frame.

2. (Marker Visualization) You can also send custom entities to rViz, to enhance the vi-
sualization for your needs. You can find the details about Marker-Visualization on
http://www.ros.org/wiki/rviz/Tutorials. For the moment, we are only interested
in normal markers (first two tutorials).

• Create a rospackage called rviz markers <group> . Implement a node called rviz clock

visualizing the current time as analog clock in rviz.

3. (Moving Model) Using the Mesh-Type marker, you can specify a model file, which shall
be used for visualization. Write a node, to visualize our chair logo within rviz. Make the
logo follow the tf frame of the moving camera in the bagfile. You can download the logo
at: http://www6.in.tum.de/~kloses/rvc/logo.dae

Exercise 5 Camera Calibration

In order to get metric information out of images, we need to calibrate our cameras for the
intrinsic parameters. ROS provides a tool for that. First bring up the camera node using the
uvc camera package. You probably need to specify a namespace for the camera on startup.
(ROS NAMESPACE=cam rosrun ...)

1. (Monocular camera calibration) Follow the tutorial on http://www.ros.org/wiki/camera_

calibration/Tutorials/MonocularCalibration and calibrate one of the lab cameras
using the provided calibration pattern. Commit your results before closing the camera.
Now verify if your results have been correctly stored within your camera, by first inspect-
ing the corresponding camera info message and then starting up the image proc node

4

http://www6.in.tum.de/~kloses/rvc/kitty_01.bag
http://www6.in.tum.de/~kloses/rvc/kitty_01.bag
http://www.ros.org/wiki/rviz/Tutorials
http://www6.in.tum.de/~kloses/rvc/logo.dae
http://www.ros.org/wiki/camera_calibration/Tutorials/MonocularCalibration
http://www.ros.org/wiki/camera_calibration/Tutorials/MonocularCalibration


Lab Course - Robot Vision WS 2012/13 - Assignment 1

of ROS (see http://www.ros.org/wiki/image_proc for details). Note: Make sure to
make a backup copy of the save calibration file somewhere in your repository

5

http://www.ros.org/wiki/image_proc

