Applied Computer Vision for Robotics Mini-Projects

17.12.2012

Philipp Heise, Brian Jensen, Sebastian Klose

Template Tracking using Linear Predictors

Goals

- baseline implementation of ALPs
- tracking of BMW lab car using this approach
- estimation of position and orientation relative to known floor plane
- live (real-time) tracking should be possible on desktop pc

BMW Car IT

Bundle Adjustment Evaluation

Bundle Adjustment Evaluation

- Libraries of interest:
 - g20 (Freiburg)
 - ceres-solver (google)
 - GTSAM (Giorgia-Tech)
- Goals:
 - Definition of common message interface for "Keyframe" based SLAM like Bundle Adjustment
 - Implementation as nodelets
 - Selection of appropriate test datasets
 - Visualization in rViz
- Evaluation criteria: speed, accuracy, robustness

Keyframe-Based SLAM

Keyframe-Based Real-Time Camera Tracking

ICCV 2009

Robotics and Embedded Systems

Keyframe-Based SLAM

- Goals:
 - Extend code from sheet 3 & 4 to use Keyframes
 - Trajectory output in real-time
 - Map-Optimization in separate thread (nodelet)
 - input trace from kinect (lab-car)

Real-Time Spherical Mosaicing using whole image alignment

Real-Time Spherical Mosaicing using Whole Image Alignment

ECCV 2010 Submission

Real-Time Spherical Mosaicing using whole image alignment

- spherical panoramas using direct image alignment methods
- "keyframe" style optimization
- GPU implementation using OpenCL possible
- Applications:
 - Panoramas, In-Situ Stitching
- S. Lovegrove and A. J. Davison, "Real-time spherical mosaicing using whole image alignment," presented at the ECCV'10: Proceedings of the 11th European conference on computer vision conference on Computer vision: Part III, 2010.

Pose Graph Optimization

- Pose-Graph Optimization as extension to existing VO system
- Pose-Graph on Sliding-Window (gathered from 3D-3D point correspondences)
- optimize the current pose, using information from all frames in the window (only optimize the pose parameters)

Fusing GPS and Stereo data

- GPS and Stereo Data track from quadrocopter
- Optimization-based fusion (e.g. ceres-solver)
- Visualization of path in google-maps (and rviz)

Path Planning using 3D Occupancy Grids

BMW Car IT

Path Planning using 3D Occupancy Grids

- Use results of stereo-visual odometry from last two sheets
- Use the resulting point cloud to generate a 3D occupancy grid using octomap
- implement path-plannig algorithm on the grid
- Goal:
 - Collision free navigation between two points in the map

Robotics and

• application to lab-car data

Autonomous Robotino using RGBD Data

• Goals:

- get familiar with robotino on ROS
- use VO result from last sheet and apply it to kinect data on robotino
- maybe use additional sensor information available from robotino (e.g. wheel-odometry)
- position control: e.g. give relative/ absolute goal positions the robotino should drive to
- if possible: use outcome of navigation project for collision free navigation

