Keyframe-Based SLAM with Bundle Adjustment

Team: gang-of-three

Video!!!

Structure

- Thread 1 Frontend
 - Tracking
 - Camera pose estimation
 - KeyFrame Selection / Criteria
- Thread 2 Backend
 - Map Management
 - Point Cloud Publishing
- Thread 3 to n Optimizer

Frontend - Tracking

BRISK / AGAST


- Dynamic Keypoint Threshold
 - keep the number of Keypoints in a constant range
- Window Matching
 - depends on Key Frame Criteria

Frontend

- Pose Estimation
 - RANSAC
 - o Umeyama

- Key Frame Criteria
 - Only if enough Matches
 - Average Reprojection Error (between map and current frame)^[1]
 - Error Threshold: 0.5 Matching Window Size
 - Translation bigger than 20 cm

Backend

• Мар

- Observations
 - pixel position, feature descriptor
- Shared pointers to relate KeyFrames, Observations and Points
- Ensured thread save access
- Points and KeyFrame poses in global frame

Backend

- Map Management
 - Add new KeyFrame
 - Compute local maps for Frontend and Optimizer
 - Notify when map changed

Optimizer

- Ceres Cost Function: reprojection error
- Challenge using Ceres:
 - Not thread-safe
 - Solution: Synchronisation wrapper classes

Conclusion

- Achievement
 - mapping and tracking working well with careful camera motion

- To be done
 - Code cleanup / refactoring
 - Local map for optimizer
 - Robust performance for different scenarios (BMW bagfile)
 - Loop closures

Reference

[1]: Hauke Strasdata, Andrew J. Davison, J.M. M. Montielb, Kurt Konoligec. Double Window Optimisation for Constant Time Visual SLAM