Applied Computer Vision in Robotics

Team Waitinglist:

- Ross Kidson
- Alvaro Gauterin
- Karol Hausman

Exercise sheet 3

Exercise sheet 4

Project Motion Planning

Motion planning in static scenarios

Project Motion Planning

Motion planning in dynamic scenarios

Static Scenario - Possible solutions

- Different motion planning libraries:
 - OMPL
- Sampling based planning library
- No collision detection provided
- Difficult integration with ROS
- SBPL
- Search based planning library
- No dynamic model of a car

Static Scenario - OMPL Theory

- Probabilistic Motion Planning
 - Rapidly exploring random tree (RRT)

Static Scenario - OMPL Approach

- OMPL \rightarrow incorporate dynamics of a car
- Implement collision detection

Dynamics of the second order car:

$$\dot{x} = v \cos \theta$$
$$\dot{y} = v \sin \theta$$
$$\dot{\theta} = \frac{vm}{L} \tan \varphi$$
$$\dot{\psi} = u_0$$
$$\dot{\varphi} = u_1$$

Static Scenario – OMPL Results

Suboptimal

Static Scenario – OMPL Results

Suboptimal

Static Scenario - SBPL Theory

- SBPL Planner uses ARA* (Anytime Repairing A*) algorithm that was developed by Maxim Likhachev at CMU
- A* algorithm
 - Can be slow
 - Always optimal

Static Scenario - SBPL Theory

- ARA* algorithm
 - A* with inflated heuristics
 - Actual heuristics multiplied by an inflaction factor ε>1

$$f(s) = g(s) + \varepsilon * h(s)$$

- Suboptimal but faster \rightarrow suboptimality is predictable
- Many iterations $\rightarrow \epsilon$ is getting smaller
- If there is time remaining \rightarrow try with smaller ϵ

Static Scenario - SBPL Approach

- SBPL integration with Rviz
- User Interface by clicking start and goal poses
- Integration with BMW Software

Static Scenario – SBPL Results

Static Scenario - SBPL Results

Dynamic Scenario

- Overtaking a car
- Al involved?

Dynamic Scenario - PLAN

• THE PLAN:

- Accelerate on the emergency lane
- Change to the lane on the left
- Again change to the lane on the left
- Keep driving straight ahead

Dynamic Scenario – Check list

- Check list to be checked every second:
 - Is there a threat by the car in front of me?
 - Is there a threat by the car behind me?
 - Execute the plan

Dynamic Scenario – Check list

Threat by a car in front

If distance smaller than half of my velocity → slow down

Dynamic Scenario – Check list

Threat by a car behind

 If distance smaller than half of his/her car → accelerate

Dynamic Scenario – Plan Execution

- Acceleration on emergency lane
 - Accelerate to the avg velocity of the cars on the left lane next to me

Dynamic Scenario – Plan Execution

- Can I change a lane?
 - Lane change takes 3 sec.
 - Where would I be if I change the lane?
 - Where would other cars be in 3 sec.?
 - Calculate hypothetical distances to the car in front and behind me
 - If distances too big → do not change the lane

Distance to

Car in Fron

5 meters

of 3 sec

meters

20

v=85 km/h

Distance to Car Behind

Dynamic Scenario – Plan Execution

=87.5 km/h

- If a lane change is not possible
 - Is the problem a car in front of me? → slow down
 - Is the problem a car behind me?
 - is it slower than me? → accelerate in order to change the lane
 - Is it faster than me? → keep the same velocity so that other car can overtake me

Dynamic Scenario – Final Result?

Dynamic Scenario – Final Result

Thank you

QUESTIONS?